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1 | INTRODUCTION

The bi-harmonic equation is a fourth order elliptic partial differential equation which has diverse applications across various fields
such as structural engineering, fluid dynamics, biomathematics, geophysics, and electromagnetic modeling. The behavior of
solutions to elliptic problems on polygons, particularly near corners, began in the 1960s. In engineering and applied mathematics,
there is significant interest in analyzing singular solutions to partial differential equations in non-smooth domains. When
approximating solutions to elliptic problems in a regular open set, the order of the approximation error depends on the finite
elements, the mesh used, and the regularity of the solutions. This regularity becomes a challenge when the open set has
singularities or the boundary data are discontinuous. Specifically, for planar polygons, the solution’s regularity is influenced
by both the data’s regularity and the polygon’s geometry. It is well-known that such singularities can significantly reduce
convergence in error estimates of standard numerical approximation schemes. For example, some authors discus techniques
for computing the singular part or stress intensity factor (SIF) through explicit extraction formulas and numerical methods
separately, cf. 1’2 and the references therein. Our main aim in this paper was motivated by a slightly similar drawback which is
the jump of singularity in Sobolev’s exponent in such problems near a critical angle such as 7 (for nearly flat boundaries) or
27 (for domains with a crack). For example, one could ask the following question: Can we approach a nearly flat boundary
by another completely flat one? The answer to such a question will depend on the convexity of the domain near the corner in
question. Elements of answers to this question have already been described by in the case of the bi-harmonic problem on a
convex domain and recently™ for the laplacian operator on a family of non-convex open sectors.

We consider a model case of Fourth order equation from linear elasticity, in planar polygonal domains with concave corner
type singularities. This occurs for example in the linear model problem for a hinged plate where mixed or Navier’s type boundary
conditions are used on straight boundaries and away from the corners. Well-posedeness of such problems and description of their
singularities near corners with different boundary conditions were addressed, whether in the harmonic or bi-harmonic case, by

Journal 2023;00:1-27 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1



2 | TAMI ET AL.

many authors in the literature, cf., Grisvard®*'', Kondrat’ev'!, Blum'?, Maz’ya?'14l5 Nicaise®Z, Dauge'8"®, Stylianou?",
Gerasimov2!, Tami*®, Douah” and the references therein. To study the behavior of solutions near a polygon’s corner, standard
localization techniques involving suitable cut-off functions and partition of unity are commonly used, cf.# and the references
therein. Thus, the problem turns out to consider a family of open planar non-convex sectors with opening angle w € (, 27). We
aim at studying by means of partial Fourier analysis in polar coordinates, cf.? and references therein, w.r.t to the polar angle 6,
the asymptotic behavior of solutions, when w — 7+, by deriving explicit formulas for the coefficients of the singularities (or
SIF), along with explicit estimates that show the behavior (in H* norm) of the family of solutions ., near the critical angle w = 7.
As in the case of a recent work on the Laplace’s operator, a main result of our approach is the lack of uniformity in the estimates
with respect to the opening angle parameter w, contrarily to those obtained for convex corners, cf. 4, To the knowledge of the
authors, no such study was performed on a family of non-convex open sets, that is, when w € (7, 27), for bi-harmonic problems.

Throughout this paper, a same generic constant C > 0 independent of w in all estimates that follow will be used at different
occurrences. In Section 2, we present the problem setting and the main result, along with a partial proof of H? uniform estimates
w.r.t the opening angle w € (,27) of the family of weak solutions u,, for our problem. The proof of H* estimates will be
justified progressively in the sections that follow. In addition, some preliminaries, such as Sobolev’s spaces in polar coordinates,
Sobolev’s norms expressed via Fourier coefficients, and some fundamental tools useful for estimating Fourier coefficients are
presented. In Section 3, formal determination of corner singularity via Fourier series is presented. Fourier coefficients of the
regular part of the solution and the coefficient of singularity are given explicitly. Explicit and sharp estimates are given w.r.t to
w € (m,47/3). These estimates are not uniform in the vicinity of 7, even for the regular part taken separately in the case of the
first frequency k = 1 in the Fourier series. Section 4 is devoted to the completion of the proof of the main result, in particular the
characterization of the coefficient of singularity and the estimates on of the regular part in the norm H*. Concluding remarks and
comments are presented in the last section.

2 | PROBLEM SETTING AND MAIN RESULTS

Let us denote by {€2,, },,e(x2x) a family of open bounded sectors of radius 1 centered all at the origin O (here O represents the
reentering corner where the localization has been performed). In polar coordinates (x, y) = (rcos 8, rsin ), one has , cf. Figure[]

Qo ={(xy),0<r<1,0<0<w},
with boundary 99, = Ty U C,, UT,, where

oy ={(x,y),0<r<1,0=a}l,
C, ={(x,y), r=1,0<0<w}.

For a right hand side (r.h.s) f,, € LX) given and assumed continuously depending on the parameter w € (,27), we look for
solutions u,, to the following fourth order boundary value problem:

Alu, =f,in O,
u,, = Au,, =0 on 9€2,,.

9]
2.1 | Existence of weak solution and a uniform estimates

Let €2, a planar sector with concave corner at the origin as described in Figure|l| and f,, € L?(Q,). Let V,, := H*(Q,) N H&(Qw)
the Hilbert space equipped with the norm of H?(£),).

Definition 1. A function u, is called a weak solution of (I)) if u,, € V., and if

/ (Aug, Av —f,v)dxdy =0, Vv € V,,,. 2
Qo
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FIGURE 1 Planar sector 2, with concave corner at the origin: opening angle w € (m, 27).

Theorem 1. Problem (1)) admits a unique weak solution in V., that depends continuously on the rh.s f,, € L*(,,) and uniformly
on the parameter w € (m,2m), i.e. there exists a constant independent of w, C > 0, such that:

”uw”HZ(QW) < C”fw“Lz(Qw)‘ (3)
If, in addition, A’u,, € L*(S),) then u,, satisfies the equations:
Au,, =f,, in LX(Q,), and u, = Au,, = 0 on L* (95,)

which gives sense to the trace of the second boundary condition on 0€2,,.

Proof. The proof is standard unless the uniformity of the constant C w.r.t w that one can sketch as follows: Let a(u,v) =
wi AuAvdxdy and I(v) = wi fvdxdy the corresponding bi-linear an linear forms associated to on the Hilbert space V,,
equipped with the norm IL.ll2(q ). Then, the continuity of a(.,.) and /(.) and the uniformity of constants w.r.t w are straightforward.
However, the uniformity in the coercivity constant of the bi-linear form a(., .) needs more precision. In fact, it comes from
Poincare’s inequality on the one hand, cf.®, for all u € V,,,

lidlyoer, ) < eIV 2ulll 2 s @)

which yields equivalence, with uniform constant, between the norm and semi-norm H? in the space V,,, and, on the other hand,
the “second fundamental inequality” , cf. (%%, Corollary 2.3.6 p.31), which can be reformulated in the case of a planar sector €2,
as follows: Using the Green’s formula in H3(2,) N H3(Q,), as in (%2, p.29),

/ (Av) dxdy = / K(m) (D)’ dm + WV ullif ) > IV2ullZ, 5)
Qu

w

where 0, represents the normal derivative operator outward to 0€2,,, and

0 iftmel Ul

Kk(m) =
() 1 ifmecC,

designates the curvature of 0€),, which is essentially positive in the case of the planar sector {2,,, no matter if it is concave or
convex.

