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Abstract
Based on partial Fourier series analysis, we adapt on a model case a new approach to classical results obtained
in the literature describing the singularities of a family a solutions of a second order elliptic problems on open
non-convex planar sectors. The method allows the exhibition of singular and regular frequencies, explicit
decomposition and description of coefficients of singularities of the solution. As a main result, explicit and
sharp estimates with respect to the opening angle parameter are obtained via this method. They are not
uniform near π where corners have opening angle generating a jump of singularity in Sobolev exponent,
contrarily to the results obtained in A. Tami (2016),(2019),(2021) for harmonic and/or biharmonic problems
on a family of convex planar sectors.
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1 INTRODUCTION

The behavior of solutions of elliptic problems on polygons near a corner has been investigated in the 60’s. In engineering
mathematics, analysis of singular solutions of partial differential equations in non-smooth domains is of great interest. It is well
known that the presence of such singularities may severely reduce convergence in error estimates of standard numerical schemes
of approximation. Thus, it is always interesting to study and provide explicit formulas, in particular, when it comes to a family
of solutions dependent on a parameter ω (the opening angle at a corner) where these singularities as well as only a part of the
regular solution may blow-up near some critical values of this parameter. Recently, Tami (2019)1,2 has put into evidence the
analogy of such decomposition locally with standard Taylor expansions in the vicinity of a convex corner. The author provided
uniform estimates with respect to ω ∈ (2π/3,π) for both laplacian and the bi-Laplacian operators, i.e, when the corner is convex
and the critical value of ω equals π. This property of behavior of solutions w.r.t ω allows the treatment of families of elliptic
problems on families of open sets. To the knowledge of the authors of this paper, no such study was performed on a family
of non-convex open sets, i.e. when ω ∈ (π, 2π), whether in the harmonic or biharmonic case. When a non-convex corner is
considered, an additional difficulty, namely the existence of L2 solutions, see for example Nazarov (2007)3Li, Hengguang et.
al.4, in the kernel of the Laplace operator and satisfying the boundary conditions of the problem. Nevertheless and Fortunately,
the orthogonal space of the range of this operator is still finite-dimensional and it is possible to identify its basis. Therefore, it is
still worthwhile and possible to study and provide explicit extraction formulas with explicit sharp estimates. In this paper, we aim
at studying by means of partial Fourier analysis in polar coordinates, cf. Nkemzi (2023)5 and references therein, w.r.t to the polar
angle θ, the asymptotic behavior of solutions by deriving explicit computable formulas for the coefficients of the singularities
with explicit estimates that show the behavior (in H2 norm) of the family of solutions uω near the critical angle ω = π. As a
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main result of our approach is the lack of uniformity in the estimates with respect to the angle parameter ω, contrarily to those
obtained in the case on convex corners, cf.1.

We consider a model case of Elliptic equation with homogeneous Dirichlet condition and source term fω square integrable on
a planar polygonal domains withnon convex corner. Such problems, and more generally elliptic boundary value problem of
partial differential equation, are known to exhibit singular behaviors near the corners or boundaries of non-smooth domains.
Well posedeness of such problems and description of their singularities near corners with different boundary conditions were
addressed, whether in the harmonic or biharmonic case, by many authors in the literature, cf., Grisvard (6,7,8), Kondrat’ev9 ,
Blum4, Maz’ya (10,11), Nicaise (12,13), Dauge (14,15), Stylianou16, Gerasimov17, Tami (1,2,18) and the references cited therein.

Throughout this paper, a generic constant C > 0 in all estimates that follow may be independent of ω and different at different
occurrences. In the second section, we present the problem setting and the main result with a partial proof of H1 uniform estimates
w.r.t the opening angle ω of the family of solutions uω our problem. The proof of H2 estimates will be justified gradually in the
sections that follow. The third one contains some preliminaries such as Sobolev spaces in polar coordinates, Sobolev norms
expressed via Fourier coefficients, and some fundamental tools useful for estimates of Fourier coefficients. Next, in the fourth
section, formal determination of corner singularity via Fourier series is presented. In the fifth section, Fourier coefficients of the
regular part of the solution and the coefficient of singularity obtained formerly are given explicitly. In addition, explicit and
sharp or uniform estimates are given w.r.t to the opening angle parameter ω ∈ (π, 2π). These estimates are not uniform in the
vicinity of π, even for the regular part taken separately in the case of the first frequency k = 1 in the Fourier series. The sixth
section is devoted to the completion of the proof of the main result, in particular the characterization of coefficient of singularity
and the estimates on of the regular part in the norm H2. Concluding remarks and comments are presented in the last section.

2 PROBLEM SETTING AND THE MAIN RESULT

By a localization technique around the reentering corner in question, we are interested in a family of boundary value problems
of the following type. Let us denote by {Ωω}ω∈(π,2π) a family of open bounded sectors of radius 1 centered at the origin O (here
O represents the reentering corner where the localization has been performed). In polar coordinates (x, y) = (r cos θ, r sin θ), one
has , cf. Figure 1,

Ωω = {(x, y), 0 < r < 1, 0 < θ < ω},

with boundary ∂Ωω = Γ0 ∪ Cω ∪ Γω where

Γα = {(x, y), 0 < r < 1, θ = α}, α = 0,ω

Cω = {(x, y), r = 1, 0 < θ < ω}.

For a right hand side (r.h.s) fω ∈ L2(Ωω) depending on the parameter ω ∈ (π, 2π), we look for solutions uω of the following
Elliptic equation with homogeneous Dirichlet boundary condition:{

∆uω = fω in Ωω ,

uω = 0 on ∂Ωω .
(1)

F I G U R E 1 Planar sector Ωω with non-convex corner at the origin: Opening angle ω ∈ (π, 2π).
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Following the results in the literature, cf. Grisvard (1986)7, the solution uω of (1) admits near the origin the following
decomposition (in regular / singular parts) that can be written in polar coordinates as follows:

uω = uω,r + λωr
π
ω sin

π

ω
θ,

where uω,r ∈ H2
loc(Ωω), and the singular part uω,s(r, θ) = λωr

π
ω sin π

ω θ ∈ H1+σ(Ωω) for all σ < π
ω . According to the general

theory on H2-regularity of elliptic boundary value problems, see the cited references, in two-dimensional domains with corners,
the solution uω associated to a right-hand side fω square integrable on the family of planar sectors Ωω with non-convex corner
exhibits a singularity at the origin whose effect is to limit its regularity, expressed in the scale of fractional order Sobolev spaces.
In contrast, when ω = π, there no singularity and the solution uπ is H2(Ωω). Hence, there is a jump in Sobolev exponents
describing the regularity of solution when ω → π on the side ω > π.

