Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Sharp estimates of solution of an elliptic problem on a family of
open non-convex planar sectors

Abdelaziz Douah' | Abdelkader Tami* | Mounir Tlemcani®

! Department of Mathematics, University of Science Abstract
and Technology of Oran - Mohamed Boudiaf -

USTO-MB, Oran, Algeria Based on partial Fourier series analysis, we adapt on a model case a new approach to classical results obtained
2 Department of Mathematics, University of in the literature describing the singularities of a family a solutions of a second order elliptic problems on open
Science and Technology of Oran - Mohamed non-convex planar sectors. The method allows the exhibition of singular and regular frequencies, explicit
Boudiaf - USTO-MB, Oran, Algeria decomposition and description of coefficients of singularities of the solution. As a main result, explicit and
3 Department of Mathematics, University of sharp estimates with respect to the opening angle parameter are obtained via this method. They are not
Science and Technology of Oran - Mohamed uniform near  where corners have opening angle generating a jump of singularity in Sobolev exponent,

Boudiaf - USTO-MB, Oran, Algeria contrarily to the results obtained in A. Tami (2016),(2019),(2021) for harmonic and/or biharmonic problems

Correspondence on a family of convex planar sectors.

A. Tami, Department of Mathematics, University of

Science and Technology of Oran - Mohamed KEYWORDS
Boudiaf - USTO-MB, Oran, Algeria. Fourier series, Elliptic problem, Family of non-convex sectors, Regularity, Singularity, Sharp estimates.

Email: abdelkader.tami @univ-usto.dz
MSC CLASSIFICATION
35125, 35740, 35J75; 35B45; 35Q99; 35B40

1 | INTRODUCTION

The behavior of solutions of elliptic problems on polygons near a corner has been investigated in the 60’s. In engineering
mathematics, analysis of singular solutions of partial differential equations in non-smooth domains is of great interest. It is well
known that the presence of such singularities may severely reduce convergence in error estimates of standard numerical schemes
of approximation. Thus, it is always interesting to study and provide explicit formulas, in particular, when it comes to a family
of solutions dependent on a parameter w (the opening angle at a corner) where these singularities as well as only a part of the
regular solution may blow-up near some critical values of this parameter. Recently, Tami (2019)% has put into evidence the
analogy of such decomposition locally with standard Taylor expansions in the vicinity of a convex corner. The author provided
uniform estimates with respect to w € (27/3, ) for both laplacian and the bi-Laplacian operators, i.e, when the corner is convex
and the critical value of w equals 7r. This property of behavior of solutions w.r.t w allows the treatment of families of elliptic
problems on families of open sets. To the knowledge of the authors of this paper, no such study was performed on a family
of non-convex open sets, i.e. when w € (m,27), whether in the harmonic or biharmonic case. When a non-convex corner is
considered, an additional difficulty, namely the existence of L? solutions, see for example Nazarov (2007)2Li, Hengguang et.
al.%, in the kernel of the Laplace operator and satisfying the boundary conditions of the problem. Nevertheless and Fortunately,
the orthogonal space of the range of this operator is still finite-dimensional and it is possible to identify its basis. Therefore, it is
still worthwhile and possible to study and provide explicit extraction formulas with explicit sharp estimates. In this paper, we aim
at studying by means of partial Fourier analysis in polar coordinates, cf. Nkemzi (2023)* and references therein, w.r.t to the polar
angle 6, the asymptotic behavior of solutions by deriving explicit computable formulas for the coefficients of the singularities
with explicit estimates that show the behavior (in H? norm) of the family of solutions u,, near the critical angle w = 7. As a
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main result of our approach is the lack of uniformity in the estimates with respect to the angle parameter w, contrarily to those
obtained in the case on convex corners, cf..

We consider a model case of Elliptic equation with homogeneous Dirichlet condition and source term f,, square integrable on
a planar polygonal domains withnon convex corner. Such problems, and more generally elliptic boundary value problem of
partial differential equation, are known to exhibit singular behaviors near the corners or boundaries of non-smooth domains.
Well posedeness of such problems and description of their singularities near corners with different boundary conditions were
addressed, whether in the harmonic or biharmonic case, by many authors in the literature, cf., Grisvard (©/%), Kondrat’ev® ,
Blum®, Maz’ya (19t Nicaise (12%), Dauge (141, Stylianou''®, Gerasimov''?, Tami ("#%) and the references cited therein.

Throughout this paper, a generic constant C > 0 in all estimates that follow may be independent of w and different at different
occurrences. In the second section, we present the problem setting and the main result with a partial proof of H' uniform estimates
w.r.t the opening angle w of the family of solutions u,, our problem. The proof of H? estimates will be justified gradually in the
sections that follow. The third one contains some preliminaries such as Sobolev spaces in polar coordinates, Sobolev norms
expressed via Fourier coefficients, and some fundamental tools useful for estimates of Fourier coefficients. Next, in the fourth
section, formal determination of corner singularity via Fourier series is presented. In the fifth section, Fourier coefficients of the
regular part of the solution and the coefficient of singularity obtained formerly are given explicitly. In addition, explicit and
sharp or uniform estimates are given w.r.t to the opening angle parameter w € (, 27). These estimates are not uniform in the
vicinity of 7, even for the regular part taken separately in the case of the first frequency k = 1 in the Fourier series. The sixth
section is devoted to the completion of the proof of the main result, in particular the characterization of coefficient of singularity
and the estimates on of the regular part in the norm H2. Concluding remarks and comments are presented in the last section.