Hence, and by same arguments as in“’, based on density of H>(£2,,) N H}(£),) in V,,, one arrives at the inequality (5)) for all
v € V,,. We conclude that, forall v € V,:

_ 2
av,v) = /Q AvAvdxdy > cllullpq,
Therefore, the Lax-Milgram theorem gives the existence and uniqueness of u,, € V,, and we have:

clluwlllz_pmw) < alu,,, u,) = / JoAugdxdy < Wl uullpa,)
Qo
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which yields the desired estimate independent of w, llu, |2,y < Clifull;2q,). On the other hand, if A%u,, € L*(£),) then one
applies the Green’s formula to the variational equation in (2)) to obtain

/ (Au,v —f,v)dxdy = 0, Vv € C ()
Qo
which gives, by density argument, A%u,, = f,, in L*(£1,,). By a second integration by part, we obtain

Au,,0,vdm = 0, Vv € H)(Q,) N C®(),
O,

and by the fact that the range of the trace function v — J,v defined on Hé (Qw) N C®(Qy,) is dense in L2(01,,) , one concludes
that Au,, = 0 on L? (9),,). The first condition u,, = 0 on L?(9§),) is contained in the definition of H}(f2,) and the proof is
ended. O

2.2 | Sobolev’s norms in polar coordinates by Fourier modes

In polar coordinates, ¢ : (r, ) — (x = rcos 6,y = rsin 0), if a distribution v lies in D’(£2,,), let us denote by v(r, ) := (vo ¢)(r, 0),
v is a distribution w.r.t r, 6. Then, we denote by H"(£2,,) the Sobolev’s space

H"(Q,) = {v=70¢" € H" ()},

which is the image of H"(€2,,) by the mapping u — & = u o ¢. Equipped with the norm ||| zuq_, = [Vl gnq_) » H"(Q,)is a
Hilbert space for the natural scalar product (v, w) ) = (Vs Wgm(q,, - In what follows, we denote by

kl +k2

b -
ylkik) .= WV’ Vkiky 1 0 < ki +ky < m,

where V9 denotes simply V. For m < 4, we can thus characterize the H” semi-norms of a distribution V in polar coordinates
as follows:

Lemma 1. Let V € H"(Q,), m < 4.
H"(Q,) ={V € L*(,); V'V € LX(Q,); VI: 0 < 1 < m},

where:

2 ~ 2
”VHLZ(QW):/Q |V’ rdrd0

( 2
vanimw):/ <|v<1’°>|2+ v >rdrd0
Qu
2 SR P G )
||V2V||L2(Qw)=/ﬂw <|V(2,0)| +2

2
2 2 VED2 _2ybp 4 20D
||V3v||L2(Qw) =/Qw <|V(3,0)| +3‘

0,1)

2
+

VO 4 py10)
2

2
) rdrd0

r r

2

73

P (V00 4 V12 4 yCOY oy [?

+3 pe
2
) rdrd@

‘_2v<071> + VO3 4 3,y0D
+
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r(6VED 4 r (ryED _3y@DY) _ 6y OD ’
4

HV4VHZ(Q@ =/Q |V(4,0)|2+4

w

7

6VOD 4y (V10 _4y(12) 4 p (L2V20 4 Y22 4 o)) [
4

+6

7

6VOD 303 4y (YLD 4 Y 4 3,y20) [

+4
,.4
-8V 02 4 YO 4 3p (Y10 4 21D 4,y 20) ?
+ rdrdf
’.4
Proof. Results from calculus and transformation of iterated gradient form Cartesian to polar coordinates. O

In what follows, we will use the same notation V for both V and its image V.

Lemma 2. Let V € H™(S),) a periodic distribution such that V(.,0) = V(.,,w) = 0, and m < 4. Let us denote by V(r,0) =

. KT . . . . .
Zkzl Vi(r) sin EO a.e in ), the partial Fourier series of V in 6, where

Vi(r) = 2 / V(r,0) sin kj@d@
w Jo w

is the k™ Fourier mode seen as a function of r € (0, 1). Then,

VI, = Z/ Ve rar,

k>1
2 sz
s () )
k>1
2 2 , 2 2
a3 (w2 () 151 (5) 4] )
>1

, 2
Vi 2, 2

Vv TR tA

o = ;/ ‘Vk +3 ()
() ()
(5 R ( (& ))

r r2 r

+3

rdr
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9= 5 2 ) (10 e (55)
row =7 22 ) ([ "

k>1
2
v kr\*\ Vv, kr\*\ Vv, kr\?V,
L_ 2+ I 7k+ 2+4 l 7k_6 1 7]{
r w r2 w r3 w r#
” 2 ! 2 2
Vi km Vi km Vi
3Sa T <8+ (w) ) B <6+3 (w) ) a

2

11t 1" ’ 2
v, 3V, 6V, 6V

r r2 r3 r*

v, kr\*\ Vv, (kr\ kr\*\ Vv,
w3 36 E) ) e (2T (84 () ) | rar
r? w r w w rt
Proof. Follows, with the help of Lemma [T} from orthogonality of Fourier basis and Parseval’s type identities. O
2.3 | Fundamental Lemmas for Fourier analysis

Let us denote by fol |¢(r)‘2 rdr = g, (rdr)” The two following lemmas, which result from a variant of Hardy’s type weighted
inequalities, (G. Hardy 1927)%, are essential for the estimation of the norms in H*(£2,,) of the Fourier modes of the regular and
singular parts of the solution u,, of problem (I). In fact, Fourier series method is efficient to obtain the decomposition of u,
into its regular/singular part u,, = u,, , + ., s just by handling some critical powers of r and balancing integral limits between
those from O to r and others from r to 1 in order to isolate what is called the roots of a transcendent equation as obtained in
the literature. In the following section, these roots are extracted directly by imposing the condition on the singular part u,, 5 to
belong to the space H?(£2,,) with 2 < ¢ < 4. The two following lemmas are fundamental in the uniform estimates for the Fourier
coefficients that will be given later.

Lemma 3. Forany o, 8 € R and f € L*(rdr), let (]?’B(r) =re forf(s)s'gds defined forr € (0,1). If 3 >0 and a+ 8 > —1 then
Ijﬁ1 B € L2(rdr) and we have:

1
BNy < —m Wl i+ B> -1, 6
[/ Lz(d)fzxiﬂ(a_’_ﬂ_i_l)fﬁ(d) fa+p (6)
1
”I_;'Xﬁ”Lz(rdr) < B“f”Lz(rdr)’ fa+p=-1 @)
Proof. See. O

Lemma 4. For any o, 3 € R and f € L*(rdr), let f + Jfo"ﬁ where Jfﬁ(r) =r¢ frlf(s)sﬁds defined for r € (0,1). If
B<0and o+ 3 > -1 then J;“ﬂ € L*(rdr) and we have

1
(V] < fllgars ifa+B>—1, 8
r an < 5 |B|(a+6+l)fL(rdr) fa+p (®)
1
2P 2y < Wvuw,d,), ifa+8=-1. ©)
Proof. See'l. O

Remark 1. As a consequence of optimality results of Hardy’s inequalities, the estimates given by Lemmas [3|and [ are optimal in
the sens that one can not, for example, expect better that 1/15] in the inequalities and (9), in particular in the critical case
when 5 — 0.