In this work, we will retrieve explicit decomposition by the partial Fourier series method which allows the extraction of the
singularity systematically. Moreover, explicit estimates w.r.t the opening angle ω are obtained on uω,r and the coefficient of
singularity λω. The main result of this paper is given bellow and its proof will be given later. Notice that the proof of the first
result (i) in the main theorem, i.e. existence in H1

0 is evident and standard, unless the uniformity of the constant w.r.t ω that
comes directly from Poincare’s inequality, cf.18, for all u ∈ H1

0(Ωω),

||u||H1(Ωω) ≤
√

1 + ω||∇u||L2(Ωω),

which yields equivalence, with uniformly bounded constant, between the norm and semi-norm H1. Hence, only proofs of (ii)
and (iii) are needed and will completed later at the end of the paper.

Theorem 1 (Main Theorem). Let ω ∈ (π, 2π) and fω ∈ L2(Ωω) with Fourier coefficients

ck,ω(r) =
2
ω

∫ ω

0
fω(r, θ) sin

kπ
ω
θdθ, k ≥ 1.

i) Problem (1) admits a unique solution in H1
0(Ωω) that depends continuously on the r.h.s fω ∈ L2(Ωω) and uniformly on the

parameter ω ∈ (π, 2π), i.e. there exists a constant independent of ω, C > 0, such that:

||uω ||H1(Ωω) ≤ C||fω ||L2(Ωω). (2)

ii) uω ∈ H1+σ(Ωω) ∩ H1
0(Ωω) , for all σ < π

ω , and uω admits in Ωω the following decomposition

uω = λωr
π
ω sin

π

ω
θ + uI

ω,r + uII
ω,r, (3)

where uI
ω,r, uII

ω,r ∈ H2(Ωω) and the coefficient of singularity λω are given explicitly as follows:

λω = –
ω

2π

(∫ 1

0
c1,ω(s)s1– π

ω ds –
∫ 1

0
c1,ω(s)s1+ π

ω ds

)
, (4)

uI
ω,r(r, θ) =

ω

2π

(
r

π
ω

∫ r

0
c1,ω(s)s1– π

ω ds – r– π
ω

∫ r

0
c1,ω(s)s1+ π

ω ds
)
sin

π

ω
θ, (5)

uII
ω,r(r, θ) =

∑
k≥2

ω

2kπ

(
–r

kπ
ω

∫ 1

r
ck,ω(s)s1– kπ

ω ds –r– kπ
ω

∫ r

0
ck,ω(s)s1+ kπ

ω ds + r
kπ
ω

∫ 1

0
ck,ω(s)s1+ kπ

ω ds

)
sin

kπ
ω
θ. (6)

iii) There exists C > 0 independent of ω ∈ (π, 2π) and fω ∈ L2(Ωω) such that the following estimate holds and is sharp:

||uII
ω,r ||H2(Ωω) +

√
ω – π

(
||uI

ω,r ||H2(Ωω) + |λω |
)
≤ C||fω ||L2(Ωω). (7)

Let us denote by (., .)ω the natural scalar product of L2(Ωω), defined by (f , g)ω :=
∫
Ωω

fgdΩω and denote by

ξω(r, θ) =
r

π
ω – r– π

ω

π
sin

π

ω
θ, (8)
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a L2(Ωω) solution, since ω ∈ (π, 2π), of the homogeneous Dirichlet problem{
∆ξω = 0 in Ωω ,

ξω = 0 on ∂Ωω .

Remark that ξω is not unique as a L2(Ωω) solution since the trivial case ξω = 0 is also solution. Note also that the boundary
condition ξω = 0 on ∂Ωω is defined in the trace sense, namely H̃– 1

2 on each side of ∂Ωω , , cf.7,8,4. Let us denote by

L2
ξ⊥ω

(Ωω) :=
{
ϕ ∈ L2(Ωω), (ϕ, ξω)ω = 0

}
We know that the mapping –∆D : H2(Ωω) ∩ H1

0(Ωω) → L2(Ωω) is injective and has a closed range (Grisvard, 1992)8. The
following corollary shows that its image equals L2

ξ⊥ω
(Ωω) and that

–∆D : H2(Ωω) ∩ H1
0(Ωω) → L2

ξ⊥ω
(Ωω)

is a uniformly bounded family of isomorphisms w.r.t to the opening angle parameter ω ∈ (π, 2π).

Corollary 1. Let ω ∈ (π, 2π) and fω ∈ L2(Ωω). Then, uω ∈ H2(Ωω)∩H1
0(Ωω) if and only if the (fω , ξω)ω = 0. In this case, there

exists C > 0 independent of ω ∈ (π, 2π) such that:

||uω ||H2(Ωω) ≤ C||fω ||L2(Ωω). (9)

