REFERENCES
Zhou Y W, Guo D X, Qiu G Q. Geocryology in China . Beijing: Scientific Press, 2000.
  1. Zhou Z,Ma W,Zhang S, Mu Y, Li G. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Regions Science and Technology ,2018,146:9-18.
  2. Li SY, Lai YM, Pei WS, Zhang S, Zhong H. Moisture-temperature changes and freeze-thaw hazards on a canal in seasonally frozen regions.Nat. Hazards ,2014, 72 (2), 287–308.
  3. Özgan E, Serin S, Ertürk S, Vural I. Effects of freezing and thawing cycles on the engineering properties of soils. Soil Mechanics and Foundation Engineering , 2015, 52: 95-99.
  4. Cui ZD, He PP, Yang WH. Mechanical properties of a silty clay subjected to freezing–thawing. Cold Regions Science and Technology , 2014, 98: 26-34..
  5. Lai Y, Pei W, Zhang M, Zhou J. Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil. International Journal of Heat and Mass Transfer , 2014, 78: 805-819.
  6. Lu J, Zhang M, Zhang X, Pei W, Bi J. Experimental study on the freezing–thawing deformation of a silty clay. Cold Regions Science and Technology , 2018, 151: 19-27.
  7. Zhou Z, Ma W, Zhang S, Mu L, Li G. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Regions Science and Technology , 2018, 146: 9-18.
  8. He P, Mu Y, Yang Z, Ma W, Dong J, Huang Y. Freeze-thaw cycling impact on the shear behavior of frozen soil-concrete interface. Cold Regions Science and Technology , 2020, 173: 103024.
  9. Hashemi A, Sutman M, Abuel-Naga H. Thermomechanical response of kaolin clay–concrete interface in the context of energy geostructures.Canadian Geotechnical Journal , 2022, 60(3): 380-396.
  10. Ravera E, Sutman M, Laloui L. Cyclic thermomechanical response of fine-grained soil− concrete interface for energy piles applications.Canadian Geotechnical Journal , 2021, 58(8): 1216-1230.
  11. Wang Y B, Zhao C, Wu Y. Study on the effects of grouting and roughness on the shear behavior of cohesive soil–concrete interfaces.Materials , 2020, 13(14): 3043.
  12. Tan Z, Gou H, Li W, Bao Y. Effect of frost heave deformation of bridge foundation on operation safety of high-speed railway.Structures . Elsevier, 2023, 47: 2099-2112.
  13. Wang T, Qu S, Liu J, Luo Q, Hu T. Frost jacking of piles in seasonally and perennially frozen ground. Cold Regions Science and Technology , 2022, 203: 103662.
  14. Haeri H, Sarfarazi V, Zhu Z, Marji MF,Masoumi A. Investigation of shear behavior of soil-concrete interface. Smart Structures and Systems , 2019, 23(1): 81-90.
  15. Yavari N, Tang A M, Pereira J M, Hassen G. Effect of temperature on the shear strength of soils and the soil–structure interface.Canadian Geotechnical Journal , 2016, 53(7): 1186-1194.
  16. Fang R, Wang B, Pan J, Liu J, Wang Z, Wang Q, Ling X. Effect of concrete surface roughness on shear strength of frozen soil–concrete interface based on 3D printing technology. Construction and Building Materials , 2023, 366: 130158.
  17. Liu J W, Cui L, Zhu N, Han B, Liu J. Investigation of cyclic pile-sand interface weakening mechanism based on large-scale CNS cyclic direct shear tests. Ocean Engineering , 2019, 194: 106650.
  18. Di DA, Ferrari A, Laloui L. Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Canadian Geotechnical Journal . 2016;53(4):659-72.
  19. Liu SW, Zhang QQ, Ma B, Li S, Yin W, Luo Q. Study on surface roughness effect on shear behavior of concrete-soil interface. Engineering Failure Analysis . 2023, Mar 1;145:107050..