Lemma 5. Let F € L? (Q,) such that F(r,0) := f(r) sin 20 in polar coordinates. Let us define:

V(r,0) = — (/5 / fs)s"Eds—r 5 / F(s)s"* 5 ds | sin 6 = v(r) sin 4,
27 0 0 w w
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Then, V € H' (Qy,), and there exists a constant C > 0 independent of F and w € (w,2), such that:

1= SVl o, < CllFll - (10)
w

Proof. We have

2 W 12 T\2||v|?
VWi, = 5 (”V o+ (5) 5 LZ(,M)’
where - - .
nw_« (rS‘ / f(s)s" B ds— 5! / f(s)s“lds)
r 21 0 0
/ 1 -1 ' - ~E-1 ' 1+
v(ir)==|rw f(s)s wds—rw f(s)s Twds
2 0 0
Thus, applying Lemma 3] Inequality (T0) follows immediately. O

Lemma 6. Let ¢ € L*(rdr) and b defined by the following expression (assuming the four integrals exist):

= [ (s)s'te = [T cls)stE
b(r)=r"e / _ AT gy S / ————ds
0 8((%)2_1) 0 8((5)2+1)

w w

= c(s)ste

= 7 cls)sPe _ 4
_rw/o 8((z)z_ﬂ)ds—rw/0 Mds. (11)

w

Then, b can be written in terms of two integrals recursively as follows:

b(r) = ad (rz / v(s)s'eds —r e / v(s)s“gds) , (12)
27T 0 0
where p -
v(r) = d (rg / c(s)s' Cds—re / c(s)s“zds) . (13)
27T 0 0
Proof. Lemmaensures that v(r)sin 0 € H 1(Q) i.e., V' is L(rdr). Starting from (T3)) and (12)), replace the expression of v
given by(T3) inside each integral of the r.h.s of (I2)) and use integration by part to obtain the equation given by (TT). O
24 | Main result

After having introduced the framework of Sobolev’s spaces and Fourier series in polar coordinates, we are now in position to
state the main result of this paper. It should be pointed that, as in the previous work on the Laplace operator’, only the first
frequency in the Fourier series of the data f,, is responsible of the lack of uniformity of estimates in the vicinity of 7.

Theorem 2 (Main Theorem). Letw € (mw,4n/3) and f,, € L*(Q),) with Fourier coefficients

2 v k
chu(r) = — / £.(r,0) sin gﬁdﬁ, k> 1.
0

The family of solutions (U,) e (x an3) O Problemmsatisﬁes the following:
i) u, € H*(Q,) NHYQ), forallo < 1 - =, and u,, admits in Q, the decomposition into regular and singular parts:
Uy = Uy r + Uy, 5, Where
Uy, =S, + Ul +ul), + ull) (14)

w,F?

_ ay T w27 w3
Ups = (/\1,1r2 w +)\2,1r2+w) sin ;9++/\3,2rw sin U9+/\3,3rw sin ?9, (15)
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ud), € H (), for j=1,2,3,4, are given by

ul) (r,0) = bj,(r) sin’” 9 forj=1,2,3 (16)
W, 0) = 3 (bro() + Ak + Bror® ) sin kge (17)
k>4

where b ,,(r) (j > 1), A1, A1, A2, A3z, and Ay, By, (k > 4) are (respectively) given by their explicit extraction formulas

22, 62, (7. 3. @9, B0, G4, (73), and 72

ii) Moreover, there exists C > 0 independent of w € (m,4n/3) and f,, € L*(Q),) such that the following estimate holds and is

sharp:
V12 (Dl Pl + ) < Ol (18)
‘)‘32’ + ‘)‘33’ + H”(Z) HH“(QW) + H”(g) HH4(Qw) + H”w HH4(Q y = < Alfollz @) 19)
3 | COEFFICIENTS OF SINGULARITIES REVISITED BY FOURIER COEFFICIENTS

Following the results in''?, we can summarize that a solution u,, of (1)) admits near the origin the following decomposition:
Uy = Uy y + Uy s,

such that
Uor € Hipo(Q), and g, (r,0) = > (),
—2<mx<0

where the (; are roots of the transcendent equation sinh’((w) + sin? w = 0 with imaginary part in ] — 2, 0[ and the 1 are C*®
functions of 6. In this section, we will give some results on the Fourier series method applied to this model case of bi-harmonic
problem with Navier’s boundary conditions on a family of planar non convex sectors. This method allows us to retrieve such a
decomposition and to extract the roots systematically. Moreover, both regular and singular parts are given explicitly and explicit
and sharp estimates w.r.t the opening angle w are obtained in the vicinity of 7.

Since singularities are caused by the geometry of the domain, it follows that they are found in the kernel of the bi-harmonic
operator, i.e., they are solutions to the homogeneous equation

A%u, = 0in LX(Q,,). (20)

Let )
. kT
U 5(1,0) = Z Ay, (r) sin EQ,

k>1
be the Fourier series of u,, 4(r, #) in polar coordinates. Thus, one obtains, at least formally, by putting the Fourier coefficients of
Azuw,s all equal zero, that a;,,(r) is solution to the following differential equation, for all k¥ > 1,

2 4 2
A0+ 2ad - & < r2(*7) ) a0+ <1 r2(1) )a,i,w<r>+r14 ((’f) -4(%) >ak,w<r>=o, e

whose general solution is given by
D_km 24k k. _ k.
ak,w(r) = Al’kr w + )\2’/(}’ w + )\3’/(}’“’ + )\4’/(}’ w (22)

where \; are constants, j = 1,2, 3, 4, that can be determined by imposing the condition on the singular part u,, ; to belong to
the space H?(€),,) with 2 < o < 4. As far as we know, the power function in r, (r, 8) — r sin %70, i not integer, belongs to
H?(Q,,) as long as o < oy + 1. Henceforth, we look for the Fourier coefficient of u,, ; that satisfy

k
e (r)sin —0 € HO(QW), 2 < 0 < 4,
w
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or, in other words, the problem turns out to find non-integer powers «y in the r.h.s of (22) such that 1 < a; < 3. Figure 2]
illustrates regions plot for different powers oy = 2 — ’% 2+ %’“ —’%, %” respectively for w € (m, 27). If we denote by A, the set

of integers k such that 1 < oy < 3, then we observe the following:

Az =0, and Ay 1z = {1},Vw € (,27),
(2,3} ifwe(m ),

A =4¢{2,3,4}  ifwe (T, T,

{2,3,4,5} ifwe (3F,2m).

N
[
.
[
[
a
i
-
|

O1<2-%2 <3
w

y 1<2+52 ¢3
w

w

O 1<-M<3
w

O 1<M<3
w

—
£
————
————
E
g
S
~

i
i
i
i
~

5
e mgjEesssssssssssssssssssssssssssssssss==s

>
o~

S

FIGURE 2 RegionPlotof a =2 - ’%’,2 + ’%,—’%&%‘ respectively for w € (7, 2m).

It follows immediately A4, = O for all k and that a;,(r) = O for all k > 6. More precisely, we conclude that the singular part
Il
w,s? Fw,s Fw,s

of u,, takes the following expression, in the three regions of w, denoted by u

(Al,]rz’% + )\2,1r2+5) sin Et9

o 2 ir 3
2 . EL ] . 4
+A32rw sin —0 + A\3zre sin—0 =u,  ifw € (7, 5],

Ups = 47
k I dm . _ : 4w 5
ul, o+ Azare sin—0 = ul | ifwe (5, 5],

/g s O : Sm
U, +A35re sin ;9 = Uy, ifw e (3F,2m).