3 PRELIMINARY RESULTS

3.1 Sobolev norms in polar coordinates via Fourier series

According to previous studies on partial Fourier series in Sobolev spaces in polar coordinates, see for example4 and references
therin, we will use the same notation G(r, θ) := G(r cos θ, r sin θ). As far as we work with Dirichlet boundary condition on the

boundary ∂Ωω , for any G ∈ L2(Ωω), let us denote by G(r, θ) =
∑

k≥1 Gk(r) sin
kπ
ω
θ a.e in Ωω the partial Fourier series of G in θ,

where Gk(r) = 2
ω

∫ ω

0 G(r, θ) sin kπ
ω θdθ is the kth Fourier coefficient seen as a function of r ∈ (0, 1). We have:

||G||2L2(Ωω) =
∫
Ωω

∣∣G∣∣2 rdrdθ, (10)

||∇G||2L2(Ωω) =
∫
Ωω

(∣∣∣∣∂G
∂r

∣∣∣∣2 +
∣∣∣∣1r ∂G

∂θ

∣∣∣∣2
)

rdrdθ, (11)

|||∇2G|||2L2(Ωω) =
∫
Ωω

(∣∣∣∣∂2G
∂r2

∣∣∣∣2 + 2
∣∣∣∣1r ∂2G
∂r∂θ

–
1
r2

∂G
∂θ

∣∣∣∣2 +
∣∣∣∣ 1
r2

∂2G
∂θ2 +

1
r
∂G
∂r

∣∣∣∣2
)

rdrdθ. (12)

By orthogonality, we have also the following Parseval identities :

||G||2L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

∣∣Gk
∣∣2 rdr, (13)

||∇G||2L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

(∣∣G′
k

∣∣2 +
(

kπ
ω

)2 ∣∣∣∣Gk

r

∣∣∣∣2
)

rdr, (14)

||∇2G||2L2(Ωω) =
ω

2

∑
k≥1

∫ 1

0

∣∣G′′
k

∣∣2 + 2
(

kπ
ω

)2 ∣∣∣∣G′
k

r
–

Gk

r2

∣∣∣∣2 +

∣∣∣∣∣G′
k

r
–
(

kπ
ω

)2 Gk

r2

∣∣∣∣∣
2
 rdr. (15)
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According to the Dirichlet boundary condition taken partially w.r.r θ, for m = 0, 1, 2, the space of distributions G(r, θ) such that
||∇mG||2L2(Ωω) < +∞ and that satisfy the boundary condition G(r, 0) = G(r,ω) = 0,a.e in (0, 1) will be denoted by Hm

D (Ωω) and
equipped with the standard Sobolev norm, such that

||G||2Hm(Ωω) :=
m∑

l=0

||∇lG||2L2(Ωω). (16)

3.2 Two fundamental Lemmas for the Fourier coefficients analysis

In what follows, we use the standard notation
∫ 1

0

∣∣ϕ(r)
∣∣2 rdr := ||ϕ||2L2(rdr). The two following lemma are essential for the

estimation of the norms in H2(Ωω) of the Fourier coefficients of the regular and singular parts parts of the solution uω of problem
(1). Moreover, they make the Fourier series method efficient to obtain the decomposition of uω into its regular/singular part
uω = uω,r + uω,s just by handling some critical powers of r and balancing integral limits between those from 0 to r and others
from r to 1 in order to isolate what is called the roots of a transcendent equation as obtained in the literature. We will see in the
following section how these roots are extracted directly by imposing the condition on the singular part uω,s to belong to the
space Hσ(Ωω) with 1 ≤ σ < 2. The two following lemmas which result from a variant of Hardy’s type weighted inequalities, (G.
Hardy 1927)19, are fundamental in the uniform estimates for the Fourier coefficients that will be given later.

Lemma 1. For any α,β ∈ R and f ∈ L2(rdr), let F(r) := rα
∫ r

0 f (s)sβds defined for r ∈ (0, 1). If β > 0 and α + β ≥ –1 then
F ∈ L2(rdr) and we have:

||F||L2(rdr) ≤
1

2
√
β (α + β + 1)

||f ||L2(rdr), if α + β > –1, (17)

||F||L2(rdr) ≤
1
β

||f ||L2(rdr), if α + β = –1. (18)

Proof. The case α + β > –1 is trivial as a direct consequence of Cauchy-Schwartz inequality. Now, if α + β = –1, then we have
from Cauchy-Schwartz (C.S) inequality and Fubini’s theorem. In fact,∫ 1

0

(∫ r

0
f (s)sβds

)2

r2αrdr =
∫ 1

0

(∫ r

0
f (s)s

1+β
2 s– 1–β

2 ds
)2

r2α+1dr

(C.S)
≤
∫ 1

0

(∫ r

0
f 2(s)s1+βds

)(∫ r

0
s–1+βds

)
r2α+1dr

≤ 1
β

∫ 1

0

(∫ r

0
f 2(s)s1+βds

)
rβr2α+1dr

≤ 1
β

∫ 1

0

(∫ r

0
f 2(s)s1+βds

)
r–1–βdr

since α = –1 – β. Next, with the help of Fubini’s theorem, 0 < s < r < 1, we obtain

1
β

∫ 1

0

(∫ r

0
f 2(s)s1+βds

)
r–1–βdr =

1
β

∫ 1

0

(
f 2(s)s1+β

∫ 1

s
r–1–βdr

)
ds

≤ 1
β

∫ 1

0

(
f 2(s)s1+β

∫ +∞

s
r–1–βdr

)
ds

≤ 1
β2

∫ 1

0
f 2(s)sds

hence, (18) holds.

Lemma 2. For any α,β ∈ R and f ∈ L2(rdr), let G(r) := rα
∫ 1

r f (s)sβds defined for r ∈ (0, 1). If β < 0 and α + β ≥ –1 then
G ∈ L2(rdr) and we have

||G||L2(rdr) ≤
1

2
√

|β| (α + β + 1)
||f ||L2(rdr), if α + β > –1, (19)

||G||L2(rdr) ≤
1

|β|
||f ||L2(rdr), if α + β = –1. (20)
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Proof. The case α + β > –1 is trivial as a direct consequence of Cauchy-Schwartz inequality. Now, if α + β = –1, then we have:∫ 1

0

(∫ 1

r
f (s)sβds

)2

r2αrdr =
∫ 1

0

(∫ 1

r
f (s)s

1+β
2 s

–1+β
2 ds

)2

r2α+1dr

(C.S)
≤
∫ 1

0

(∫ 1

r
f 2(s)s1+βds

)(∫ 1

r
s–1+βds

)
r2α+1dr

≤
∫ 1

0

(∫ 1

r
f 2(s)s1+βds

)(∫ +∞

r
s–1+βds

)
r2α+1dr

≤ 1
–β

∫ 1

0

(∫ 1

r
f 2(s)s1+βds

)
r–1–βdr

where we have used the inequality
∫ 1

r s–1+βds ≤
∫ +∞

r s–1+βds since β < 0. Next, by Fubini’s theorem, 0 < r < s < 1, we obtain,

1
–β

∫ 1

0

(∫ 1

r
f 2(s)s1+βds

)
r–1–βdr =

1
–β

∫ 1

0

(
f 2(s)sβ+1

∫ s

0
r–1–βdr

)
ds

=
1
β2

∫ 1

0
f 2(s)sds

hence, (20) holds.

