6. References

Anastassiou, C. A., Perin, R., Markram, H., & Koch, C. (2011). Ephaptic coupling of cortical neurons. Nature Neuroscience , 14 (2), 217–223. https://doi.org/10.1038/nn.2727Anderson, A. J., & Johnson, C. A. (2006). Comparison of the ASA, MOBS, and ZEST threshold methods.Vision Research , 46 (15), 2403–2411. https://doi.org/10.1016/j.visres.2006.01.018Antal, A., Boros, K., Poreisz, C., Chaieb, L., Terney, D., & Paulus, W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation ,1 (2), 97–105. https://doi.org/10.1016/j.brs.2007.10.001Asamoah, B., Khatoun, A., & Mc Laughlin, M. (2019). tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves.Nature Communications , 10 (1), 266. https://doi.org/10.1038/s41467-018-08183-wBarker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet , 325 (8437), 1106–1107.Beauchamp, M. S., Oswalt, D., Sun, P., Foster, B. L., Magnotti, J. F., Niketeghad, S., Pouratian, N., Bosking, W. H., & Yoshor, D. (2020). Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans. Cell , 181 (4), 774-783.e5. https://doi.org/10.1016/j.cell.2020.04.033Bello, U. M., Wang, J., Park, A. S. Y., Tan, K. W. S., Cheung, B. W. S., Thompson, B., & Cheong, A. M. Y. (2023). Can visual cortex non-invasive brain stimulation improve normal visual function? A systematic review and meta-analysis.Frontiers in Neuroscience , 17 , 1119200. https://doi.org/10.3389/fnins.2023.1119200Bergmann, T. O., Groppa, S., Seeger, M., Mölle, M., Marshall, L., & Siebner, H. R. (2009). Acute Changes in Motor Cortical Excitability During Slow Oscillatory and Constant Anodal Transcranial Direct Current Stimulation. Journal of Neurophysiology , 102 (4), 2303–2311. https://doi.org/10.1152/jn.00437.2009Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision , 10 (4), 433–436. https://doi.org/10.1163/156856897X00357Brindley, G. S., & Lewin, W. S. (1968). The sensations produced by electrical stimulation of the visual cortex. The Journal of Physiology , 196 (2), 479–493. https://doi.org/10.1113/jphysiol.1968.sp008519Buzsáki, G. (2006).Rhythms of the Brain . Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001Capllonch-Juan, M., & Sepulveda, F. (2020). Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves. PLOS Computational Biology , 16 (6), e1007826. https://doi.org/10.1371/journal.pcbi.1007826Chawla, A., & Morgera, S. D. (2014). Ephaptic synchronization as a mechanism for selective amplification of stimuli. BMC Neuroscience ,15 (S1), P87, 1471-2202-15-S1-P87. https://doi.org/10.1186/1471-2202-15-S1-P87Clarke, S. E., Longtin, A., & Maler, L. (2015). Contrast coding in the electrosensory system: Parallels with visual computation. Nature Reviews Neuroscience ,16 (12), 733–744. https://doi.org/10.1038/nrn4037Costa, T. L., Hamer, R. D., Nagy, B. V., Barboni, M. T. S., Gualtieri, M., Boggio, P. S., & Ventura, D. F. (2015). Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex. Experimental Brain Research , 233 (4), 1213–1223. https://doi.org/10.1007/s00221-015-4199-7Engel, A. K., & Fries, P. (2016). Neuronal Oscillations, Coherence, and Consciousness. InThe Neurology of Consciousness (pp. 49–60). Elsevier. https://doi.org/10.1016/B978-0-12-800948-2.00003-0Evans, I. D., Palmisano, S., & Croft, R. J. (2021). Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation. Bioelectromagnetics , 42 (2), 146–158. https://doi.org/10.1002/bem.22317Evans, I. D., Palmisano, S., Loughran, S. P., Legros, A., & Croft, R. J. (2019). Frequency‐dependent and montage‐based differences in phosphene perception thresholds via transcranial alternating current stimulation.Bioelectromagnetics , 40 (6), 365–374. https://doi.org/10.1002/bem.22209Foerster, O. (1929). Beitrage zur pathophysiologie der sehbahn und der spehsphare. J Psychol Neurol , 39 , 435–463.Fox, K. C. R., Shi, L., Baek, S., Raccah, O., Foster, B. L., Saha, S., Margulies, D. S., Kucyi, A., & Parvizi, J. (2020). Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nature Human Behaviour , 4 (10), 1039–1052. https://doi.org/10.1038/s41562-020-0910-1Groppa, S., Bergmann, T. O., Siems, C., Mölle, M., Marshall, L., & Siebner, H. R. (2010). Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans.Neuroscience , 166 (4), 1219–1225. https://doi.org/10.1016/j.neuroscience.2010.01.019Han, K.-S., Guo, C., Chen, C. H., Witter, L., Osorno, T., & Regehr, W. G. (2018). Ephaptic Coupling Promotes Synchronous Firing of Cerebellar Purkinje Cells.Neuron , 100 (3), 564-578.e3. https://doi.org/10.1016/j.neuron.2018.09.018Hsu, C. Y., Liu, T. L., Lee, D. H., Yeh, D. R., Chen, Y. H., Liang, W. K., & Juan, C. H. (2023). Amplitude modulating frequency overrides carrier frequency in tACS‐induced phosphene percept. Human Brain Mapping ,44 (3), 914–926. https://doi.org/10.1002/hbm.26111Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline.Journal of Neural Engineering , 16 (5), 056006. https://doi.org/10.1088/1741-2552/ab208dHuang, Y.-Z. (2017). Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clinical Neurophysiology .Hunt, T. (2020). Calculating the Boundaries of Consciousness in General Resonance Theory. Journal of Consciousness Studies , 27 (11–12), 55–80.Hunt, T., Ericson, M., & Schooler, J. (2022). Where’s my consciousness-ometer? How to test for the presence and complexity of consciousness. Perspectives on Psychological Science , 17 (4), 1150–1165.Hunt, T., & Jones, M. (2023). Fields or firings? Comparing the spike code and the electromagnetic field hypothesis. Frontiers in Psychology ,14 , 1029715. https://doi.org/10.3389/fpsyg.2023.1029715Juan, C.-H., Nguyen, K. T., Liang, W.-K., Quinn, A. J., Chen, Y.-H., Muggleton, N. G., Yeh, J.-R., Woolrich, M. W., Nobre, A. C., & Huang, N. E. (2021). Revealing the Dynamic Nature of Amplitude Modulated Neural Entrainment With Holo-Hilbert Spectral Analysis. Frontiers in Neuroscience , 15 , 673369. https://doi.org/10.3389/fnins.2021.673369Kanai, R., Chaieb, L., Antal, A., Walsh, V., & Paulus, W. (2008). Frequency-Dependent Electrical Stimulation of the Visual Cortex. Current Biology , 18 (23), 1839–1843. https://doi.org/10.1016/j.cub.2008.10.027Kleiner, M., Brainard, D. H., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception , 36 , 1–16. https://doi.org/10.1068/v070821Koch, C., & Poggio, T. (1999). Predicting the visual world: Silence is golden. Nature Neuroscience , 2 (1), 9–10. https://doi.org/10.1038/4511Koster-Hale, J., Saxe, R., Dungan, J., & Young, L. L. (2013). Decoding moral judgments from neural representations of intentions. Proceedings of the National Academy of Sciences , 110 (14), 5648–5653. https://doi.org/10.1073/pnas.1207992110Laakso, I., & Hirata, A. (2013). Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. Journal of Neural Engineering , 10 (4), 046009. https://doi.org/10.1088/1741-2560/10/4/046009McFadden, J. (2021). The Electromagnetic Will. NeuroSci , 2 (3), 291–304. https://doi.org/10.3390/neurosci2030021Meyer, J. P., & Allen, N. J. (1991). A three-component conceptualization of organizational commitment. Human Resource Management Review , 1 (1), 61–89. https://doi.org/10.1016/1053-4822(91)90011-ZModolo, J., Hassan, M., Ruffini, G., & Legros, A. (2020). Probing the circuits of conscious perception with magnetophosphenes. Journal of Neural Engineering ,17 (3), 036034. https://doi.org/10.1088/1741-2552/ab97f7Nagel, T. (1974). What Is It Like to Be a Bat? The Philosophical Review ,83 (4), 435–450. JSTOR. https://doi.org/10.2307/2183914Negahbani, E., Kasten, F. H., Herrmann, C. S., & Fröhlich, F. (2018). Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation. NeuroImage ,173 , 3–12. https://doi.org/10.1016/j.neuroimage.2018.02.005Nguyen, K. T., Liang, W.-K., Lee, V., Chang, W.-S., Muggleton, N. G., Yeh, J.-R., Huang, N. E., & Juan, C.