In the case w € (m,2m), the constants \j, forj = 1,2,3 and k = 1, ..., 5, are called the coefficients of singularity (or stress
intensity factors in the literature of mechanics). They can be determined by boundary conditions on the solution u,, = u, , + U
after having given the expression of the regular part u,, ,. As we will see later, they are linear forms of the r.h.s f,, in the original
problem (T)). As far as we are interested in the asymptotic behavior of the solution in the vicinity of 7, then let us consider only
the first case w € (7, 47/3) without considering the case w = 47/3. In this case, we will state later explicit and sharp estimates
of A\1.1, A2.1, A32 and A3 3 w.r.t the angle parameter w in the vicinity of 7. We will look for the regular part u,, , of u,, as the

particular solution of the problem (1)) with the regularity property of being in H*(),) for all w € (7, 47/3). Actually, u,,, is
solution to the non homogeneous equation A2u,,, = f,, in L?(2,,) such that the global solution u,, € H*(2,,) N Hé(Qw). Observe

that one does not need homogeneous Dirichlet/Navier’s boundary condition on the curved boundary C,, as in the case of a
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convex corner~., We start by Fourier series decomposition of the r.h.s f,, as follows:

for.0) =Y frw(r.0) =Y cru(r)sin kge, Crw(r) = % /O i fu(r, ) sin %ada (23)

k>1 k>1

1
> / Croo(r)2rdr = If I, (Parseval’s identity)
>170

U (r0) =Y (bk,w(r) + A+ B,wr%") sin kge, (24)
>1

where the coefficients Ay, By, are equal zero for k = 1,2, 3, and they are not in the case k > 4. we can extract them with
the help of the Navier’s boundary condition on the global solution u,, = Au,, = 0 on 0€,,. We have u,,, € H*(§,,) since Uy s
is also H? by construction. Plugging the Fourier series in the non homogeneous equation A’u,,, = f,, in L*(2,,), and since
Arw o+ Bk,wr%r lies in the kernel of bi-harmonic operator (A?), we look for by, by identifying all the Fourier coefficients in
the equation in polar coordinates. We obtain that by ,(r) is solution to the following differential equation, for all £ > 1,

2
2 1 k
0+ 20 (1 () ) )

r2 w
2 4 2
+ i3 <1 +2 (kTr> ) b;(w(r)+ l <<k77> -4 <k7r> > bk,w(r) = Ck,w(r)~ (25)
r w . r w w

The general form of a particular solution of this equation is:

breo(r) = 1% / "G OSTE s / a0, (26)
) «8((5)" %) v 8 ()" + )

b [T ()5S o [T ca()sTE
A A A RO
c 8((k)"-t) ¢ 8((k)+2)
where a, b, ¢, d are any constants in (0, 1). We will see later that they can be determined together with the coefficients of singularity
A« and the coefficients Ay, B, either with the help of boundary conditions on 9, and/or the expected regularity of u,, , in H*.

Remark 2. Integrals in the r.h.s of have the same forms as those in fundamental lemmas [3|and ] where the right powers
« and left ones f all satisfy the condition o + 8 > —1 for all the derivatives w.r.t r until order 4. Hence, the set of parameters
a, b, c,d can already be refined according the signs of f3, i.e., the missing integral’s limit will be 0 if 3 >0and 1 if 3 < 0.

31 | Lowest frequency term, k = 1 and determination of \, jand ),

According to Remark and the fact that % < 7 <1, all the powers f3 in the four integrals in expression of by .,(r) given by
have positive sign, hence we write:

r 1% . r 17%
biw(r)=r"5 / 7“’“(”2“ ds+ = / 7“’“(&? ds 27)
0 8((2)"-2) 0 8((2)"+2)

= [7 clL(s)stTE =z ToCrw(s)sE
7l TEE I (E&rea)”

w
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It follows that the first term Uy ., (r, 6) in the Fourier series of the global solution
Uy = Uy, + U —Zu (r)sink—WG—ZU (r,0)
w — Uw,r w,s — k,w w = kw7
k>1 k>1

is obtained by (recall that a; .,(r) = )\1’1,,2—5 + )\2,1;’2*5 is the first Fourier coefficient of the singular part u,, )

r 42 i r -z
U (r,0) = (by (7 + a1, ,(9) sin—0 = | 25 /\],1+/ %ds +r25 Az,,+/ %ds
v 0 8((2)°-2) 0 8((2)"+2)

w w

r 3-Z - r 3+
_rf/ %ds—r_?/ %ds sin ~o (28)
0 8 0 8 w

((;) —;) ((;) +;)
and applying the boundary conditions u,, = Au,, = 0 on C,, (i.e. at r = 1) term by term in the Fourier series expansion of u,,,0one
obtains for the lowest frequency k = 1, U, ,, = AU, = 0 at r = 1, which implies (we have two equations and two unknowns):

THw C1w(s)s* s C1w(8)s™ S Cclw(s)s' e

S U 1 (e ) M

T—wWw b w(s)s™ o b ()5 b u(s)sto
Aog = / it ds+/ e ds —/ — e ds (30)
T \bs(@rn) hos(@rer) ) hos(erer)

w

(29)

Theorem 3. U, ,(r,0) given by @) is solution of(lzp with rh.s fi ., (r,0) = c1 ,(r) sin Z0. Moreover, there exists C > 0 uniform
inw € (m,4mn/3), such that:

s . .
\J1-= <|)\1,]|+|)\2,1|+Hb1,w sm—@‘ > +HV4 (bl,w sm—@) < Cllfiwliza, - 31
w w H3 Q) w /L2 “
Moreover; this estimate is sharp, i.e, there exists fi ., such that ||fi w2, = 1 and
7T L +
=2 (Pl P +|[pressin o) =0(l), asw — . (32)
w w H QW)

Proof. We will denote by C > 0 a generic constant uniform in w which is not necessarily the same for all the inequalities which
follow.

First of all, Lemma|§|allows one to rewrite by ,(r) in terms of two integrals without the factor 1 — = in the denominators, and
Lemma 5] leads us directly to the estimate

™ .
12 lein ], < it

Second, looking at the expression of A, given by @), one concludes by Cauchy-Schwartz inequality that

C
})\2,1| S ﬁ HfI,UJ”LZ(Qw) s (34)

1- E H)\z_lrz-'-% sin 19
\/ w w

U (7, 0) = (b1 () + a1,0(9) sin —0 = (byu(r) + Apr> & + Aoy 7275 ) sin -0
w w

€

which implies that

2w <C Hfl,UJHLZ(Qw) . (35)

Now, since the weak solution
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is uniformly bounded in H? hence in L? , i.e.,

HUl,w“LZ(QW) < CHfl,w”Lz(Qw)' (36)

)
L2(Q)

then one concludes that

™

. T .
H)\l,lrz w sin —6 + H)\g,lr%w sin

. T
w < (||U1,w||L2(Qw)+ Hbl’w sin ZQH

LA(Q)

L2(Q0) w

henceforth, inequalities (33), (33) and (36) imply that
1- E HAl‘lrzig sin 19
V' w w

iy
1- w M| < Cllfiwllpg,) - <0

[2(Q.) < Cllfiwlize.) -

thus

Therefore, we have in hand the following estimate:

[ 7 T
- w (’/\“‘ + P+ Hbl’“ - UJGHHI(QN)> < Clfiwllza,) - (38)

Hence, to complete the proof, it then remains for us to prove the uniform estimates of derivatives of order 2, 3 and 4.
So, if we calculate the hessian V> (bl,w sin 70>, we obtain a function in H*(€,,) which vanishes at § = 0 or 6 = w, then,
w

Poincare’s inequality allows us to go directly to the estimation of the third differential V3 (blyw sin —0), since one has
w

Hv2 (bl,w sin 39) < CHV3 (bl,w sin 59) . (39)
w 12(Q0) w L2(Q.)
By definition of Sobolev’s semi-norms via Fourier coefficients, as given by Lemma [2}
3 . 2 w : |2 T\ 2 blllw 2bll w 2bl w ’
HV (bl,w sin —9) = 7/ b, | +3 <f) e Tl T
w Q) 2 Jy ’ w r r r
b// 2 b/ 2 b 2 2 3b/ 2 b 2
w3 (10 (5)) 2 e (D) 2 o (3) P (24 (2)) 2| | o
r w r w r w r w r
where, after some calculus and simplifications,
™
11 1 T —-1-— r 1+—
bl =5 (2-2)r v / Crw(s)s wds (40)
’ 8 w 0
1 1 T 1 T
= o
+ = (2 + E) r o w / Crw(s)s wds
8 w 0
1 3 Tpr 3 T
A =
+ = (2 - E) row / Clw(s)s wds
8 w 0
1 3 T 3
3= o
+ = (2 + E) r o ow / Crw(s)s wds,
8 w 0
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7" ’ Y
b 2b 2b1, 1 -1-—— [T 1+—
lw  Zlw lw _ r ow / C1.w(8)s +w ds 401
r r? 3 8 0o
™

1 -1+— " 1-—
+§r w/ Crw(s)s wds

3 3 I
_ +7 s
(w 1) cl,w(s)s wds
T

27w

T

T
z e
w clqw(s)s wds,

2 / T T
b 2\ b 2by, 1 el -
w—<1+(”) )"2“+2(7T) e =2+ D)r “/ (s wds “2)
r w r w r 8 w 0
1 m\ -l+— 7 -
=) [y
8 w 0
1 W =
34— ——
+ = (E —2) row / Clw(s)s wds
8 \w 0
1 o s
3—— +—
_ - (E +2) roow / Clw(s)s wds,
8 \w 0
3b, 2 1 4o\ A [T e
e— +—
o (2+ (E) ) 173“ = (1 + w) row / Clrw(s)s wds 43)
r w r 8 i
1 l+* T
<1 ) 1 w(s)s “wds
™
1 B+ S
§ ( ) Clw(s)s wds

™
L 2w el 34—
+ = (1 + w) row / C1w(s)s “wds,
8 m 0

so that all the right hand sides of (40) are linear combinations of integrals of type Igf (r) as defined by Lemmawith

a+ 8 =0, thus those with 3 = 1 — — will induce the estimate
w

7T 3 . E
E HV (b]yw sSin w9) () <C Hfl,w”[‘z(gw) . (44)
Hence, combining this last estimate with other estimations (39) and (38)), we have just proven the inequality
™ .
11— 5 <|)\1,1| + |)\2,1| + Hbl,w sin ;0’ H3(QW)> <C Hfl,UJHLZ(Qw) . (45)
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All we are left with now is the estimate of the fourth order differential V* <bl,uJ sin z9). So, by definition of Sobolev’s
w

semi-norms via Fourier coefficients given by Lemma 2] one has

2 w !
LZ(QW)_E/O
bll/ 2 b/l 2 bl 2b 2
1w m 1w ™ 1w ™ 1w
r ( * w ) r? +( * w) r w) r4
’ 2
2 bl,w ™ 2 bl,w U 2 bl,w
3r2‘<8+(w) )rﬂ(ﬁ”(w) >r4

’ 2
6bl,w 6b1,w

"
21b

/7
l,w

"
by,
r r2 r3 r#

HV4 (bl,w sin g@)

12 / 2
b 2 2 g
+ |32k 3+6(E) ﬂ+(f) 8+(z) biv rdr
2 w 73 w w r
and, after some calculus and simplifications, one obtains
1 = 1
o — +—
b () =< (E + 1) (E —2) row / Crw(s)s wds (46)
/ 8 \w w 0
1 e (T !
24— -
4o (E_]) (E+2)r w/ Clw(s)s wds
8 \w w 0
1 [ =
I 0
- (E —2) (ﬁ —3) row / Clw(s)s wds
8 \w w 0
1 s e
_— +—
5 (92 (Cea)r e [ e
8 \w w 0
+Cl,w(r)
by, 3b), 6b, 6b,
Plw  Plw w ; 47
r r2 r r @
1 LT s
=__ (E + 1) row / Crw(s)s wds
8 \w 0

| W 7r
o =
+ - (I - 1) row / Cclw(s)s wds
8 \w 0
s

T
1 4= r 3_—
_ v (E_Q) (E_3>r +w/ crw(s)s wds
87 \w w 0

™

T
1 4-— [T 3+—
+fg (E+2) (ﬁ+3)r OJ/ C1w(s)s +wds
81 \w w 0
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(e () e (oo () o) %
™

™
1 2-— [T 1+—
=- <E+ 1) (E+2> row / C1.w(s)s wds
w w 0

8
1 2l -
D+— -
SH(E) (E-2) w/ Cro(s)s @ ds
8 \w w 0
1 e 2l
T 7
+,<f_3) (E_Z)r w/ c1u(s)s wds
8 \w w 0
1 = s
T T
el (Z43) (Z42) w/ Cro(s)s wds
8 \w w 0

1w ™ 2 bll,w U 2 bl,w
3 —<8+ w)) L +<6+3<w)> ' (49)

T, T
-2—-— I+—
+4)r w/ Crw(s)s wds
0

s s

1 24— [T 1-—
il (E—l E—4);» +Lu/ Crw(s)s wds
81 \w w 0
T T
—4+— 3——
)r w/ Clw(s)s wds
0

1 —4—7T r 3 T
i —
+ e (z + 2) T + 3) row / Clw(s)s wds
81 \w w 0

e (o)) e () () %

:é (g + 1) (g + 6) r_z—; /0’ C1,w(S)Sl+gdS

s s

1 S 1-—
+ - (E - 1) (ﬁ —6) r +OJ / C1u,(s)s wds
8 \w w 0
1 4 T 3 T
T s +— -—
~3 <E - 2) (; - 3) r o w /0 Crw(s)s wds

1 4 T 3 T
- —
_- (5 +2) (3 +3) row / CcLo(s)s @ ds
8 \w w 0
so that all the right hand sides of l) 1i are linear combinations of integrals of type Ifff (r) as defined by Lemmawith
- :

a + 3 = —1. However, those with the bad power 5 = 1 — — are compensated by the same coefficient such that they will induce
w
the uniform estimate

4 T
HV (bl,w sin ;0) o < Clfiwllzg,) - (51)
Combining this last estimate with (38), we obtain the inequality (3T).

Proof of sharpness of estimate @: Since g < 1, one can find, for example, a r.h.s such as

(s 0) = 2o =75 sin (To).