2 | PROBLEM SETTING AND THE MAIN RESULT

By a localization technique around the reentering corner in question, we are interested in a family of boundary value problems
of the following type. Let us denote by {€2,, },,e(r.2x) a family of open bounded sectors of radius 1 centered at the origin O (here
O represents the reentering corner where the localization has been performed). In polar coordinates (x, y) = (r cos 6, rsin 6), one
has , cf. Figure[T]

Qu={(xy),0<r<1,0<0<w},

with boundary 99, = Ty U C,, UT,, where

T'o ={(xy),0<r<1,0=qa}, a=0,w
C, ={(x,y), r=1,0<0<w}.

For a right hand side (r.h.s) f,, € L*(Q0) depending on the parameter w € (m,2), we look for solutions u,, of the following
Elliptic equation with homogeneous Dirichlet boundary condition:

{Auw =f,inQ,,

1
u,, = 0 on 99),,. M

FIGURE 1 Planar sector 2, with non-convex corner at the origin: Opening angle w € (7, 27).
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Following the results in the literature, cf. Grisvard (1986)”, the solution u,, of (1) admits near the origin the following
decomposition (in regular / singular parts) that can be written in polar coordinates as follows:

x~ T
Uy = Uy + Ayt sin —0,
w

where u,,, € H,%,L.(Qw), and the singular part u,, ((r,0) = A\, r& sin 0 eH +o(Q,,) for all o < Z. According to the general
theory on H>-regularity of elliptic boundary value problems, see the cited references, in two-dimensional domains with corners,
the solution u,, associated to a right-hand side f,, square integrable on the family of planar sectors €2, with non-convex corner
exhibits a singularity at the origin whose effect is to limit its regularity, expressed in the scale of fractional order Sobolev spaces.
In contrast, when w = 7, there no singularity and the solution u, is H*(Q,,). Hence, there is a jump in Sobolev exponents
describing the regularity of solution when w — 7 on the side w > 7.

In this work, we will retrieve explicit decomposition by the partial Fourier series method which allows the extraction of the
singularity systematically. Moreover, explicit estimates w.r.t the opening angle w are obtained on u,, , and the coefficient of
singularity \,. The main result of this paper is given bellow and its proof will be given later. Notice that the proof of the first
result (i) in the main theorem, i.e. existence in Hé is evident and standard, unless the uniformity of the constant w.r.t w that
comes directly from Poincare’s inequality, cf. 18 forallu € Hé QL),

“M”HI(QN) S V 1 +W||Vu”L2(Qw),

which yields equivalence, with uniformly bounded constant, between the norm and semi-norm H'. Hence, only proofs of (ii)
and (iii) are needed and will completed later at the end of the paper.

Theorem 1 (Main Theorem). Let w € (m,2n) and f., € L*(Q,,) with Fourier coefficients
2 (¥ k
Crw(r) = — / Ju(r,0)sin l@dQ, k>1.
w Jo w

i) Problem (1) admits a unique solution in H}(Q,,) that depends continuously on the r.h.s f,, € L*(Q,,) and uniformly on the
parameter w € (m,2m), i.e. there exists a constant independent of w, C > 0, such that:

”uw”HI(Qw) S C”fw“Lz(Qw)- (2)
ii) u, € H%(Q,) N HY(QW) , forall o < =, and u,, admits in S, the following decomposition
_ = . 7 I I
Uy = ApFe sin —0 +u,, . +u 3)
w ,

w,r?

where ufw, ug,, € H*(Q,) and the coefficient of singularity \,, are given explicitly as follows:

w 1 s 1 P
Ay = —— / Clw(s)s' o ds — / clo(s)s'eds |, 4)
271' 0 0

ui, A1, 6) = d <rz / clyw(s)sl_%ds— e / cl,w(s)s”;ds) sin E6’, 5)
’ 27T 0 0 w
Jii w km 1 1_km ke " 14k kT ! 14k kﬂ'
ul, ,(r,0) = Z Y —re / Crw(8)s  wds —rw / Crw($)s T ds +re / Chw($)s' T ds | sin —0. (6)
2 ™ r 0 0 w

iii) There exists C > 0 independent of w € (m,27) and f., € L*(Q,) such that the following estimate holds and is sharp:

N e,y + Vo =7 (Il e, + 1Aal) < Clifullzq,)- (7)

Let us denote by (.,.),, the natural scalar product of L>(€2,), defined by (f, )., = fQ fed(1,, and denote by

™

e ="""""sin "y, (8)
™ w
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a L*(€2,,) solution, since w € (7, 27), of the homogeneous Dirichlet problem

Aé,=01inQ,,
&, =00n09,,.

Remark that £, is not unique as a L*(Q,) solution since the trivial case &, = 0 is also solution. Note also that the boundary
condition &, = 0 on 912, is defined in the trace sense, namely H~7 on each side of 00, , cf.l8% 1 et us denote by

L3 () = {6 € L), (¢,60). = 0}

We know that the mapping —-Ap, : H*(Q,)N H(l)(Qw) — L2(Q,) is injective and has a closed range (Grisvard, 1992)8. The
following corollary shows that its image equals Lé 1 (€2,) and that

~Ap t HX () VH () — L, (D)

is a uniformly bounded family of isomorphisms w.r.t to the opening angle parameter w € (7, 2).

