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Abstract

Two types of short-time Fourier transforms involving respectively nonlinear modulation and nonlinear
translation are designed in this note. Some important properties such as twin in time-frequency domain
and orthogonality relations are investigated. Moreover, Lieb type inequalities and uncertainty principle
are established.
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1 Introduction

Let F be the conventional Fourier transform
(.Ff) (w) = (277)_1/2/ e W f)dt, wekR (1.1)
R

for f € S(R), the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable functions
on R. The Fourier transform can be extended to L?(R) by density arguments, which maps L?*(R) onto
itself. Furthermore, LP(R) with 0 < p < oo, is the standard complex quasi-Banach space with respect to the
Lebesgue measure, quasi-normed by

I = ([ 17@Paz)"” (1.2

with the obvious modification if p = oo(see Refs.[4] and [7]). For the purpose of time-frequency localization,
the short-time Fourier transform(STFT) for any function f € L?(R) is defined by

Vof(z,w) = /]Rf(t)g(t —x) e~ e, (z,w) € R2?, (1.3)

where the basic atom g is specially chosen function to guarantee the convergence of the right side integral in
(1.3). Essentially, V, f is the inner product (f, M,7.g) of f and the kernel function M, T, ¢!, where M.,
and 7T, are the modulation and translation operators, given respectively by

Mo f(t) = e f(t), Tof(t)=f(t—a). (1.4)

The modulation and translation are important tools in the time-frequency analysis and harmonic analysis,
which satisfy the following noncommutative relation T, M, = e *Y M, To = p—2u My Ts, Where py is the
rotation transform defined as pq : f — €' f(see Refs.[11] and [14]). The short-time Fourier transform V, is
an isometry from L?(R) into L?(R?) and admits the corresponding inversion formula
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fG) = /R2 Vo f(x,w) My, T:6(-) dwdez, (1.5)




for some synthesis window function g(see Ref.[6]).

Remark that the short-time Fourier transform is based on the linear modulation e***, and there exist
fruitful studies on the short-time Fourier transform(see Refs.[1],[2],[3],[4],[5]). Many scholars investigated
the so called nonlinear modulation in different settings(see Ref.[8]). For instance, an integral version of the
non-harmonic Fourier series, called the Chirp transform was studied in [8]. It is definded as

(Foof)(w) = (277)_1/2/6‘”(”9(“) f)dt, weR
R

for f € LY(R), where 0(t) as well as ¢(t) is close enough to ¢ in some sense. It is proven that the Chirp
transform is a unitary isometric mapping from L?*(R, du,) onto L?(R, df) with the measure dugs(z) = ﬁw)dx.
We are motivated to investigate some special STFTs with the nonlinear modulation e?%«(“) where the phase

function 6, is originated from the nonlinear Fourier atoms e?’=(*) | the boundary value of the M6bius transform
zZ—a

1=z With real parameter a on the unit circle. Nonlinear Fourier atom efa() t ¢ R with a € (—1,1) is the
boundary values

efal®) .= 1 (e) (1.6)
of the of Blaschke products of order 1 (known also as the Mdbius transform)

zZ—a
Ta(Z) = m, zeC.

for some parameter a in the unit disc. By noting a = |ale?!«, it is well-known that

la|sin(t — t,)

0,(t) =t + 2arct ,
®) +2arc an17|a\cos(t7ta)

vVt € R.