Remark 1. The estimates given by Lemmas 1 and 2 are optimal in the sens that one can not, for example, expect better that 1/|β|
in the inequalities (18) and (20), in particular in a critical case such as β → 0. This is a consequence of optimality results of
Hardy’s inequalities.

4 CORNER SINGULARITIES VIA FOURIER SERIES DECOMPOSITION

Following the results in the literature, cf Grisvard (1986)7, we can summarize that a solution uω of (1) admits near the origin the
following decomposition (in regular / singular parts and written in polar coordinates) as follows:

uω = uω,r + uω,s,

such that
uω,r ∈ H2

loc(Ωω), and uω,s(r, θ) =
∑

–1<ℑmζk<0

riζkψk(θ).

where the ζk are roots of the transcendent equation with imaginary part in ]–1, 0[ and the ψk are C∞ functions of θ. In this section,
we will retrieve such a decomposition by the Fourier series method which allows us to extract the singularity systematically.
Moreover, both regular and singular parts are given explicitly and some explicit estimates w.r.t the opening angle ω are given.
Since singularities are caused by the geometry of the domain, it follows that they are found in the kernel of the harmonic operator,
i.e., they are solutions to the homogeneous equation

∆uω,s = 0 in L2(Ωω). (21)

Let
uω,s(r, θ) =

∑
k≥1

ak,ω(r) sin
kπ
ω
θ,

be the Fourier series of uω,s(r, θ) in polar coordinates. Thus, one has, at least formally,(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂θ2

)
uω,s(r, θ) = 0,
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which implies, by putting the Fourier coefficients of ∆uω,s all equal zero, that ak,ω(r) is solution to the following ordinary
differential equation, for all k ≥ 1,

a
′′

k,ω(r) +
1
r

a
′

k,ω(r) –
π2

ω2 ak,ω(r) = 0, (22)

whose general solution is given by
ak,ω(r) = λk,ωr

kπ
ω + µk,ωr– kπ

ω , (23)

where λk,ω ,µk,ω are constants that can be determined by the boundary condition and by imposing the regularity condition on the
singular part uω,s to belong to the space Hσ(Ωω) with 1 ≤ σ < 2. As far as we know, the power function in r, (r, θ) 7→ rαk sin kπ

ω θ,
αk not integer, belongs to Hσ(Ωω) as long as σ < αk + 1, henceforth we look for the Fourier coefficient of uω,s that satisfy

ak,ω(r) sin
kπ
ω
θ ∈ Hσ(Ωω), 1 ≤ σ < 2.

In other words, the problem turns out to find non integer powers αk in the r.h.s of (23) such that 0 < αk < 1, which yields the
unique possible power α1 = π

ω for all ω ∈ (π, 2π). It follows immediately µk,ω = 0 for all k and that ak,ω(r) will be balanced into
the regular part for all k ≥ 2. More precisely, we conclude that the singular part of uω takes the following expression:

uω,s(r, θ) = a1,ω(r) sin
π

ω
θ = λ1,ωr

π
ω sin

kπ
ω
θ

λ1,ω is called the coefficient of singularity and it can be determined by the boundary condition on the solution uω = uω,r + uω,s

after having given the expression of the regular part uω,r.

5 REGULARITY AND EXPLICIT ESTIMATES VIA FOURIER SERIES DECOMPOSI-
TION

We will look for the regular part uω,r of uω as the particular solution of the problem (1) with the regularity property of being in
H2(Ωω) ∩ H1

D(Ωω) for all ω ∈ (π, 2π). Thus, uω,r is solution to the non homogeneous equation ∆uω,r = fω in L2(Ωω) such that
the global solution uω ∈ H2(Ωω)∩H1

0(Ωω). Observe that one does not need homogeneous Dirichlet boundary condition uω,r = 0
on the curved boundary Cω . We start by Fourier series decomposition as follows:

fω(r, θ) =
∑
k≥1

ck,ω(r) sin
kπ
ω
θ, ck,ω(r) =

2
ω

∫ ω

0
fω(r, θ) sin

kπ
ω
θdθ, (24)

uω,r(r, θ) =
∑
k≥1

bk,ω(r) sin
kπ
ω
θ, bk,ω(r) =

2
ω

∫ ω

0
uω(r, θ) sin

kπ
ω
θ dθ. (25)

Plugging the Fourier series in the non homogeneous equation ∆uω,r = fω in L2(Ωω), we look for bk,ω by identifying all the
Fourier coefficients in this equation written in polar coordinates. We obtain immediately that bk,ω(r) is solution to the following
ordinary differential equation, for all k ≥ 1,

b
′′

k,ω(r) +
1
r

b
′

k,ω(r) –
π2

ω2 bk,ω(r) = ck,ω(r). (26)

The general form of solution of this equation is:

bk,ω(r) =
ω

2kπ

(
r

kπ
ω

∫ r

a
ck,ω(s)s1– kπ

ω ds – r– kπ
ω

∫ r

b
ck,ω(s)s1+ kπ

ω ds
)

+ αk,ωr
kπ
ω + βk,ωr– kπ

ω (27)

where a, b are some constants in (0, 1) that may be determined together with the coefficients αk,ω,βk,ω, either with the help of
boundary conditions on ∂Ωω and/or the expected regularity of uω,r in H2. Since 1

2 < π
ω < 1 then r– kπ

ω sin kπ
ω θ is never in H1

D(Ωω)
for any k ≥ 1, which implies that all the coefficients βk,ω must be zero for all k ≥ 1. In addition, α1,k = 0 in the expression of
bk,ω since r

π
ω is reserved in the Fourier coefficient of the singular part.
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Remark 2. Integrals in the r.h.s of (27) and their derivatives w.r.t r until order 2 have all the same forms as those in fundamental
lemmas 1 and 2 where the left powers α and right ones β all satisfy the condition α + β ≥ –1. Hence, the set of parameters a, b
can already be refined according to the signs of β, i.e., missing integral’s limit will be 0 if β > 0 and 1 if β < 0.