Corollary 1. Let w € (m,27) and f,, € L*(,). Then, u,, € H*(Q,)N Hé () if and only if the (f,,, £.,)., = 0. In this case, there
exists C > 0 independent of w € (7, 27) such that:

”MUJHHZ(QW) < C”fw”Lz(Qw)' (9)

3 | PRELIMINARY RESULTS

3.1 | Sobolev norms in polar coordinates via Fourier series

According to previous studies on partial Fourier series in Sobolev spaces in polar coordinates, see for example® and references
therin, we will use the same notation G(r, #) := G(r cos 0, r sin 0). As far as we work with Dirichlet boundary condition on the

k
boundary 9, for any G € L*(€),), let us denote by G(r, §) = > k>1 Gr(r)sin 9 acin Q,, the partial Fourier series of G in 6,
= w

where G (r) = % fow G(r,0)sin %9(19 is the k™ Fourier coefficient seen as a function of r € (0, 1). We have:

G2, , = / |G|* rdrdo, (10)
Qw
oG|* 109G
||VG||§2(QW)=/Q (ar +‘r36 >rdrd9, (11)
PGIT 186G 13G]° |16 10G|
WV2GI2, ., | = il ——_— — = drdf. 12
VG (€) /Qw (’ or? rordd r? 00 * r2 06? * r Or ran (2)
By orthogonality, we have also the following Parseval identities :
1
||G||§2(Qw)=%2/ |Gy|” rar, (13)
>170
1 2 2
w 2 km Gk
IVGI? == G, = = dr, 14
() 2;/0 <| k|+<w> . )” (14)
w ! ) kNG G e e\ G|
IV2GI? == / G'|"+2 =) |[=*-= k=) = dr. 15
v L) 2;0 ’ k’+ (w) r r2 * r w r2 rar (s)
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According to the Dirichlet boundary condition taken partially w.r.r 6, for m = 0, 1, 2, the space of distributions G(r, #) such that
IIV”‘GI@(QW) < +o0 and that satisfy the boundary condition G(r,0) = G(r,w) = 0,a.e in (0, 1) will be denoted by H}} (€2,,) and
equipped with the standard Sobolev norm, such that

G, = > IV'Gl g ). (16)
1=0
32 | Two fundamental Lemmas for the Fourier coefficients analysis
In what follows, we use the standard notation fol ’gf)(r)|2 rdr = Ilqblliz(r i The two following lemma are essential for the

estimation of the norms in H?(€),,) of the Fourier coefficients of the regular and singular parts parts of the solution u,, of problem
(I). Moreover, they make the Fourier series method efficient to obtain the decomposition of u,, into its regular/singular part
U, = Uy, + Uy s just by handling some critical powers of r and balancing integral limits between those from O to r and others
from r to 1 in order to isolate what is called the roots of a transcendent equation as obtained in the literature. We will see in the
following section how these roots are extracted directly by imposing the condition on the singular part u,, s to belong to the
space H?(Q2,,) with 1 < o < 2. The two following lemmas which result from a variant of Hardy’s type weighted inequalities, (G.
Hardy 1927)1, are fundamental in the uniform estimates for the Fourier coefficients that will be given later.

Lemma 1. For any o, 3 € R and f € L*(rdr), let F(r) == r® forf(s)sﬁds defined forr € (0,1). If 6> 0and o+ 8 > —1 then
F € L*(rdr) and we have:

WFN 20y < W2gar, if o+ 8> -1, (17)

1
2B+ +1)

%”f”Lz(rdr)’ lfOé + 6 =-1. (18)

Proof. The case « + 3 > —1 is trivial as a direct consequence of Cauchy-Schwartz inequality. Now, if o + 3 = —1, then we have
from Cauchy-Schwartz (C.S) inequality and Fubini’s theorem. In fact,

1 r 2 1 , 2
/ (/ f(s)sﬁds) P rdr = / ( f(s)snzﬁs—'zﬁds> P2ol g,
0 0 0 0
s [! r r
< / ( / f2(s)s1+5ds> ( / s‘“Bds) o+ dr
0 0 0
1 1 r
<3 / ( / fz(s)s“ﬁds) P dr
B Jo 0
1 1 r
7/ (/ fz(S)SH—BdS) r—l—ﬁdr
B Jo 0
since a = —1 — 3. Next, with the help of Fubini’s theorem, 0 < s < r < 1, we obtain
1 1 r 1 1 1
B/ (/ fZ(S)SHﬂdS) 1 Pdr = B/ (fz(S)s“ﬁ/ rlﬁdr> ds
0 0 0 i
1 1 +00
< B/ (fz(S)SHB/ r‘l‘Bdr) ds
0 s

1 /‘ >
< — | f(s)sds
B> Jo
hence, holds. O

Lemma 2. Forany o, 3 € R and f € L*(rdr), let G(r) := r® frlf(s)sﬁds defined forr € (0,1). If B <0and o+ 3 > —1 then
G € L*(rdr) and we have

”F”Lz(rdr) S

IN

”G”Lz(rdr) < ||f”L2(rdr)’ l.fOé + ﬂ > —l, (19)

1
2V/IBla+B+1D)
”G”Lz(rdr) S Wa”f”l‘z(rdr)’ l.fOé + 6 =-1. (20)



6 | DOUAH ET AL.