One can see that the derivative of 6, is just the Poisson kernel in periodic setting up to a constant factor,
that is,

’ 1-— |a‘2
L) = palt) =
Moreover, we have
01 =0_,. (1.7)

In particular, if a is real, then 6, is odd 0,(—t) = —6,(t) and vice versa(see Ref.[8]).
The nonlinear modulation operator My, with respect to 6, is defined as

Mo, () f@) = 9@ f(z), z e R (1.8)
and the nonlinear translation 7Ty, ,) with respect to 6, is defined as
Tou(@) : f = f(- = Oa(2)). (1.9)

In this note, we will introduce a special short-time Fourier transforms in terms of the nonlinear phase
function 6,, named the short-time chirp transform Wga f, which is defined by

WO f(z,w) = / FOgA—a) e~ @ dt,  (z,w) € R2. (1.10)
R

We remark that, when choosing a suitable windowed function ¢, the operator Wga maps L2(R) into
L?(R? dm) with dm = p,(z)drdw.
It is crucial to realize that the operator Wga in frequency domain is closely related to the operator

Vg“f(a:,w) = / f)g(t —O,(x)) e ™ dt, (z,w) e R? (1.11)
R

which we address it the nonlinearly-sliding window Fourier transform. Obviously, both the operators Wga

and Vga are reduced to the conventional STFT Vg in the case a = 0. What’s more, using Fourier transform,
(1.3) and (1.11) can be written respectively as

Vo f(z,w) = V21 F(f - T.9)(w), (1.12)



and

Voo f(w,w) = F(f - Tou()9) (@)- (1.13)
In particular, using Chirp transform (restrict ¢ = 1), (1.10) can be expressed as
Wee f(a,w) = Foo(f - Tog)(w). (1.14)

We will represent both of the operators Wga and Vg‘ga in different forms, reveal their relationship, establish
the formulae of energy-preservation and design the corresponding inversion formulae.

The writing plan is as follows. Section 2 is devoted to the twin in time-frequency domain of Vg‘ga and Wga.
Section 3 contributes to the exploration of the orthogonality relations of Vga and Wgﬂ. Section 4 focuses on
establishing inversion formulae for V9« and Wf=. Section 5 is concentrated to the Lieb type inequality and
uncertainty principles of Vgea.

2 Twin of Wga and Vga in time-frequency domain

From now on, we restrict the parameter a to be a real number. As mentioned above, both of the operators
Wga and Vg"' are reduced to the conventional STFT Vg in the case a = 0, the hint of which suggests some
close relationships between the operators are waiting for figuring out.

Noting that the nonlinearly-sliding window Fourier transform can be regarded as the inner product form
Vg“f(x,w) = (f, MuTy,(x)9) and applying the Plancherel formula, it arrives at

Vgaf(x’w) = <]/C\7 72;/\/1_9&(1)@)
= /RJ?(S)E(E — w) e~iE~w)ba(x) d¢

=it [ FleOFEw e de,
R

Similarly, the definition of the short-time Chirp transform gives rise to

Wit(ow) = [ Fal=a)e ) ar
= <f7 M@ 7;9>
= (}, To, ()M —23)

/f £) e T E 0D GE — Go(w)) dé
_ efzea(w T (¢ _ L (w eiﬂiﬁ .
/R FOFE — Bu(w)) =€ de

Then we obtain the following theorem.

Theorem 2.1. If f,g € L?>(R), then
Voo f(a,w) = e P @OW flw, —x), (z,w) € R (2.15)

and
6, =i (w)zyr0a 7Y 2
Wy flz,w) =e @) Viif(w,—z), (z,w) €ER (2.16)

Proof: From the above calculations, we know that

WG(xw_ezQ(w /f )) szdg

According to the definition of Vga f, it is easy to conclude the identity (2.16).
Equation (2.15) is a direct consequence of the identity

Vi Flaw) = e 0 [ RG] e ag



by noting that 6,(-) is an odd functions. The proof of this theorem is completed. a

Remark: We see from above formulae that two affine transforms are useful in time-frequency plane

T (o) — @) (] g ) =)
" Ig:(m,w)<—(x,w)((l) (1)) (w, ).