5.1 First frequency term, k = 1 and determination of λ1,ω

According to Remark 2, and the fact that 1
2 < π

ω < 1, all thes powers β in the two integrals in expression of b1,ω(r) given by (27)
have positive sign, hence one takes a = b = 0 and writes:

b1,ω(r) =
ω

2π

(
r

π
ω

∫ r

0
c1,ω(s)s1– π

ω ds – r– π
ω

∫ r

0
c1,ω(s)s1+ π

ω ds
)

. (28)

The Fourier series terms in the decomposition

uω = uω,r + uω,s =
∑
k≥1

uk,ω(r) sin
kπ
ω
θ =

∑
k≥1

Uk,ω(r, θ),

satisfy, for each k ≥ 1, the boundary value problem,{
∆Uk,ω(r, θ) = fk,ω(r) in Ωω ,

Uk,ω = 0 on ∂Ωω ,
(29)

where fk,ω(r, θ) = ck,ω(r) sin
kπ
ω
θ is the kth term of the Fourier series of fω , such that fω(r, θ) =

∑
k≥1 fk,ω(r, θ). It follows that the

first term in the Fourier series of the global solution has the following expression, (recalling that a1,ω(r) is the first and unique
non zero Fourier coefficient of the singular part uω,s):

U1,ω(r, θ) = b1,ω(r) sin
π

ω
θ + a1,ω(r) sin

π

ω
θ

=
ω

2π

(
r

π
ω

∫ r

0
ck,ω(s)s1– π

ω ds – r– π
ω

∫ r

0
ck,ω(s)s1+ π

ω ds
)
sin

π

ω
θ + λ1,ωr

π
ω sin

π

ω
θ. (30)

Applying the boundary conditions U1,ω = 0 at r = 1, we obtain the expression of λ1,ω:

λ1,ω = –
ω

2π

(∫ 1

0
c1,ω(s)s1– π

ω ds –
∫ 1

0
c1,ω(s)s1+ π

ω ds

)
. (31)

Theorem 2. Let U1,ω(r, θ) given by (30) the solution of (29) (k = 1) with r.h.s f1,ω(r, θ) = c1,ω(r) sin π
ω θ. There exists C > 0

uniform in ω, such that the following explicit estimate holds :∣∣λ1,ω
∣∣ +
∥∥∥b1,ω sin

π

ω
θ
∥∥∥

H2(Ωω)
≤ C√

1 – π
ω

∥f1,ω∥L2(Ωω) . (32)

Moreover, this estimate is sharp, i.e, there exists f1,ω such that ∥f1,ω∥L2(Ωω) = 1 and

∣∣λ1,ω
∣∣ +
∥∥∥b1,ω sin

π

ω
θ
∥∥∥

H2(Ωω)
= O

(
1√

1 – π
ω

)
, as ω → π. (33)

Proof. Proof of estimate (32): we use the definition of H2
D(Ωω) norm defined in Subsection 3.1 and according to Lemma 1 the

notation
Iα,β
k (r) = rα

∫ r

0
ck,ω(s)sβds, k ≥ 1,

then (
Iα,β
k

)′
(r) = αrα–1

∫ r

0
ck,ω(s)sβds + rα+βck,ω(r) = αIα–1,β

k (r) + rα+βck,ω(r).
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Proof of (32): Using the previous notation with k = 1and expression (28) of b1,ω, one has after some computation and
simplification:

b1,ω(r) =
ω

2π

(
I

π
ω ,1– π

ω

1 (r) – I– π
ω ,1+ π

ω

1 (r)
)

(34)

b1,ω(r)
r

=
ω

2π

(
I–1+ π

ω ,1– π
ω

1 (r) – I–1– π
ω ,1+ π

ω

1 (r)
)

(35)

b1,ω(r)
r2 =

ω

2π

(
I–2+ π

ω ,1– π
ω

1 (r) – I–2– π
ω ,1+ π

ω

1 (r)
)

(36)

b′1,ω(r) =
1
2

(
I–1+ π

ω ,1– π
ω

1 (r) + I–1– π
ω ,1+ π

ω

1 (r)
)

(37)

b′1,ω(r)
r

=
1
2

(
I–2+ π

ω ,1– π
ω

1 (r) + I–2– π
ω ,1+ π

ω

1 (r)
)

(38)

b′′1,ω(r) = c1,ω(r) –
1
2

((
1 –

π

ω

)
I–2+ π

ω ,1– π
ω

1 (r) +
(

1 +
π

ω

)
I–2– π

ω ,1+ π
ω

1 (r)
)

(39)

Now, observe that expressions in the r.h.s of (34),...,(39), contain all linear combinations, with uniform bounded coefficients
w.r.t ω, of expressions Iα,β

1 , exactly like those in fundamental Lemma 1, all with β > 0 and α + β ≥ –1. Henceforth, one has by
Lemma 1:

∥b1,ω∥L2(rdr) ≤
ω

4π
√

2

(
1√

1 – π
ω

+
1√

1 + π
ω

)
∥c1,ω∥L2(rdr) ≤

C1√
1 – π

ω

∥f1,ω∥L2(Ωω) , (40)

∥∥b′
1,ω

∥∥
L2(rdr) ≤

1
4

(
1√

1 – π
ω

+
1√

1 + π
ω

)
∥c1,ω∥L2(rdr) ≤

C2√
1 – π

ω

∥f1,ω∥L2(Ωω) , (41)