Proof. The case a + 8 > —1 is trivial as a direct consequence of Cauchy-Schwartz inequality. Now, if « + 8 = —1, then we have:

1 1 2
/ ( / f(s)sﬁds> P rdr = / ( / fls)s'F s ds ) 2ol gy
0 r
<CS> 1
/ </ f (s)s”ﬁds) (/ s“ﬁds> ety
+00
S/ /fz(s)s”ﬁds (/ s”ﬁds) et gy
0 r r
1 1 1
< —/ / F2(s)s"Pds | r'Pdr
_B 0 r
where we have used the inequality fr 148 s < f:oo s*Ads since 3 < 0. Next, by Fubini’s theorem, 0 < r < s < 1, we obtain,
1 1 1 1 1 S
?/ /fZ(S)s“ﬁds 1 Bar = ?/ (fz(S)SBH/ rler> ds
=P Jo r =P Jo 0

1 /1 >
=— [ f(s)sds
B* Jo
hence, (20) holds. 0

Remark 1. The estimates given by Lemmas|1|and [2| are optimal in the sens that one can not, for example, expect better that 1/15]
in the inequalities (18) and (20), in particular in a critical case such as 8 — 0. This is a consequence of optimality results of
Hardy’s inequalities.

4 | CORNER SINGULARITIES VIA FOURIER SERIES DECOMPOSITION

Following the results in the literature, cf Grisvard (1986)Z, we can summarize that a solution u,, of (1)) admits near the origin the
following decomposition (in regular / singular parts and written in polar coordinates) as follows:

Uy = Uy r + Uy s,

such that
Uy € Hip (), and g, (r,0) = Y Féay(0).
—1<Qm<0

where the (; are roots of the transcendent equation with imaginary part in ]—1, O[ and the v, are C* functions of 6. In this section,
we will retrieve such a decomposition by the Fourier series method which allows us to extract the singularity systematically.
Moreover, both regular and singular parts are given explicitly and some explicit estimates w.r.t the opening angle w are given.
Since singularities are caused by the geometry of the domain, it follows that they are found in the kernel of the harmonic operator,
i.e., they are solutions to the homogeneous equation

Aug, s = 0in L2(,). 21

Let K
T

w,s 99 = w i 79,
Uy, 5(r,0) ;ak, (r)sin ”

be the Fourier series of u,, 4(r, #) in polar coordinates. Thus, one has, at least formally,

(82 1o &

or " ror 392) sl 6) =
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which implies, by putting the Fourier coefficients of Au,, all equal zero, that a;,(r) is solution to the following ordinary

differential equation, for all k > 1,
2

12 1 ’
(N + =g, (1) = —akw(r) =0, (22)
r w

whose general solution is given by
ke _km
ak,w(r) = )\k,wr ©w + Upwl @, (23)
where A\, (4 are constants that can be determined by the boundary condition and by imposing the regularity condition on the
singular part u,, s to belong to the space H°(£2,,) with 1 < o < 2. As far as we know, the power function in r, (r, 0) +— r® sin %”9,

oy not integer, belongs to H7(£),,) as long as o < oy + 1, henceforth we look for the Fourier coefficient of u,, ; that satisfy
. km
ar,(r)sin —0 € H7(Q,), 1 <o <2.
w

In other words, the problem turns out to find non integer powers oy in the r.h.s of such that 0 < o < 1, which yields the
unique possible power oy = = for all w € (, 27). It follows immediately s, = O for all k and that ay ., (r) will be balanced into
the regular part for all £ > 2. More precisely, we conclude that the singular part of u,, takes the following expression:

LT = . kmw
Uy, 5(r,0) = ay,(r)sin —0 = )\l,wrz sin —6
w w

A1 1s called the coefficient of singularity and it can be determined by the boundary condition on the solution u,, = u, , + Uy, s
after having given the expression of the regular part u,, .

5 | REGULARITY AND EXPLICIT ESTIMATES VIA FOURIER SERIES DECOMPOSI-
TION

We will look for the regular part u,, . of u,, as the particular solution of the problem (T)) with the regularity property of being in
H*(Q,) NHL(Qy,) for all w € (m,27). Thus, u,,, is solution to the non homogeneous equation Au,,, = f,, in L>(€,,) such that
the global solution u,, € H 2(Q)N Hé (€2,). Observe that one does not need homogeneous Dirichlet boundary condition u,, , = 0
on the curved boundary C,,. We start by Fourier series decomposition as follows:

k 2 [ k
for®) =3 cru(r)sin =0, e = = / £, 0) sin — 6, (24)
= w w Jo w
k 2 [ k
o (1. 0) = Y b (P sin -, by (r) = = / 1., (r, 0) sin — 0 do. (25)
= w w Jo w

Plugging the Fourier series in the non homogeneous equation Au,,, = f,, in L*(Q,,), we look for b, by identifying all the
Fourier coefficients in this equation written in polar coordinates. We obtain immediately that by () is solution to the following
ordinary differential equation, for all k > 1,

” 1/ 7T2
Do)+ by (1) = Z5bio() = cra(r): (26)
The general form of solution of this equation is:

k _km

brw(r) = % (ruzr / ck,w(s)sl’%ds—r’%r / ck,w(s)lerklrds) + cylwr%r + Brwl™ @ 27
a b

where a, b are some constants in (0, 1) that may be determined together with the coefficients oy 5k . €ither with the help of
boundary conditions on d€,, and/or the expected regularity of u,, . in H>. Since % < Z <1 then F'& sin ’%0 is never in H}, ()
for any k > 1, which implies that all the coefficients (3¢, must be zero for all K > 1. In addition, o4 = 0 in the expression of
by, since r@ is reserved in the Fourier coefficient of the singular part.