Define E(x,w) = e~@% (@) (2 w) € R?. Then E(Z;(z,w)) = e~*% () The formulae (2.16) and (2.15)
can be rewritten as, respectively,

Vg“f(x,w) =E(T, (:v,w))Wg“f(Ig(x,w)), (z,w) € R2. (2.17)

and N
Wg“f(x,w) = E(m,w)Vg“f(Ig(x,w)), (z,w) € R?. (2.18)

We also remark that, when a = 0, the twin formulae (2.17) and (2.18) are reduced to the identity
Vol (@,w) = eV f (ZTa(x,w)),

which is just the alternative form of the conventional short-time Fourier transform in terms of the window
g and the signal f simultaneously in frequency domain.

3 Orthogonality Relations

We are ready to reconstruct any signal f € L*(R) from the image spaces V= (L?(R?)) and W¢=(L?*(R?)),
both the subspaces of L? (R2 dm) with the Lebesgue measure dm = p,(x )dxdw and the periodic Poisson

kernel pq(x) = 0, (x) =

Theorem 3.1. Suppose that f1, f2, g1, g2 are functions in L*(R). Then Vgejafj € L2(R%,dm) for j = 1,2,
and

| with real parameter a.

e”—a

<Vg9ff1,Vg§f2>L2(R2,dm) = (f1, f2){91, 92)- (3.19)
Proof: We first restrict the windows g; in L' N L> C L*(R). Then we know that f; - Ty, ()g; € L*(R) for
all z € R. Combining the definition of Vga and applying the Parseval’s identity, it yields

(Voo f1, V0 f2) 2(r2,am)
/ V o fi(w,w % fg(x w) dm(z,w)

// " (2 0) Vi fo(, ) dw po ()da

= [ 7 Tas 0 () FE o, o ) ()

= / . Fir(@) f2() g1(t = 0a())ga(t — O () dt pa()da.

Applying the integral transformation b=t . to above integral and noting that the Jacobbi
8 & Ou(z)=1t—2 & &
d(t.r) _ 1 0 11 , - ! :
factor 203 = ‘ (Hgl)/(x) 7(0;1),@) ’ AR AR noting that fi f2, gig2 € L' (R) and using

Fubini’s theorem, it gives rise to

<ngf1, o f2) L2 (r2,am) = // f1(8) f2(1) g1(%)g2(Z) M“%( Nt — 1)) didi

AORO] / 91 (@) g2(2) Az i
R R
= (f1, f2) (91, 92)-




By a standard density argument, we can extend above orthogonal relationship to L?(R). For fixed g; €

L'NL*>, the mapping g — <Vgla f1, Vg; J2) £2(R?,dm) is a linear functional that coincides with (f1, f2)(g1, 92)
on the dense subspace L' N L. It is therefore bounded and extends to all g, € L?(R). In the same way,
for arbitrary f1, fo and go € L?(R), the conjugate linear functional g; — (Vggf fl,Vgag f2) L2(R2,dm) equals to
{f1, f2){g1,92) on L' N L™ and extends to all of L2. We therefore conclude the orthogonality relations for
all fj,g; € L*(R) and V;’ae L2(R?,dm). O

It fails to apply the same techniques in Theorem 3.1 to the short-time chirp transform Wga f when dealing
with the issue of orthogonality of Wga f since Wga f can only be rewritten in terms of chirp Fourier transform
(see (1.14)) rather than conventional Fourier transform. Fortunately, by using Theorem 2.1, we are able to
establish the following orthogonality relationship for the short-time chirp transform.

Theorem 3.2. For arbitrary fi, fa, g1, g2 € L*(R), it holds Wg]flfj € L?(R?,dm) with dim = p,(w)dadw
for j=1,2, and

<ngf1awg§'f2>L2(R2,drh) = (f1, f2)(91, 92)- (3.20)
Proof: Recalling the identity (2.16), we know that

w 0“f17 0“f2>L2 (R2,d7n)
// f1 (z,w qu fo(z,w) dm(z,w)

—// ~ia(w)z Ve filw, —z) e=ifa(w)z Vg Fo(w, =) pa(w)dzdw
/ VG fi(w, —z) ngg(w, —) po(w)dwdz.