  20. Li Y, Chai J, Li Y, Wang R, Qin Y, Cao Z . Experimental investigation of the interfacial bonding properties between polyurethane mortar and concrete under different influencing factors. Construction and Building Materials , 2023, 408, 133800..
  21. Pan J, Wang B, Wang Q, Ling X, Fang R, Liu J, Wang Z. An adhesion–ploughing friction model of the interface between concrete and silty clay. Construction and Building Materials , 2023, 376: 131039.
  22. Hu G, Xia Y, Ruan X, Zheng M. Parameter analysis of coupling characteristics and load‐sharing law of arch‐chord coupled anti‐sliding structure. Engineering Reports , 2023, 5 (2): e12568.
  23. Liu J, Lv P, Cui Y, Liu J. Experimental study on direct shear behavior of frozen soil–concrete interface. Cold regions science and technology , 2014, 104: 1-6.
  24. Tang L, Du Y, Liu L, Yang L, Yu Y. Experimental study of the frozen soil–structure interface shear strength deterioration mechanism during thawing. Arabian Journal of Geosciences , 2021, 14: 1-11.
  25. He Pengfei, Ma Wei, Mu Yanhu, Dong Jianhua, Huang Yongting. Study on freezing strength characteristics and formation mechanism of frozen soil-concrete interface. Transactions of the Chinese Society of Agricultural Engineering ,2018,34(23):127-133.
  26. Tang L, Huang T, Wang W, Jin L, Sun Q. Experimental study on shear characteristics and pore structure evolution characteristics of soil-rock mixture-concrete interface during freeze-thaw cycles.Journal of Central South University(Science and Technology) , 2023, 54(5): 1954-1969.
  27. Sun T,Gao X,Yue Z,Li X, Sun X. Experimental study on the adfreezing strength of the interface between silt and concrete. Chinese Journal of Rock Mechanics and Engineering ,2020, 39(5): 1032-1039.
  28. Wang B,Gao Y,Wang Q,Liu J. Effect of Freeze-Thaw Cycles on Shear Properties of Jilin Seasonal Frozen Silty Clay-Concrete Interface. Journal of Jilin University (Earth Science Edition) ,2023,53(6):1-11.
  29. Wang B, Liu J, Wang Q, Lin X. Study of meso-damage and macroscopic shear performance of silty clay-concrete interface under freeze-thaw cycles. Chinese Journal of Rock Mechanics and Engineering ,2023,42(S01):3792-3800.
  30. Zhang S, Liu F, Ying M, Zeng W. Test and prediction for the shear behavior of the sand–irregular concrete interface under constant and dynamic normal loading. Soil Dynamics and Earthquake Engineering , 2024,180, 108620.
  31. Xie Y, Chen T, Wang J, Gu S, Zhu F. Study on dynamic shear characteristics of frozen clay-concrete interface. Journal of Railway Science and Engineering , 2022,19(9):2637-2646.
  32. Maghsoodi S, Cuisinier O, Masrouri F. Thermal effects on mechanical behaviour of soil–structure interface. Canadian Geotechnical Journal , 2020, 57(1): 32-47.
  33. Wernick E. Skin friction of cylindrical anchors in noncohesive soils.Symp. on Soil Reinforcing and Stabilising Techniques . 1978: 201-219.
  34. Yin K, Fauchille A L, Di Filippo E, Kotronis P, Sciarra G. A review of sand–clay mixture and soil–structure interface direct shear test.Geotechnics , 2021, 1(2): 260-306.
  35. Wang P, Yin Z Y. Effect of particle breakage on the behavior of soil-structure interface under constant normal stiffness condition with DEM. Computers and Geotechnics , 2022, 147: 104766.
  36. Hashemi A, Sutman M, Medero G M. A review on the thermo-hydro-mechanical response of soil–structure interface for energy geostructures applications. Geomechanics for Energy and the Environment , 2023, 33: 100439.
  37. Xu J, Liu J, Shi X, Ji F, Zeng Y. DEM investigation of the effect of coarse content and size ratio on the local shear behavior at gap-graded soil-structure interface. Powder Technology , 2024, 433, 119281..