8 | DOUAH ET AL.

Remark 2. Integrals in the r.h.s of and their derivatives w.r.t r until order 2 have all the same forms as those in fundamental
lemmas [T]and [2] where the left powers « and right ones [ all satisfy the condition o + 3 > —1. Hence, the set of parameters a, b
can already be refined according to the signs of 3, i.e., missing integral’s limit will be 0 if 5 > 0 and 1 if 5 < 0.

51 | First frequency term, k£ = 1 and determination of )\, ,

According to Remark and the fact that % < T <1, all thes powers 3 in the two integrals in expression of by ,,(r) given by
have positive sign, hence one takes a = b = 0 and writes:

by(r) = % <r3/ cl,w(s)sl_gds—r_g/ cl,w(s)s“zds). (28)
0 0

The Fourier series terms in the decomposition

. km
Uy = Uy r+ Uys = Z uk,w(r) S111 ;9 = Z Uk,w(r’ e)a
>1 >1

satisfy, for each k > 1, the boundary value problem,

{Auk,m, 0) = fo(r) in Q, 29)

Ui = 0o0n 09,

k
where fi ., (r, 0) = cr.,(r) sin 19 is the k™ term of the Fourier series of [, such that f,,(r, 0) = ZkZI Siw(r, ). 1t follows that the
first term in the Fourier series of the global solution has the following expression, (recalling that a; ., (r) is the first and unique
non zero Fourier coefficient of the singular part u,, )

Uyw(r,0) = by () sin 0 + a1 o, (r) sin -0
w w

=Y
T o

(rz / ck,w(s)sl’fds— e / ck,w(s)s”zds) sin z9 + )\Lwrg sin EQ. (30)
0 0 w w

Applying the boundary conditions U;,, = 0 at r = 1, we obtain the expression of Aj,:

1 1
AMw Y (/ cl,w(s)sl_gds—/ clsw(s)s“:ds) . (31)
271' 0 0

Theorem 2. Let U, ,(r,0) given by the solution of (k = 1) with r.h.s fi,(r,0) = c1,(r)sin Z0. There exists C > 0

uniform in w, such that the following explicit estimate holds :

C

.o
|Al,w| + Hbl’w sSin ;0’ ﬁ “f]sW”LZ(QW)' (32)

HX Q)

Moreover, this estimate is sharp, i.e, there exists fi ., such that ||fi .|

2@, = 1 and

1
:0( ),asw—)w. (33)
H2(Q,) 1-

us
w

‘)\1M| + Hbl’w sin 10‘
w

Proof. Proof of estimate : we use the definition of H3(f2,,) norm defined in Subsection and according to Lemma the
notation

1) =r* / Chw($)sPds, k> 1,
0

then
/ r
(I,?’ﬁ) (r) = ar™’! / Crw(®)sPds + rPe o (r) = al,?il’ﬁ(r) + P ().
0
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Proof of (32)): Using the previous notation with k = land expression (28) of by, one has after some computation and
simplification:

b= o= (IF 50 -15"50) (34)

bl,&;(r) _ % (11—1%,1—5(,)_ 11‘1‘5’“50)) (35)

blv;,z(r) _ % (1 255 () I =l %(r)) (36)

e % (R 5 ) 37)

b’l,u;(r) _ % (1172%,175@ N 1;2—3,1%(,)) (38)

b (r) = c1(r) - % ((1-Z) "5 2o+ (1+ ) 1725 m) (39)

Now, observe that expressions in the r.h.s of @),...,@, contain all linear combinations, with uniform bounded coefficients
w.r.t w, of expressions / ?’5 , exactly like those in fundamental Lemma all with > 0 and a + 8 > —1. Henceforth, one has by
Lemmal[ll

1l o < —= [ + = | etz < —~os il (40)
w 2 = Clw 2 =~ T — w [l
Lw lL2(rdr) A ﬁ ﬂ m Lew [l L2(rdr) ﬂ Lwll[2(Q.)
1 C,
Hblw L2(rdr) — ( ) ||clw||L2(rdr) = T Hfl"*’”Lz(Q )’ (4])
(rdry S 4 /7 /7 T-Z
blw w C
= < = Clw < — ||fiw , 42
= = ( T ﬁ> el < g Vil @)
On the other hand, y
r b1, 1 4T T N 4
71*“’( ) - 2L 2(r) =— ((1 - f) I|2+“J’1 “(r)+ (1 + f) I,2 ‘”’H“(r)) >
r r 2 T T
b/ r 2p w 1 O T . B o
O (T 0 L (D) iR gy (14 D) (25 ),
r w r2 2 w w
implies )
bl bl w
— < = lerw < Cy||fiw , 43
‘ r r? 2ean T lex, ”Lz(’d’) < GallA ”LZ(QW (43)
by, 2 b1 w l /jw m
H w2 =3 (E * Z) lerellzzgan < Cs Vil - Sa
Hb/II,WHLz(rdr) < 2lerwllzgan < Collfiwllza,) (45)

where C; > 0,j=1,2,...,6, are constants all independent of w. Thus, since by, sin 39 is a single term of its Fourier series, by
w
definition (16} of the norm H3(£,), see (13)),(14) and (15)), we obtain