∥∥∥∥b1,ω

r

∥∥∥∥
L2(rdr)

≤ ω

4π

(
1√

1 – π
ω

+
1√

1 + π
ω

)
∥c1,ω∥L2(rdr) ≤

C3√
1 – π

ω

∥f1,ω∥L2(Ωω) , (42)

On the other hand,
b′1,ω(r)

r
–

b1,ω(r)
r2 =

1
2

((
1 –

ω

π

)
I–2+ π

ω ,1– π
ω

1 (r) +
(

1 +
ω

π

)
I–2– π

ω ,1+ π
ω

1 (r)
)

,

b′
1,ω(r)

r
–
(π
ω

)2 b1,ω(r)
r2 =

1
2

((
1 –

π

ω

)
I–2+ π

ω ,1– π
ω

1 (r) +
(

1 +
π

ω

)
I–2– π

ω ,1+ π
ω

1 (r)
)

,

implies ∥∥∥∥b′1,ω

r
–

b1,ω

r2

∥∥∥∥
L2(rdr)

≤ ω

π
∥c1,ω∥L2(rdr) ≤ C4 ∥f1,ω∥L2(Ωω) , (43)∥∥∥∥b′1,ω

r
–
(π
ω

)2 b1,ω

r2

∥∥∥∥
L2(rdr)

≤ 1
2

(ω
π

+
π

ω

)
∥c1,ω∥L2(rdr) ≤ C5 ∥f1,ω∥L2(Ωω) , (44)∥∥b′′1,ω

∥∥
L2(rdr) ≤ 2 ∥c1,ω∥L2(rdr) ≤ C6 ∥f1,ω∥L2(Ωω) , (45)

where Cj > 0, j = 1, 2, ..., 6, are constants all independent of ω. Thus, since b1,ω sin
π

ω
θ is a single term of its Fourier series, by

definition (16) of the norm H2
D(Ωω), see (13),(14) and (15), we obtain∥∥∥b1,ω sin

π

ω
θ
∥∥∥

H2(Ωω)
≤ C6√

1 – π
ω

∥f1,ω∥L2(Ωω) , (46)

where C > 0 is uniformly bounded in ω ∈ (π, 2π).
On an other hand, it is easy to check that

∣∣λ1,ω
∣∣can be estimated using the Cauchy-Schwartz inequality to obtain∣∣λ1,ω
∣∣ ≤ C7√

1 – π
ω

∥f1,ω∥L2(Ωω) , (47)
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where C7 > 0 is uniformly bounded in ω ∈ (π, 2π). Finally, Inequality (32) holds with a constant C > 0 independent of ω.
Proof of sharpness of estimate (32): In fact, this is a consequence of optimality results of Hardy’s inequalities as mentioned

in Remark 1. More precisely, since –1 < –π
ω , one can find, for example, a r.h.s such as

f1,ω(r, θ) =
2
ω

√
ω – πr– π

ω sin
(π
ω
θ
)

,

∥f1,ω∥L2(Ωω) = 1, ∀ω ∈ (π, 2π),

c1,ω(r) =
2
ω

√
ω – πr– π

ω ,

which gives after computation of b1,ω(r, θ) from its expression given by (28),

b1,ω(r) =
r2– π

ω

2
√
ω – π

,

∥∥∥b1,ω(r) sin
(π
ω
θ
)∥∥∥

L2(Ωω)
=

ω

4
√

(π – 3ω)(π – ω)
= O

(
1√

1 – π
ω

)
→ +∞ as ω → π,

∣∣λ1,ω
∣∣ =

1
2
√
ω – π

= O

(
1√

1 – π
ω

)
→ +∞ as ω → π.

The proof of the theorem is ended.

5.2 Regular frequency terms, k ≥ 2

We first need the following Lemma which gives, in the case of a sector, the uniformity w.r.t ω of the elliptic estimate “second
fundamental inequality” , cf. (Stylianou (2010), Corollary 2.3.6 p.31)16, and which can be reformulated in the case of a planar
sector Ωω as follows:

Lemma 3. Let Ωω planar sector defined as in Section 2, ω ∈ (0, 2π). Then, there exists C > 0 constant independent of ω, such
that for all u ∈ H2(Ωω) ∩ H1

0(Ωω),
||u||H2(Ωω) ≤ C||∆u||L2(Ωω). (48)

Proof. In fact, it comes from Poincare’s inequality on the one hand, cf. Tami & Tlemcani (2021): for all u ∈ H2(Ωω) ∩ H1
0(Ωω),

one has
||u||H2(Ωω) ≤

√
1 + (1 + ω)2|||∇2u|||L2(Ωω),

which yields equivalence, with uniformly bounded constant w.r.t ω, between the norm and semi-norm H2 in the space H2(Ωω) ∩
H1

0(Ωω), and, on the other hand, the “second fundamental inequality” , cf. (Stylianou (2010), Corollary 2.3.6 p.31), which can be
reformulated in the case of a planar sector Ωω as follows: Using the Green’s formula in H3(Ωω) ∩ H1

0(Ωω), as in (Stylianou
(2010), p.29), ∫

Ωω

(∆u)2 dΩω =
∫
∂Ωω

κ(m) (∂nu)2 dm + |||∇2u|||2L2(Ωω) ≥ |||∇2u|||2L2(Ωω) (49)

where ∂n represents the normal derivative operator outward to ∂Ωω , where in our case,

κ(m) =

{
0 if m ∈ Γ0 ∪ Γω

1 if m ∈ Cω

designates the curvature of ∂Ωω and which is essentially positive in the case of the planar sector Ωω , no matter if it is non-convex
or convex. Hence, and by same arguments as in Stylianou (2010), based on the density of H3(Ωω)∩H1

0(Ωω) in H2(Ωω)∩H1
0(Ωω),

Inequality (48) follows for all u ∈ H2(Ωω) ∩ H1
0(Ωω).
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Following Remark 2, and the fact that 1 ≤ k
2 < kπ

ω < k for k ≥ 2, the powers β in the two integrals in expression of bk,ω(r)
given by (27), to know 1 – kπ

ω < 0 and 1 + kπ
ω > 0, have respectively negative and positive sign for all k ≥ 2, hence one takes the

integrals limits a = 1, b = 0 in (27) and writes:

bk,ω(r) =
ω

2kπ

(
r

kπ
ω

∫ r

1
ck,ω(s)s1– kπ

ω ds – r– kπ
ω

∫ r

0
ck,ω(s)s1+ kπ

ω ds +r
kπ
ω

∫ 1

0
ck,ω(s)s1+ kπ

ω ds,

)
(50)

where the last term in the r.h.s of (50) is added in order to satisfy the homogeneous Dirichlet boundary condition at r = 1.