w

Hfl,wHLZ(Qw) =1, Yw € (m,27),

2 =z
Ccrw(r) = ;\/w — T @,
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which gives after computation of by ., (r), A1, A2,1 from their expressions given respectively by (27)), and (30),

b =
A T 16w Mo -
N = wlw=2m)J/w—-m
T T e (r—2w)
N = wBw —1)
2 (-2 -1
the asymptotic relation (32). The proof of the theorem is ended. O
32 | Second frequency term k = 2 and determination of \;,

According to Remark and the fact that % <Z <1, thus - %” < 0, and all the powers 5 # 1 — %’T in the other integrals in

expression of b, (r) given by (26) have positive sign, hence the integral’s limits are such thata=c=d=0and b = 1, i.e.

r 1+2% r -2
byw(r) = P / G5 ds + 1% _w@sTe ds (52)
0 8

T 2 T T 2 T
((=)-%) V() )
r 3—%" r 3+27"
= / Cz,w(S)ZS dsmy B / Cow (S)ZS ds
0 8((2)-%) 0 8((2)+2)

It follows that the second term U, ,,(r, ) in the Fourier series of the global solution is obtained by (recall that a, ., (r) = )\3,2r277
is the second Fourier coefficient of the singular part u,, ):

.27 T 2 (5)s1HE w [T Ccru(s)stE
Us(r, 0) = (baw(r) + azyw(r)) sin—60=|r"« / — S ds+ e / — . ds
“ o 8(()°- ) s () 1)

r 321 r 3+2%

T w w 27 w w . 2
2 [ Aga s / —"2»2(”; | -rE / —(’2~2(S)2S ~ds | sin =" (53)
s s s us w
0 8((7) —U> 0 8((7) +U>
hence applying the boundary conditions, U, ., = AU,,, = 0 at r = 1, one obtains

1 1+ 1 342 1 32z
M2 = / LA / GO / 2O (54)
v o) hos(E)eE) hos(E)-x)

Theorem 4. U, (1, 8) given by is solution of (1) with r.h.s f>,,(r,0) = c2.,(r) sin %”9. Moreover, there exists C > 0 uniform
inw € (mw,4n/3), such that:

‘)\3,2’ + bzyw sin 2—779

S C HfZ,w
HY Q)

LZ(QW) (55)

Proof. As in the previous section, let us denote by C > 0 a generic constant uniform in w which is not necessarily the same for
all the inequalities which follow.
First, looking at the expression of A3, given by (54)), one concludes directly by Cauchy-Schwartz inequality that

|>\3,2‘ <C Hwa ||L2(Qw) s (56)

which implies also that

m . 2T
Azpr e sin —¢@ < Clfrwlpq,) - o7

H2(0)

2 L2
Un,o(r, 0) = (br,(r) + @r,(r)) sin =0 = (bz,w(r) + ,\3,2r7) sin 229
w w

But, since the variational solution
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is uniformly bounded in H?, i.e.,

||U2.w||H2(szw) <C HfZ,w |L2(Qw)' (58)
then, by a triangular inequality, one has
2 =, 2
‘ bzqw sin —FG < (UZ,wH[ﬁ(Q ) + /\3,27'2? sin 1(9 > y
« w
L2(2) HX(Qu,)
henceforth, we obtain in hand the following estimate (in H?):
.27
|As2| + ||b2. sin =6 < Cllrwll2@,) (59)
“o @
Hence, to complete the proof, it then remains for us to prove the uniform estimates of derivatives of order 3 and 4.
By definition of Sobolev’s semi-norms via Fourier coefficients, as given by Lemma 2] one has:
3 2 N\ I w [ m2 27\? by, 2by., 2by., ?
\Y% (b2,w Sin 9) = = / wa +3 () —_— = 2’ + 3’
w 2. 2 Jo ’ w r r r
b, 27\ b, 21\ boo | (272 |3D) 2\?\ bo ||
#3214+ () ) 222 () 22 (2 2o 24+ (=) | 22 | ar,
r w r? w r w r? w r
where, after some calculus and simplifications,
| ) 27 27
" = I+—
by = - (2— ”) row / er0(s)s W ds (60)
8 w 0
| ) 27 27
14— l——
+ - (2+ 7T) roow / Cow(s)s W ds
8 w 1
| ) 2 2m
34— 3_—
+ = (2— ﬂ) roow / Cru(s)s W ds
8 w 0
1 2 3. r 34—
+= (2+ W) roow / C2.0(5)s "W ds
8 0
bIZIw 2b/2 w 2b2 w
=4 == 61
r r? 3 ©1)
27 2n
1 -1-— (" 1+—
—r w / Cru(8)s W ds
8 0
27 27
1 14— [T 1-—
+-r w Cru(s)s W ds
8 I
L /2 , 2r . ; 27
I Vil it
+ - —w—l roow / Ccr,(8)s W ds
8 27 0 ’

1 5 X 2 , 2w
I Mp— —
—— 1+ e r w / cr,(8)s wds
8 27 0 ’
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b// 2 2 b/ 2 2
220 14 (ZF 22w o [T brw _ (62)
r w r? w r

| 9 2 1 2w
Jy Jp— +

— <2 + 7r) r o w / C2,(8)s W ds

8 w 0

| ) | T, 1 27
== =T
+ - <2— 7r) roow / C2,(8)s W ds
8 w 1
L /2 X T, , 2
el it
+ - <7r —2) roow / C2u(s)s W ds
8 w 0
1/2 T 3
3. == uidd
- = (W + 2) r o w C2,(8)s W ds
8 w 0
3b, 2\ b
()
w r
1 4 1 2 | 2T
== it
-— (1 + w) roow / Cw(s)s wds
8 ™ 0
, 4 X 2 . 1 2T
== =
_Z (1 — w) roow / C2.,(s)s W ds
8 7 1
) 5 , . X 2
i it
+ = <1 - w) roow / Cow(s)s wds
8 ™ 0
2T 2

1 2 3 r  T—
o (1+22) 0w / Cro(s)s W ds
8 27 0 ’

so that all the right hand sides of are linear combinations of integrals of type Igf (r) as defined by Lemmaor J gf (r)
as defined by Lemma[9] with a + 3 = 0, thus the following estimate holds:

HV3 <b2,w sin 27r9>
w

Similarly, with the help of Lemma 2] one has

2 1 2
2 2 2
HV4 <b2,w sin 77T 9) = g/ ‘b(242u +4 <7T>
w Jlpey 2 ’ w

by’ 27\?\ b, 27\%\ b, 27\ b, ||
U YN el w244 22 =Y 6 oW
r w r? w r w r
1" ’ 2
2\ | b 27\ ?\ b 2r\?
+4<”) 32’2”—<8+(7r> )2’3‘“+<6+3(W> )bzf
w r w r w r

1"

b 27\ 2\ b, 2\ 2 2\ 2 b, ?
2w 22w il 22w
37 <3+6(w)> r3+(w> <8+(w>> "

<C HfZ,w HLZ(QW) : (64)
L2(Q)

" 17 ’ 2
b2,w 3b2,w + 6b2,w 6b2,w

r r2 r3 r

+6

+
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and, after some calculus and simplifications, one obtains