LT Ce
brosin 20| <= fiullp,) 46
H L S0 Y ) = VI-Z ol (46)
where C > 0 is uniformly bounded in w € (m, 27).
On an other hand, it is easy to check that ‘/\W |can be estimated using the Cauchy-Schwartz inequality to obtain
C
’/\lww, < ﬁ w2(Qw) > 47)
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where C7 > 0 is uniformly bounded in w € (7, 2). Finally, Inequality (32)) holds with a constant C > 0 independent of w.
Proof of sharpness of estimate (32)): In fact, this is a consequence of optimality results of Hardy’s inequalities as mentioned
in Remark More precisely, since —1 < —g, one can find, for example, a r.h.s such as

2 =
frw(r.0) = =vw—7r % sin (Ee) ,
w w
|vl,wHL2(Qw) =1, Yw € (m,2m),

2 ™
Clwr) = —vw-mre,
w
which gives after computation of b (7, §) from its expression given by (28],

-5

;
brw(r) = s—F—,
v = Jomr
. (T w 1
Hbl,w(”) sin (—9) = =0 — +o0 as w — T,
w 129Q,)  4/(m=3w)(m—w) -z
|)\ |—;—0 1 — 4o0asw — T
Wl = o fo—n = '
The proof of the theorem is ended. O
52 | Regular frequency terms, k > 2

We first need the following Lemma which gives, in the case of a sector, the uniformity w.r.t w of the elliptic estimate “second
fundamental inequality” , cf. (Stylianou (2010), Corollary 2.3.6 p.31)1°
sector €, as follows:

, and which can be reformulated in the case of a planar

Lemma 3. Let Q,, planar sector defined as in Section2} w € (0,2m). Then, there exists C > 0 constant independent of w, such
that for all u € H*(Q,,) N Hé(Qw),
g2,y < CllAUll2q,).- (48)

Proof. In fact, it comes from Poincare’s inequality on the one hand, cf. Tami & Tlemcani (2021): for all u € H*(Q,) N Hé(Qw),

one has
e,y < V1 + 1+ w2Vl 2,

which yields equivalence, with uniformly bounded constant w.r.t w, between the norm and semi-norm H? in the space H>(),) N
H(l)(Qw), and, on the other hand, the “second fundamental inequality” , cf. (Stylianou (2010), Corollary 2.3.6 p.31), which can be
reformulated in the case of a planar sector €, as follows: Using the Green’s formula in H>(£2,,) N Hé(Qw), as in (Stylianou
(2010), p.29),

/Q (Au)* dS), = /a . K(m) (Opu)” dm + IVl ) > Vulllg g (49)

where 0, represents the normal derivative operator outward to 92,,, where in our case,

0 ifmelyuly,
k(m) =
1 ifmeC,

designates the curvature of 0¢),, and which is essentially positive in the case of the planar sector €2, no matter if it is non-convex
or convex. Hence, and by same arguments as in Stylianou (2010), based on the density of H>(Q,,) NHA(Q,) in H*(Q,,) NHL(Q,),
Inequality follows for all u € H*(Q,) N HA(Q,). O
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Following Remark and the fact that 1 <k < T < k for k > 2, the powers [3 in the two integrals in expression of by, (r)
given by , toknow 1 — 4T <0 and 1 + &% > O have respectively negative and positive sign for all £ > 2, hence one takes the
integrals limits a = 1,b = O in 27) and wrltes.

r r 1
brao(r) = 5= (r / Chols)s ™ ds S / Cha(s)s ™ E ds +rE / ck,w(s>s1+ifds,> (50)
1 0 0

where the last term in the r.h.s of (50) is added in order to satisfy the homogeneous Dirichlet boundary condition at r = 1.
Theorem 3. Let Uyo,(r,0) = by(r)sin (420), k > 2, the solution of () with rh.s fi.(r.0) = o (r)sin 0. Then, Uy, €
H*(Q,) N H(l)(Qw), and there exists C > 0 independent of w € (m,2m) and k > 2, , such that:

Z ||Uk,w||H2(Qw) < CZ ka,w”Lz(Qw) : (51)

k>2 k>2

Proof. The proof is similar to the case k = 1. In addition to the notation ;" % in the previous proof, and according to Lemma
we add the notation

JP ) =re / Crw(s)sPds, k> 2,
1
then , .
(J,?’B) (r) = ar®™! / ()52 ds + 1P p o (r) = aJ,iH’B(r) + 2% ().
1

Moreover, let

1
H,f“’ﬁ(r) = r“/ Crew(s)sPds.
0

By computation and simplification, Vk > 2:

b = = (3EE 0 - 0 mS T ), (52)
2km

w = 2;:7 (J,j“%’l‘%(r)—1;1‘%’“%0) +HE _1’”%0)) : (53)

bk,:z(r) _ 2217 (J;2+%,17%(r)_];27 km )y km ( )+H‘“72’1+“ ( )> (54)

bl () = % (FETE o g e m ST @), (55)

Pall) L (258 4 2005 (g 52005 ), (56)