Theorem 3. Let Uk,ω(r, θ) = bk,ω(r) sin
( kπ

ω θ
)
, k ≥ 2, the solution of (1) with r.h.s fk,ω(r, θ) = ck,ω(r) sin kπ

ω θ. Then, Uk,ω ∈
H2(Ωω) ∩ H1

0(Ωω), and there exists C > 0 independent of ω ∈ (π, 2π) and k ≥ 2, , such that:∑
k≥2

∥Uk,ω∥H2(Ωω) ≤ C
∑
k≥2

∥fk,ω∥L2(Ωω) . (51)

Proof. The proof is similar to the case k = 1. In addition to the notation Iα,β
k in the previous proof, and according to Lemma 20

we add the notation
Jα,β

k (r) = rα
∫ r

1
ck,ω(s)sβds, k ≥ 2,

then (
Jα,β

k

)′
(r) = αrα–1

∫ r

1
ck,ω(s)sβds + rα+βck,ω(r) = αJα–1,β

k (r) + rα+βck,ω(r).

Moreover, let

Hα,β
k (r) := rα

∫ 1

0
ck,ω(s)sβds.

By computation and simplification, ∀k ≥ 2:

bk,ω(r) =
ω

2kπ

(
J

kπ
ω ,1– kπ

ω

k (r) – I– kπ
ω ,1+ kπ

ω

k (r) + H
kπ
ω ,1+ kπ

ω

k (r)
)

, (52)

bk,ω(r)
r

=
ω

2kπ

(
J–1+ kπ

ω ,1– kπ
ω

k (r) – I–1– kπ
ω ,1+ kπ

ω

k (r) + H
kπ
ω –1,1+ kπ

ω

k (r)
)

, (53)

bk,ω(r)
r2 =

ω

2kπ

(
J–2+ kπ

ω ,1– kπ
ω

k (r) – I–2– kπ
ω ,1+ kπ

ω

k (r) + H
kπ
ω –2,1+ kπ

ω

k (r)
)

, (54)

b′k,ω(r) =
1
2

(
J–1+ kπ

ω ,1– kπ
ω

k (r) + I–1– kπ
ω ,1+ kπ

ω

k (r) + H
kπ
ω –1,1+ kπ

ω

k (r)
)

, (55)

b′k,ω(r)
r

=
1
2

(
J–2+ kπ

ω ,1– kπ
ω

k (r) + I–2– kπ
ω ,1+ kπ

ω

k (r) + H
kπ
ω –2,1+ kπ

ω

k (r)
)

, (56)

b′′k,ω(r) =
1
2

((
kπ
ω

– 1
)

J–2+ kπ
ω ,1– kπ

ω

k (r) –
(

1 +
kπ
ω

)
I–2– kπ

ω ,1+ kπ
ω

k (r) +
(

kπ
ω

– 1
)

H
kπ
ω –2,1+ kπ

ω

k (r)
)

+ ck,ω(r). (57)

Henceforth, fundamental Lemmas, 1 applied to Iα,β
k and 2 applied to Jα,β

k , and the Cauchy-Schwartz inequality applied to the
terms Hα,β

k which gives a constant C0(ω, k) > 0,∥∥∥Hα,β
k

∥∥∥
L2(rdr)

≤ C0(ω, k) ∥fk,ω∥L2(rdr) , (58)

yield,
∥bk,ω∥L2(rdr) ≤ C1(ω, k) ∥fk,ω∥L2(Ωω) , (59)∥∥b′

1,ω

∥∥
L2(rdr) ≤ C2(ω, k) ∥fk,ω∥L2(Ωω) , (60)∥∥∥∥b1,ω

r

∥∥∥∥
L2(rdr)

≤ C3(ω, k) ∥fk,ω∥L2(Ωω) , (61)
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k,ω

r
–

bk,ω

r2

∥∥∥∥
L2(rdr)

≤ C4(ω, k) ∥fk,ω∥L2(Ωω) , (62)∥∥∥∥∥b′k,ω

r
–
(

kπ
ω

)2 bk,ω

r2

∥∥∥∥∥
L2(rdr)

≤ C5(ω, k) ∥fk,ω∥L2(Ωω) , (63)

∥∥b′′k,ω

∥∥
L2(rdr) ≤ C6(ω, k) ∥fk,ω∥L2(Ωω) , (64)

where Cj(ω, k) > 0, j = 0, 1, 2, ..., 6, are constants depending on ω and k. Thus, since bk,ω sin
kπ
ω
θ is a single term of its Fourier

series, by definition (16) of the norm H2
D(Ωω), see (13),(14) and (15), we obtain

∥Uk,ω∥H2(Ωω) =
∥∥∥∥bk,ω sin

kπ
ω
θ

∥∥∥∥
H2(Ωω)

≤ C(ω, k) ∥fk,ω∥L2(Ωω) . (65)

As a result, Uk,ω ∈ H2(Ωω) ∩ H1
0(Ωω), then Lemma 3 implies that there exists C > 0 independent of ω ∈ (π, 2π) and k ≥ 2, ,

such that:
∥Uk,ω∥H2(Ωω) ≤ C ∥∆Uk,ω∥L2(Ωω) = C ∥fk,ω∥L2(Ωω) ,

since ∆Uk,ω = fk,ω . Finally, by taking the sum over k ≥ 2, one obtains the uniform estimate (51), which ends the proof.