1/2 2 e 2
2 +—
bS), = < (F + 1) (W— ) roow / Cw(s)s W ds (65)
’ 8\ w w 0
1/2 2 ey 2T
24— -
+ = (W—1> (W +2) roow / Cow(8)s W ds
8\ w w 1
1/2 2 Dy e
il il
! (”_z) (”_3> " / Cruls)s @ ds
8\ w w 0
1/2 2 Py 22
| — 3+—
- = (W +2> <7T +3) roow / Cow(s)s W ds
8\ w w 0
+62,w(r)
by 3b,, 6by, 6by,
_ew t = — = 06
r r? * r r (©0
1/2 2T s
_Z (W + 1) roow / Cr0(s)s W ds
8\ w 0
2w 2w

1 /2 24— 7 I-—
oL (“_1)r " / Crn(s)s W ds
8 w 1
| 5 5 _4 2 , 27
il nied
_,i l+1 1_6 r w / cru(s)s wds
827 \ w w 0o
5 5 _4_27r . , 2w
=L niad
( T +2> (W +3> roow / Cru,(s)s W ds
w w 0

b/// 2 2 b// 2 2 b/ 2 2 b .
ﬂ — |2+ I ﬂ +12+4 I ﬂ _ l 27’ = (67)
r w r2 w r3 w r

1/2 2 S 2
- +—
__ <7T + 1) (ﬂ- + 2) r w / CZ’W(S)S w ds
8\ w w 0
1/2 2 2 o
2+— l-—
- W_]) (ﬂ_z) roow / Cr.u(8)s Wds
8\ w w 1
2w 2w

—4+— r 3———
—2>r w / Cr(s)s wds
0

27 27
(27r —4- —

— [T 3+
Z)r w / Cru(s)s W ds
0

+
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/Z/w 271— : b2,w 27T : bzv“—’ —
3ﬂ —<8+<w e +[6+3 » &
1/2 2 2T 27
o — +—
+= (W + 1) (W + 6) roow / Cou(s)s W ds
8\ w w 0
1 /2 2 22T g 2
D -
+ = (W - 1> (W —6> roow / Cow(s)s W ds
8\ w w 1
1/2 2 W2 e
il niel
4= (7r _3> (W _2> roow / Cro(8)s W ds
8\ w w 0
L /2 5 21 P ; 27
= Pl
_ - <7T +2> (W +3) roow / Crw(8)s W ds
8\ w w 0

. 5 5 R 2 X 27
i Wnial il

2T (L ra) s w / Cw(s)s W ds
821 \ w w 0o

2

5 , 2 . 1
I Yimiak iniid
(W —4) roow / Crw(8)s W ds
w 1
2

w

1 /2 2 42” " 3
imial _

- = 7T—3> (W—2>r w/cz,w(s)s w ds

8\ w w 0

| 5 9 4277 . 327r

= il
A (LI B N (I w/cu,(s)s w ds
821 \ w w 0o

27\ 2\ b, 2\ 2 2\ 2
3+6(7T >23“’+<7T> <8+<7r)>b2f=
w I w w r

(68)

(69)

so that all the right hand sides of are linear combinations of ¢, and of integrals of type Igjf(r) as defined by Lemma

or Jgf

3.3

(r) as defined by Lemma

L with o + 8 = -1, thus the following estimate holds:

2
Hv“ (bz,w sin ”0)
w

<C Hf2,wHL2(Qw) :
L2(Q)

Third frequency term & = 3 and determination of \; 3

3

r 1+3% r 1=
_im C30(8)s 3 C30(8)s
by (r)=r"s W ds+ e w(s)

’ 0 8 (31)2_31
w w

3m

—
(7))
r 3-3 . r 3+3%

s / 63,w(S)2s ds— / 63,w(S)2s ds
os((Er-E) hs(E)ex)

(70)

Finally, combining this last estimate with (64) and (59), we obtain the inequality (55). The proof of the theorem is achieved. [

Remark 3. Note that here we could have the same problem in the neighborhood of 27 as that encountered in the neighborhood
of 7 in the case k = 1. However, as we assumed that w is in (7, 47/3) then the problem does not arise.

According to Remark and the fact that % < Z <1, thus 1~ %” < 0, and all the powers /3 # 1 — 3™ in the other integrals
in expression of b3, (r) given by (26) have positive sign, hence the integral’s limits are the same as in the case k = 2, i.e.,
a=c=d=0and b =1, and we have

(71)
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It follows that the third term Us ,(r, 6) in the Fourier series of the global solution is obtained by (recall that a3 ., (r) = A33 re s
the third Fourier coefficient of the singular part u,, ;):

r 1437 r 13z
U3,w(ra 9) = (b3,w(r) + ClS,w(r)) sin 319 = 1’2_%r / CS’W(S)S r2+%r / C3'W(S)s
w 0 8 1 8

r 3-3m r 343
- )\3y3+/ SLETIC) R _r*%/ %ds sin>"9 (72)
08 vs(()eE) )

(¢57-%)
hence applying the boundary conditions, Us,, = AUs,, = 0 at r = 1, one obtains

1 1432 1 3+3% 1 33
sz/4;g§¥j?fﬁ_/ggy§¥j?iﬁ_/Agﬁgg;?iﬁ, 73)
vs((E)-E) hos(eE) Dos((E)-x)

w

Theorem 5. Us,(r, 6) given by is solution of with rh.s f3 ,(r,0) = ¢3,,(r) sin %”9. Moreover, there exists C > 0 uniform
inw € (m,4n/3), such that:

’)\3,3| + b3,w sin 310

< Clfswlpa,) - (74)
HY(Q0)

Proof. Similar to the proof Theorem 4] O

34 | Regular frequency terms k£ > 4 and determination of A, ,and By,

According to Remark and the fact that % < Z < landk > 4, there are now two negative powers [ = 1 — kr and g =3 - ’%,

w
and the two other powers in the expression of by ., (r) given by (26) have positive sign. Hence, the integral’s limits defining by,

are suchthata =d =0and b = ¢ = 1, and we have

r k. r _km
b mzﬁﬁ/%wmh’¢+wﬁ/%wm“’ﬁ (75)
b 08 ((@)2_@) | 8(("—”)2+"1)
w w w w

- /r ck,:(s)f‘f ds—r & /r Ck’:’(s):3+f ds.
L8 () %) 0 8((4)"+k)
It follows that the k"'~ term Uy, (r, §) in the Fourier series of the global solution can be written as follows,
x ,r k
Uroo(r,0) = (bk,w(r) + A 4 Bk,wr%) sin — (76)
w

where the constants Ay, and By, are determined by the Dirichlet conditions Uy, = AUy, = 0 at r = 1. Solving these two
equations, one obtains:
km
kT—w 1 Crw(s)site
- km+w fO kr\2  km dS,
8 ((U) - U)
34k 1+4z
Crw(8)s™ @ 2k 1 Crw(s)s' e

Biw = [y " ((,(,r)2+1(7r)ds_k7r+w Jo 8 ((kﬂ')z_kﬂ>ds

kw

(77)

w w w w

Instead of being singularity coefficients as in the previous cases, we recall here that the coefficients Ay, and By, participate
rather in the regular part as coefficients of r power 2 + ’% and 1% which are both greater than 3 .