GRS <<'Zr - 1) FEEE - <1 . ’ZT> )+ (k 1> HE e (r)) rau®). 6D

Henceforth fundamental Lemmas, apphed to I} # and I apphed to J, @8 and the Cauchy-Schwartz inequality applied to the
terms H # which gives a constant Cy(w, k) > 0,

a.f
HHk L2(rdr) g CO(W, k) Hﬁc,w HLz(rdr) . (58)
yield,
ku,w ||L2(rdr) < Cl (W, k) ka,w”Lz(Qw) . (59)
Hb/lvaLz(rdr) S CZ(UJ7 k) ka’wHLz(Qw) N (60)
biw
‘ Ilw < Gi(w, k) ka,wHLz(Qw) s (61)
r L2(rdr)
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bllcw bkw
’ = r—z 7 < Caw, k) fewll 2, » (62)
L?(rdr)
by, k7 \* bie
B (Z) 2l <o ol “
L2(rdr)
1602 < o Wl “

k

where Cj(w,k)>0,j=0,1,2,...,6, are constants depending on w and k. Thus, since by, sin IG is a single term of its Fourier
w

series, by definition (16)) of the norm H3(,,), see (13),(14) and (15), we obtain

k
bre, sin —0

HUk,w”m(Qw) = ‘ < C(w, k) ka,w”Lz(Qw)' (65)

HX(Q,)

As aresult, Uy, € H*(Q,) N Hé(Qw), then Lemmaimplies that there exists C > 0 independent of w € (w,27) and k > 2, ,
such that:

HUk,w“HZ(Q <C ”AUk,wHLZ(QW) =C ka,wHLZ(Qw) >

w)_

since AUy, = fi.,. Finally, by taking the sum over k > 2, one obtains the uniform estimate (]S_T[), which ends the proof. O

6 | PROOF OF THE MAIN RESULTS

In this section, we end the proof of the main Theorem[T]and its Corollary [T]stated in Section 2}

Proof of Theorem|[I} The proof now is a direct consequence of theorems [2and 3] and the former Fourier series analysis. In fact,
we write the Fourier series expansion of f,, separating the singular frequency k = 1 from the regular ones k > 2, as follows:

fo =fL + £ where
k
F10) = 1o () sin 6, and £7(,0) = > e () sin — 6. (66)
w w
k>2
By Theorem Aol sin 20+ u{w € H{(f,) represents the solution of Problem (1) with r.h.s f7 corresponding to the singular
frequency k = 1. Thus, we put A, = A, as given by and ul (r,0) = by ,(r)sin EQ as given by , and we have
w
ul,, € H* ().
Next, by Theorem ufj’r represents the solution of Problemwith r.h.s £ corresponding to a superposition of all regular

frequency k > 2. We obtain the expression of u! | as a Fourier series

Lk
> bra(rsin =0 = 3 U (r.6),

k>2 ©>2

where Uy, (7, 0) = by ,(r) sin kj@ and by, (r) is given by . Thus, by Theorem Estimate , u’u’,,r € H* () NHY(Q).
On the other hand, as a pow; function of r, the singular part (r, §) — r@ sin 20, = not integer, belongs to the Sobolev space
H'"*7(Q,,) forallo < Z.
Henceforth, u,, € H*(,,) N Hé(Qw) and the decomposition (3)) follows with explicit expressions as given by (5) and @
Finally, the sharp Estimate (7)) follows directly from theorems 2] - Inequality (32) and Theorem [3|- Inequality (51). The proof
of the theorem is achieved. O

Proof of Corollary |1 This is a consequence of the main theorem and Lemma In fact, u, € H*(Q,) N H(l](Qw) if and only
if the singular part \,r% sin Z0 vanishes on €2, i.e A, = 0. We have, with the help of the definition of the Fourier coefficient
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Clw(r) = % /. Ow fi(r, ) sin Z60d6 and the definition of &, given by ,

1 _m s
Aw = el / c1.w(r) <r d > rdr
2\ Jo s
1 w sl _m
= / / fo(r,0) (rr) sin EQ rdrdf
0 0 T w

= (fuws fw)w .

Hence, u,, € H*(Q,) N H(')(Qw) if and only if (f,,, &), = 0. Assume now that this condition is satisfied, then A\, = 0 which
implies that the decomposition becomes u, = ul, , + u’’ ., where u!, , is the unique H*(2,,) N H}(€L,) solution to problem

w,r

I
Au,, =f, inQ,,

ul,, =0 on 99,
with r.h.s fL defined by . Therefore, by Lemma there exists C; > 0 constant independent of w, such that
! N, < CHlIAUL 2,y = Cillf 2, ) (67)
On the other hand, by Inequality |7} one has IluZ’,II ) < C2I|f(£1 llz2¢2,,)-Where C; > 0 constant independent of w, henceforth:

Nty = il + ull Mg
1 11
S “uw,r”H?‘(Qw) + ”uw,r”Hz(Qw)’
< Cillf 2,y + Callf N2,y < Cllfullizi, )

with C = C; + C; > 0, constant independent of w. The proof of the Corollary is ended. O

7 | CONCLUSION

Throughout this paper, we have given explicit extraction formulas via Fourier analysis of the coefficients of singularity and
regular part of the solutions of a family of Poisson equations with Dirichlet boundary conditions on a family of open non-convex
planar sectors. We have shown that explicit and sharp estimates can be obtained by highlighting the decomposition of the
solution into three parts whose behavior in the vicinity of the critical angle w is as follows: a stable regular part in the norm H?,
an unstable regular part in the norm H? and an unbounded coefficient of singularity in the vicinity of 7. However and fortunately,
the global solution remains stable in the H' norm from standard uniform estimates of the weak variational solution. This problem
is actually quite similar to that of Babugka, cf.'Y, when additional regularity on the source term f,, is assumed at the origin. In
fact, in the case of convex corners, and L2r.h.s fw uniformly bounded in w, a full answer to this problem was given in the case of
both harmonic and biharmonic problem, cf."'218, Thus, the question of existence of stable H> decomposition near a non-convex
corner still an open problem. On the other hand, it was observed via an orthogonality criteria, see the corollary of the main
result, that in the absence of the first singular frequency k = 1 in the Fourier series of f,,, one retrieves uniform H? estimates
and the problem turns out to be similar to the convex case. Finally, possible extension of the results herein are envisaged for
boundary value problems with general (mixed) boundary conditions. This will be of great interest in the case of hyperbolic
(wave equation), cf.#, and/or parabolic (heat equation) problems where the time variable adds a new drawback in the analysis.