Applying the integral transform { Y — ; T we get
(Wi f1, Wie fa) 12 (r2 arm)
_ 0 7 00 7
= /]R2 Vi fi(@,w) Vi fa(2,w) pa(z)dzdw
= <Vg‘fj\17 Vg‘; .]/C\2>L2(]R2,dm)~
Finally, the orthogonality (3.19) of Vg“ concludes that of Wg‘ga. a

As a consequence of Theorems 3.1 and 3.2, it follows the next corollary, which shows that when choosing
the windowed function g normalized by ||g||2 = 1, both Vga and Wga are isometries from L?(R) onto their
image spaces VI (L?(R)) and Wi (L*(R)), respectively.

Corollary 3.3. For f,g € L*(R) and ||g||2 = 1, it holds

Wy fllz = [If112, Vee fll2 = 11 fll2-

4 Inversion Formula

We now investigate the inversions of Vga and Wga. We deal with the nonlinearly-sliding window Fourier
transform first.

Theorem 4.1. Suppose that g,y € L*>(R) and {g,7) # 0. Then for all f € L*(R), we have

1

'=u

/ Voo f(x,w) My Tp, ()7 dm (4.21)
]R2

where the measure dm = p,(z)dadw and the convergence is in the weak sense.



Proof: For any fixed f € L?(R), Theorem 3.1 shows that the following integral

1
ITRES 7/ Ve f(2,w) My, Ty, (o7 dm 4.22
T g S e (®) o) 42z
defines a boundary linear functional on L?(R) and thus is a well-defined function in L?(R). Moreover, for
arbitrary h € L?(R), the orthogonality relationship gives rise to

G600 = s [ V@@ My am
N <%19> / R Vo' f(@s ) MuTo, @) dm
= VL) = (),
Thus ¢y = f and the inversion formula concludes from the arbitrariness of f. a

The next theorem shows the inversion formula of the short-time chirp transform, which is essentially a
consequence of Theorem 2.1 and 3.1.

Theorem 4.2. Suppose that g,y € L*>(R) and (g,7) # 0. Then for all f € L*(R)

f= s [ W) Mo Ter i (423

where dm = pg(w)dwdz and the convergence is in the weak sense.

Proof: For any fixed f € L?(R), Theorem 3.2 shows that the following integral
1
¢ ::7/ W f(x,w) Mg, () Tay din 4.24
f <779> - g ( ) 04 (w) ( )

defines a boundary linear functional on L?(R) and thus is a well-defined function in L?(R). Moreover, for
arbitrary h € L?(R), Theorem 2.1 and the orthogonality relationships of Vg‘ga gives rise to

1 -
Lr(h) = o) / 5 W f (2, w) (Mo, () Ta, h)din
1 .
=7 X WGQ ) th w 7-1 drr
(v, 9 /]R2 g f ) 0u(e) Ta )t
_ / Wg"f(%w)Wi’;“h(x,w)dm
R2

(7, 9)
1
(v, 9)

// e 0a()T Y0 F (1 ) e=iba(@)z VIah(w, —z)dim
- g 7

1 / 0u 7 0t ~
= —— VZ2e f(w, —x) V2*h(w, —x)dm
v9) g ¢ ( ) 7 ( )
1

= o Ve VR = (fh).

Thus £ = f and the inversion formula concludes from the arbitrariness of f. |

Next we prove a strong version of the inversion formulas. For arbitrary nested sequence of compact sets
K, C R? exhausting R?, it means that K,, C K41 and Un>1 K, = R2. The common choices are the cubes

[—n,n]? or the balls B(0,n) = {z € R? : |z| <n} .