-H. (2019). Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis. Scientific Reports , 9 (1), 16919. https://doi.org/10.1038/s41598-019-53286-zPelli, D. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat Vis , 10 (4), 437–442. PubMed. https://doi.org/10.1163/156856897x00366Plosnić, G., Raguž, M., Deletis, V., & Chudy, D. (2023). Dysfunctional connectivity as a neurophysiologic mechanism of disorders of consciousness: A systematic review. Frontiers in Neuroscience , 17 , 1166187. https://doi.org/10.3389/fnins.2023.1166187Pratt, W. K. (1991).Digital image processing (p. 634). John Wiley & Sons, Inc.Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience , 2 (1), 79–87. https://doi.org/10.1038/4580Ryu, S. B., Choi, J. W., Ahn, K. N., Goo, Y. S., & Kim, K. H. (2017). Amplitude Modulation-based Electrical Stimulation for Encoding Multipixel Spatiotemporal Visual Information in Retinal Neural Activities. Journal of Korean Medical Science ,32 (6), 900. https://doi.org/10.3346/jkms.2017.32.6.900Schmidt, H., Hahn, G., Deco, G., & Knösche, T. R. (2021). Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays.PLOS Computational Biology , 17 (2), e1007858. https://doi.org/10.1371/journal.pcbi.1007858Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural Substrate of Prediction and Reward.Science , 275 (5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593Seth, A., Suzuki, K., & Critchley, H. (2011). An Interoceptive Predictive Coding Model of Conscious Presence. Frontiers in Psychology , 2 , 395. https://doi.org/10.3389/fpsyg.2011.00395Shapley, R. (1998). Visual cortex: Pushing the envelope. Nature Neuroscience , 1 (2), 95–96. https://doi.org/10.1038/342Shivacharan, R., Chiang, C.-C., Wei, X., Subramanian, M., Couturier, N., Pakalapati, N., & Durand, D. (2021). Neural recruitment by ephaptic coupling in epilepsy.Epilepsia , 62 . https://doi.org/10.1111/epi.16903Thiele, C., Zaehle, T., Haghikia, A., & Ruhnau, P. (2021). Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction. Scientific Reports ,11 (1), 22245. https://doi.org/10.1038/s41598-021-01482-1Turi, Zs., Ambrus, G. G., Janacsek, K., Emmert, K., Hahn, L., Paulus, W., & Antal, A. (2013). Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation. Restorative Neurology and Neuroscience , 31 (3), 275–285. https://doi.org/10.3233/RNN-120297Tyrrell, R. A., & Owens, D. A. (1988). A rapid technique to assess the resting states of the eyes and other threshold phenomena: The modified binary search (MOBS).Behavior Research Methods, Instruments, & Computers ,20 (2), 137–141.Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., Kozák, G., Kincses, Z. T., Iványi, B., Buzsáki, G., & Berényi, A. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans.Nature Communications , 9 (1), 483. https://doi.org/10.1038/s41467-018-02928-3Vulić, K., Bjekić, J., Paunović, D., Jovanović, M., Milanović, S., & Filipović, S. R. (2021). Theta-modulated oscillatory transcranial direct current stimulation over posterior parietal cortex improves associative memory. Scientific Reports , 11 (1), 3013. https://doi.org/10.1038/s41598-021-82577-7Wischnewski, M., Alekseichuk, I., & Opitz, A. (2023). Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends in Cognitive Sciences , 27 (2), 189–205. https://doi.org/10.1016/j.tics.2022.11.013Witkowski, M., Garcia-Cossio, E., Chander, B. S., Braun, C., Birbaumer, N., Robinson, S. E., & Soekadar, S. R. (2016). Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage ,140 , 89–98. https://doi.org/10.1016/j.neuroimage.2015.10.024Živanović, M., Bjekić, J., Konstantinović, U., & Filipović, S. R. (2022). Effects of online parietal transcranial electric stimulation on associative memory: A direct comparison between tDCS, theta tACS, and theta-oscillatory tDCS.Scientific Reports , 12 (1), 14091. https://doi.org/10.1038/s41598-022-18376-5