REFERENCES

1. Tami A. Etude d’un probléme pour le bilaplacien dans une famille d’ouverts du plan. PhD thesis. Aix-Marseille University-Franch, 2016.

2. Tami A. The elliptic problems in a family of planar open sets. Appl. Math.. 2019;64(5):485-499. |doi: 10.21136/AM.2019.0057-19

3. Nazarov SA, Sweers G. A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners. J. Differential Equations.
2007;233(1):151-180. |doi: 10.1016/j.jde.2006.09.018

4. Blum H, Rannacher R. On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci..
1980;2(4):556-581. [doi: 10.1002/mma.1670020416

5. Nkemzi B, Jung M. The coefficients in the asymptotic expansion of solutions of second-order hyperbolic problems in polygonal domains. Math.
Methods Appl. Sci.. 2023;46(8):9576-9588.

6. Grisvard P. Alternative de Fredholm relative au probleéme de Dirichlet dans un polygone ou un polyedre. Boll. Un. Mat. Ital. (4). 1972;5:132-164.


http://dx.doi.org/10.21136/AM.2019.0057-19
http://dx.doi.org/10.1016/j.jde.2006.09.018
http://dx.doi.org/10.1002/mma.1670020416

14

| DOUAH ET AL.

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

. Grisvard P. Elliptic problems in nonsmooth domains. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics

(STAM), Philadelphia, PA, 2011. Reprint of the 1985 original [ MR0775683], With a foreword by Susanne C. Brenner

. Grisvard P. Singularities in Boundary Value Problems. 22 of Classics in Applied Mathematics. Masson, 1992.
. Li H, Yin P, Zhang Z. A C° finite element method for the biharmonic problem with Navier boundary conditions in a polygonal domain. IMA J.

Numer. Anal.. 2023;43(3):1779-1801. |doi: 10.1093/imanum/drac026

Maz’ya VG, Plamenevskii BA. L, estimates, and the asymptotic behavior of the solutions of elliptic boundary value problems in domains with edges.
Godisnik Viss. Uc¢ebn. Zaved. Prilozna Mat.. 1975;11(2):113-123 (1977). Conference on Differential Equations and Applications (Ruse, 1975).
Maz’ya V, Rossmann J. On a problem of Babuska (stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order
in domains with angular points). Math. Nachr.. 1992;155:199-220. doi: 10.1002/mana.19921550115

Serge Nicaise AMS. General interface problems 1. Math Methd App Sci.. 1994;17:395-429. |doi: 10.1002/mma.1670170602

Serge Nicaise AMS. General interface problems II. Math Methd App Sci.. 1994;17:431-450. doi: 10.1002/mma.1670170603

Dauge M. Elliptic boundary value problems on corner domains. 1341 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988. Smoothness
and asymptotics of solutions

Dauge M, Nicaise S, Bourlard M, Lubuma JMS. Coefficients des singularités pour des probleémes aux limites elliptiques sur un domaine
a points coniques. I. Résultats généraux pour le probleme de Dirichlet. RAIRO Modél. Math. Anal. Numér.. 1990;24(1):27-52. |doi:
10.1051/m2an/1990240100271

Stylianou A. Preserving properties of bilaplace boundary value problems in domains with corners. PhD thesis. Universitit zu Koln, 2010.
Gerasimov T, Stylianou A, Sweers G. Corners give problems when decoupling fourth order equations into second order systems. SIAM J. Numer.
Anal.. 2012;50(3):1604-1623. |doi: 10.1137/100806151

Tami A, Tlemcani M. H? convergence of solutions of a biharmonic problem on a truncated convex sector near the angle . Appl. Math..
2021;66(3):383-395. |doi: 10.21136/AM.2021.0284-19

Hardy G, Littlewood J, Pdlya G. Inequalities. Cambridge Mathematical LibraryCambridge University Press, 1952.


http://dx.doi.org/10.1093/imanum/drac026
http://dx.doi.org/10.1002/mana.19921550115
http://dx.doi.org/10.1002/mma.1670170602
http://dx.doi.org/10.1002/mma.1670170603
http://dx.doi.org/10.1051/m2an/1990240100271
http://dx.doi.org/10.1051/m2an/1990240100271
http://dx.doi.org/10.1137/100806151
http://dx.doi.org/10.21136/AM.2021.0284-19

	Sharp estimates of solution of an elliptic problem on a family of open non-convex planar sectors
	Abstract
	introduction
	Problem setting and the main result
	Preliminary results
	Sobolev norms in polar coordinates via Fourier series
	Two fundamental Lemmas for the Fourier coefficients analysis

	Corner singularities via Fourier series decomposition
	Regularity and explicit estimates via Fourier series decomposition
	First frequency term, k=1 and determination of 1,
	Regular frequency terms, k2 

	Proof of the main results
	Conclusion
	REFERENCES