Theorem 4.3. Suppose that g,y € L*(R) and K,, C R? for n > 1 be a nested exhausting sequence of
compact sets. Define f, to be

1
fo= o / /K Vi f (2, w) My Tp, ()7 dm. (4.25)

Then lim ||f — fall2 =0.
n— oo



Proof: By Cauchy-Schwartz inequality and Corollary 3.3, we estimate for h € L?(R) that

__ 6. Vo
0 = el [ [ Vi) Vbt ) amd

1

(7, 9)]
1
(7, 9)]

[VEe Fll2[[VE b2

lgll2ll Fllzllvll2l1A]]2-

We know that f,, is well-defined for each n in L*(R) and we get || f.|l2 < (v, 9)] 7 lgll2]| fll2]l7|l2- Then

0 =il =l L= Vs o) am

1 _—
= ol /K Vo £, w)Vy* h(z,w) dm)|

<

1
17, 9)l
1

R Oa 2 1/2
= g R[] s am)

||V$ah(x7w)||2(//m Vo f(z,w)|? dm)1/2

The arbitrariness of h € L*(R) implies that
If = fulla = sup [(f = fu,h)|

llAll2<1

1 Oa 2 1/2
7g>|||v|2<//Kﬁ|yq P )2 dm) /2.

<

¢y

Since Vgaa f € L3(R?,dm), and K, is exhausting, the right-hand side becomes arbitrarily small as n

increases.

d

Theorem 4.4. Fiz g,y € L*(R) and let K,, C R? for n > 1 be a nested exhausting sequence of compact

sets. Define f, to be
1

=59

// Wie f(z,w) Mg, () Toy din.
K,
Then lim ||f — full2 =0.

n—oo

Proof: By Cauchy-Schwartz inequality and Corollary 3.3, we estimate for h € L?(R) that

—71 Oa xwﬁ m
(for )] = |<%g>|//ang £ (r,0) WO () i
1

1(7, 9)|

1
= Ty lgl2llfll2lvll2llA]2-
(v, 9)1

<

Wge Fllz W3Rl

(4.26)

Therefore, f,, is well-defined for each n in L?(R) and we get || fnll2 < [{(v, )| g2l fll2]l7]l2- Similarly, We

continue that

= hl = gl = [ e Wy

1 W00t (o ~
- m‘/m Wee f(,w)W5e h(z,w) din|

<

1
(7, 9)]

1 -\1/2
= h b 2d .

||ijah(x7w)||2(// ) |W§af(x,w)|2 dm)1/2



Since this holds for all h € L%(R), we get
Hf_fn||2 = sup |<f_fnvh>‘
hlla<1

&l
1
e [ e oo am) .

(7, 9)]

<

Since Wga f € L?(R? dm), and K, is exhausting, the right-hand side becomes arbitrarily small as n increases.
O

5 The Uncertainty Principle

It is well-known that the time-frequency resolution of the STFT crucially depends on the choice of the
window function g, and it is limited by the size of the essential supports of g and §. Based on the similarity
of the short-time Chirp transform as well as the nonlinearly-sliding window Fourier transform to STFT, the
choice of the window function is also of great importance to them. Now we present uncertainty principles
that apply directly to them, which explain the following generic principle:

A function cannot be concentrated on small sets in the time-frequency plane, no matter which time-
frequency representation is used.

We first give a weak type of such an uncertainty principle, which is analogous to the uncertainty principle
of Donoho and Stark for the pair (f,f)

Theorem 5.1. Suppose that ||f||2 = ||gll2 = 1 and that U C R? and € > 0 are such that

// |Vg“f(x,w)|2 dzdw > 1 —e. (5.27)
U

Then Ul >1—e.

Proof: Using the Cauchy-Schwartz inequality, we get

VO £ @) = (F, MuTo, )] < 1Flellgllz = 1 (5.28)
for all (z,w) € R?. Therefore,
1< [[ Vo)l dodw < V5 FIEIU] < U1, (5.29)
U
O

Theorem 5.2. Suppose that ||f||2 = ||lgll2 = 1 and that U C R? and € > 0 are such that

// ’Wg“f(x,w)’2 dezdw > 1 —e. (5.30)
U

Then Ul > 1—e.