6 PROOF OF THE MAIN RESULTS

In this section, we end the proof of the main Theorem 1 and its Corollary 1 stated in Section 2.

Proof of Theorem 1. The proof now is a direct consequence of theorems 2 and 3 and the former Fourier series analysis. In fact,
we write the Fourier series expansion of fω separating the singular frequency k = 1 from the regular ones k ≥ 2, as follows:
fω = f I

ω + f II
ω where

f I
ω(r, θ) = c1,ω(r) sin

π

ω
θ, and f II

ω (r, θ) =
∑
k≥2

ck,ω(r) sin
kπ
ω
θ. (66)

By Theorem 2, λωr
π
ω sin π

ω θ + uI
ω,r ∈ H1

0(Ωω) represents the solution of Problem (1) with r.h.s f I
ω corresponding to the singular

frequency k = 1. Thus, we put λω = λ1,ω as given by (31) and uI
ω(r, θ) = b1,ω(r) sin

π

ω
θ as given by (28), and we have

uI
ω,r ∈ H2(Ωω).
Next, by Theorem 3, uII

ω,r represents the solution of Problem 1 with r.h.s f II
ω corresponding to a superposition of all regular

frequency k ≥ 2. We obtain the expression of uII
ω,r as a Fourier series∑

k≥2

bk,ω(r) sin
kπ
ω
θ =

∑
k≥2

Uk,ω(r, θ),

where Uk,ω(r, θ) = bk,ω(r) sin
kπ
ω
θ and bk,ω(r) is given by (50). Thus, by Theorem 3-Estimate (51), uII

ω,r ∈ H2(Ωω) ∩ H1
0(Ωω).

On the other hand, as a power function of r, the singular part (r, θ) 7→ r
π
ω sin π

ω θ, π
ω not integer, belongs to the Sobolev space

H1+σ(Ωω) for all σ < π
ω .

Henceforth, uω ∈ H1+σ(Ωω) ∩ H1
0(Ωω) and the decomposition (3) follows with explicit expressions as given by (5) and (6).

Finally, the sharp Estimate (7) follows directly from theorems 2 - Inequality (32) and Theorem 3 - Inequality (51). The proof
of the theorem is achieved.

Proof of Corollary 1. This is a consequence of the main theorem 1 and Lemma 3. In fact, uω ∈ H2(Ωω) ∩ H1
0(Ωω) if and only

if the singular part λωr
π
ω sin π

ω θ vanishes on Ωω, i.e λω = 0. We have, with the help of the definition of the Fourier coefficient
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c1,ω(r) = 2
ω

∫ ω

0 fω(r, θ) sin π
ω θdθ and the definition of ξω given by (8),

λω = –
ω

2

(∫ 1

0
c1,ω(r)

(
r– π

ω – r
π
ω

π

)
rdr

)

=
∫ 1

0

∫ ω

0
fω(r, θ)

(
r

π
ω – r– π

ω

π

)
sin

π

ω
θ rdrdθ

= (fω , ξω)ω .

Hence, uω ∈ H2(Ωω) ∩ H1
0(Ωω) if and only if (fω , ξω)ω = 0. Assume now that this condition is satisfied, then λω = 0 which

implies that the decomposition becomes uω = uI
ω,r + uII

ω,r , where uI
ω,r is the unique H2(Ωω) ∩ H1

0(Ωω) solution to problem{
∆uI

ω,r = f I
ω in Ωω ,

uI
ω,r = 0 on ∂Ωω ,

with r.h.s f I
ω defined by (66). Therefore, by Lemma 3, there exists C1 > 0 constant independent of ω, such that

||uI
ω ||H2(Ωω) ≤ C1||∆uI

ω ||L2(Ωω) = C1||f I
ω ||L2(Ωω). (67)

On the other hand, by Inequality 7, one has ||uII
ω,r ||H2(Ωω) ≤ C2||f II

ω ||L2(Ωω),where C2 > 0 constant independent of ω, henceforth:

||uω ||H2(Ωω) = ||uI
ω,r + uII

ω,r ||H2(Ωω),

≤ ||uI
ω,r ||H2(Ωω) + ||uII

ω,r ||H2(Ωω),

≤ C1||f I
ω ||L2(Ωω) + C2||f II

ω ||L2(Ωω) ≤ C||fω ||L2(Ωω),

with C = C1 + C2 > 0, constant independent of ω. The proof of the Corollary is ended.

7 CONCLUSION

Throughout this paper, we have given explicit extraction formulas via Fourier analysis of the coefficients of singularity and
regular part of the solutions of a family of Poisson equations with Dirichlet boundary conditions on a family of open non-convex
planar sectors. We have shown that explicit and sharp estimates can be obtained by highlighting the decomposition of the
solution into three parts whose behavior in the vicinity of the critical angle ω is as follows: a stable regular part in the norm H2,
an unstable regular part in the norm H2 and an unbounded coefficient of singularity in the vicinity of π. However and fortunately,
the global solution remains stable in the H1 norm from standard uniform estimates of the weak variational solution. This problem
is actually quite similar to that of Babuška, cf.11, when additional regularity on the source term fω is assumed at the origin. In
fact, in the case of convex corners, and L2r.h.s fω uniformly bounded in ω, a full answer to this problem was given in the case of
both harmonic and biharmonic problem, cf.1,2,18. Thus, the question of existence of stable H2 decomposition near a non-convex
corner still an open problem. On the other hand, it was observed via an orthogonality criteria, see the corollary of the main
result, that in the absence of the first singular frequency k = 1 in the Fourier series of fω, one retrieves uniform H2 estimates
and the problem turns out to be similar to the convex case. Finally, possible extension of the results herein are envisaged for
boundary value problems with general (mixed) boundary conditions. This will be of great interest in the case of hyperbolic
(wave equation), cf.4, and/or parabolic (heat equation) problems where the time variable adds a new drawback in the analysis.
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