Proof: Using the Cauchy-Schwartz inequality, we get

Wi fa,w)| = [(f, Mo, ) Teg)| < Ifll2llgll2 =1 (5.31)
for all (x,w) € R2. Therefore,
1—e< // WEe f(a,w)[? dedw < [WEe fI|2,|U| < |U|. (5.32)
U
O

Next we will establish a strong type inequalities analogous to the Lieb’s inequality for Vga. To this end,
1

we recall the Babenko-Bechner constant ¢y = 4/ A for positive number ), which has the property cxcy = 1
N




for the conjugate pair (A, \'). Moreover, when A > 2, setting s = & = 2(’\ D>1andt=2 =X—1, then
the conjugate indexes of s and t are as following

, 20-1) , A-—1
SE I oAy
Then
5% 2 2(/\ — 1) A 3 2()\ — 1) A—2 3
= = — )23 1) — 7)) 2(x-1)
2 () (=) (35
4N —1)2(A — 272\ TOD
and

Therefore, we have

r/N
e/ Ct’/

)
40\ - 1)2A(AA - 2)”) mb)k ((m) H)
)

We also need to revisit the Fubini’s Theorem, the Young’s convolution inequality and the Hausdorff-Young
inequality.

Lemma 5.3. (Fubini’s Theorem) If f € L'(R?, u x v), then

[ wwatxn = [1f rewan@iare)
- [ fe @)

Furthermore, for almost allw € R the section x — f(z,w) is in LY(R, 1) and for almost allx € R the section
w— f(z,w) is in LY(R,v). If ¢ and ¢ are defined by p(x) = [; f(z,w)dv(w) and p(w) = [, f(z, w)du(x),
then ¢ €LY (R, p) and v €L'(R,v).

Lemma 5.4. (Young’s convolution inequality)'®] Suppose that p, q,r are positive numbers in [1, +00| satis-
fying % + % = % +1 and assume that p’,q', 7’ are the conjugate numbers of p,q,r, respectively. Then for any
f e LP(R) and g € LI(R), it holds

1 * gllr < cpeqer 1 £pll9llg: (5.33)



where ¢, is the Babenko-Bechner constant. Moreover, when p,q > 1, the Young’s convolution inequality has
the following simplier form
1+ gllr < I f1lpllgllq- (5.34)

and the optimal constant can be achieved if and only if both of f and g are Gaussian.
Lemma 5.5. (Hausdorff-Young inequality)'? Suppose that p € [1,2] and % + ﬁ = 1. Then for f € LP(R),

pl/p

it holds that f € LP (R) and ||f]|, < (7)1 -

Next lemma is crucial for the proof of Lieb type inequality.

. : : _ 2 _ A
Lemma 5.6./ Suppose tl,mt fg¢€ L2€R), 2 < X< oo, X is the conjugate index of X and s = 5 > 1,t = 7.
Then both f* and (g*)* are in L*X (R) and satisfy that
17>+ () e < Eevllf112 g2 (5.35)

where g* = g(—-), ¢s and ¢y are the Babenko-Bechner constants of s and t', respectively.

Proof: Firstly, % + % =1 and \ € [2,+00) imply that ' € (1,2]. Then f,g € L?(R) leads to ™, (g*)x €
L2 (R). Secondly, noting that % + % = % + 1 and applying the Young’s convolution inequality to the
functions f*" and (g*))‘/ via replacing the triple (p, q,r) with (s, s,t), we obtain

IF> 5 (g*) M Ml < ciew 1P sl1(g™)™ s,

Finally, using
’ /2 )\//2 ’
17 = ( / F@)P % da)™ " = £

and similarly ||(g*) [|s = ||g]|3’, it arrives at (5.35). 0
Theorem 5.7. Suppose that f,g € L*(R) and 2 < X\ < co. Then

L i s am < (1 flalole) (5.36)

Proof: Let X' be the conjugate index of A. Then 1 < X < 2 since 2 < A < oo and § + +; = 1. By
Cauchy-Schwartz inequality, we deduce f - Ty, ()9 € LY(R) from f,g € L*(R).

Recalling Vi« f(z,w) = F(f - To,(@)9)(w) € L*(R?,dm) in Theorem 3.1 with the Lebesgue measure
dm = pg(x)dzdw, we know that |F(f - Tp,(2)9)(w)|* € L*(R? dm). By Fubini’s theorem, it implies that,
for almost all z € R, |F(f - Ty, ()9)(w)|* € L' (R, dw) and then F(f - Ty, ()g) € L*(R). The unitary of the
Fourier operator concludes that f - Ty, (2)g € L?(R) for almost all z € R.

Above discussion indicates that, for almost all x € R, f-Tg, (1) € L'NL?(R). Therefore, by Marcinkiewicz
interpolation theorem, one has f - Ty, (2)g € Y (R) for almost all z € R. Moreover, by Hausdorff-Young
inequality, it gives rise to

(fwiesar i)’ = ([17 T i) -
x ( [ 1T wa ) dy> v

=cx (/R F @) 19y = ba () dy> UX

’ ! 1/>\l
= cy ((\JM g )|ea(z)) ;

IN
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where cy/ is the Babenko-Bechner constants of \’. Hence

1/7
[V £l = ( / / Vg“f(ﬂf,w)’\pa(ac)dwdx>

, , A/N /A
<o ([ (07 M) los) " putasac )
R
, , )\//\/ 1/X
< o (/ <(|fA *9*|/\)\y> dy)
R
’ ’ 1/>\l
_ , A * |
= Cx |f *x g | ’)\/)\’ .
By noting (5.35), it implies that
’ ’ 1/A/
IV Fllx < ex (cZe LA gll3)
7
=cxes e [ fll2llgll2
with s = % >1,t= % Calculation shows that cxci/)‘lci/x = (%)% Therefore, it concludes (5.36). a

Next theorem is a strong version of Lieb type uncertainty principle for Vg“.

Theorem 5.8. Suppose that ||f|2 = gl =1 and that U C R? and € > 0 are such that
//U|V3“f(x,w)|2dm >1—e (5.37)
Then |U| > (1 — e)ﬁ(g)% for all p> 2. In particular, |U| > sup(1 — G)ﬁ(g)% >2(1 —e€)?.
p>2

Proof: Let ¢ = £ and then its conjugate index is ¢’ = ﬁ. By Theorem 5.7, we know that Vg"'f(:c, w), (z,w)
belongs to LP(R?%, dm) for p > 2. Applying Hélder’s inequality with exponents ¢ and ¢/, it gives that

2 2
// ’Vg“f(x,w)| dm = // |Vg“f(x,w)| xu(z,w)dm
U R2
o f(z,w)|” " dm XUx,w/m%
Voo f 249 4m) 7 q
R2 R2
([[ vesa S am([[ xoto am's
R2 R2
([[ Vsl am([[ vote.w)am s
Using (5.36) and noting that the periodic Poisson kernel p, has upper bound 1, it follows
2
//U’Vg“f(m,wﬂ dm
([[ vl am)*([] s o deae)s
2 g p=2
(Castalate)) 1017
2 » p=2
= ()" wrigstgion.

Therefore, the conditions || fllz = |lgfo =1 and 1 —e < [}, |V§af(:1:,w)|2 dm imply that

2
9\ » _
() UI"F >1 -
p
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Finally, we conclude

U > (1 -7z ()72

for all p > 2. In particular, when p = 4, we have |U| > (1 — €)?2¢ and then |U| > sup(1 — e)ﬁ(g)rszz >

p>2

2(1 — €)% O
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