Theorem 6. For any integer k > 4, Uy, (1, 0) given by @) is solution of (1)) with r.h.s fi,(r,0) = ¢k, (7) sin ’%9. Moreover,
there exists Cy > 0 uniform in w € (w,4n/3) such that:

||Uk,wHH4(Qw) < G ka,wHLz(Qw)' (78)
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As a result, the single Fourier coefficient of Uy, which is defined by
do(F) 1= b () + Aot S 4 Bior's

can be obtained recursively as follows:

r 1 r

grw(r) = re / ck,w(s)sl_%ds+/ ck,w(s)sH%ﬁ ds —r‘%r/ ck,w(s)s”%rds , (79)
2k 1 0 0
r 1 r

dio(r) = 5 — ( < ( / Srw($)s ™ ds + / rw(s)s™E ds) - / gk,w<s>s1“5ds> . (80)
2km 1 0 0

Proof. Using the fact that

where

Upoo(r, 0) = bro,(r) sin kge + (Ak,wr“%" + Bk,wr%") sin kga, (81)

one can already prove, following the same argument as in the proof of Theorem ] by using properly lemmas [3|and 4] that

In addition, since powers 2 + ’% and ’% are both greater than 3 , it is straightforward that the same estimate holds for the right
term in the r.h.s of (1), i.e.,

. km /
by (r) sin —0 < G fiwlliz,) -

HY(Qu)

< G fewll 2, -

- =\ . km
H (Ak,wrm% + B;er?> sin — 0
HY Q)

w

Henceforth, putting Cy = max(C,;, C,:), we obtain Inequality (78).

Next, one can check by a simple calculus that g, ., (7) is nothing but the single Fourier coefficient of V., = AUy, the laplacian
of Uy,. Henceforth, V;,, € H*(£2,,) and consequently on can use integration by parts to obtain the recursive formula -
and the proof of the theorem is ended. O

Remark 4. The proof of the recursive formula (79)-(80) in the previous theorem can also be obtained by solving, in polar
coordinates, the boundary value problem Vi, = AUy, in €, with Ui, = 0 on the boundary 0f2,,, which leads to a second
order differential equation in terms of Fourier coefficients:

1
dkw(r)+ dkw( )

k2’1T dk w(}")
= 8k, w(r)
w?

whose general solution is given by
dkw(r) = 7(.&} r%r / gkw(s)sl_%rds_r_%( / gkw(s)sl+%ds +C1}"%r +C2I"_,%(’
8 2k7r l & O &)

where C, must be equal O since dy, is at least L*(rdr). The constant C, is found by the boundary condition at r = 1, drw(1)=0
We find thus exactly the formula(79).

Lemma 7. Letv, € H*(Q,) a periodic distribution such that v,(.,0) = v,(.,,w) = 0 and let vy ,(r) its k- partial Fourier

coefficient w.r.t 0. There exist a constant C > 0 independent of w € (w,2m) and of v,, such that:

’
Vk,w
r

+ i
L*(rdr)

< CIVAvliq,)-

Hvkw

12 (rdr) L2(rdr)

k>4 H
Proof. A direct consequence of the the following straightforward identities (since km/w # 1 for k > 4)
A 2 Viw a2 (Vi w
o (B ()" e ) - ()7 (e - )
hw .

: (%)

)
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() (o)
Viw _ r w r2 r r2
7 1 (kx)?

w

k)

and the expression of the semi-norm [IV2v, || 12(,,) 88 given by Lemma lead to:

/ 2
1 7" 2 1 v r 1 2
> / V()| rdr+ K / YD g / vk’wz(r) rdr | < CIVvli7 ),
oa \J0 1 0 r 0 r “
with a constant C > 0 independent of w € (m, 27), which allows one to conclude the proof. O

We have now the main theorem for this section which gives normal convergence in H* of the series >, Uk (r, 0):

Theorem 7. Let w € (m,4n/3). For any integer k > 4, let Uy, (r, 0) defined as in Theorem@ Then the series

Uu(r,0) := > Uru(r,0)

k>4

is solution of (1) with r.h.s .
. km
Ju(r, 0) = Z Crw(r) sin U@
k>4

Moreover, there exists C > 0 uniform in w € (m,4n/3) such that:

0ol < C ol -

Proof. By Theorem EI, we know that for any k > 4, Ui, € H*(,,) and is a weak solution of Problem with r.h.s
Jiw(r, 0) = crw(r)sin %0. Thus, one has already, by Theorem the uniform estimate (C independent of k > 4),

1Ukollieg.,) < € fiwllza,) -

which implies, by taking the series (over k > 4), that:

Ul < € ol - (82)

We then have to show this last estimate in H* norm. So it is enough to show it for the two semi-norms [IV3 U2,y and
IV4U, NI 12q.,)- More precisely, it will be sufficient to do it only for each Fourier series term Uy, but with a uniform constant
independent of k > 4. Furthermore, and without restriction, we will demonstrate this only for derivatives of order 4 w.r.t r.
Derivatives of order 3 are simpler to treat and the other derivatives defining V> and V* can be treated in a similar manner.
Thanks to Theorem|§|, let g, () and d ., (r) the single Fourier coefficients of Uy, and Vi, = AUy, respectively, as defined by
the recursive formula (79)-(80). Thus, one has on the one hand:

1 = [ . ! -
dP (= —— {(kw — 3w)(krr — 2w)(kT — w)r 'S ( / Ghw(s)s" S ds + / G (s)s™E ds>
1 0

2w3

~ (ke + 3w) (ke + 2w) (ke + wyr / G555 dis +2u <w2 <g,’;w(r) - g"":(r)) 8 (o 3w2)) } ,

0 r?
(83)
where, we can see that (using the notations given by the two fundamental lemmas 3] and [):

r r
—4km lkm o gk Bkw(8) 3 4x apkm 3k
roe /1 Grw(s)s wds=r""w 1 a2 5 ds = (xk.

)

£ efd
€3

k
2

=

,
kx i
G / Skw($)s' ™ ds
1 L2(rdr)

r r
e ke e 8kw(S) 344x 4 kw3 km
e / Sw(S)s' o ds = e / SRSt ds =1, “7
0 0

= (%)

d ‘gﬂ
= km-3w

r2 2gar)”
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8k,w

- _—
2

,
kT km
r‘4_7/ gk,w(s)sH?ds

0

5

L2(rdr) ~ km+ 3w L2(rdr) ,

and, since 2 < Z < 1and k > 4, thus 3 < ’% < k which implies that r — ##*< is L2(rdr), and one obtains, with the help of

Cauchy-Schwarz inequality:
| 2
1\ 1 km w
w “ d 77
</0 (g"’ (s)““) 5 S> 2 (k- 3w)

1 2
g / R A I
8k,w L2(rdr) o ) (k7T _ 3OJ) s

2

2

1
i [
e / Skw($)s't e ds
0

L*(rdr)

IN

o 2
< m ll gkl 2¢rar) -
W2
<
=4 (k27T2—9w2) ’

8k,w 2

72

L2(rdr) ’

since r € (0, 1). So, using the expression of d,ﬁg(r) given by , we arrived at the following estimate:

w w 8w
d® — (ke = 3w) (ke — 2w) (ke — w + ‘—
H kol 2arn = 2w3 ( X X ) km=3w  2\/k27w2 —9y2 r2 2
w
+ (k4 3w)(k + 2w)(kr + w) ’ Bkw
km 43w Il 72 12gar
+2w | w? ’ S Blw + ‘ gk—zw (m°k +3w) | ¢,
L2 (rdr) r r L2(rdr)
L2(rdr)
which, for k sufficiently large (k > ko > 4), becomes
], < € { Jsce e I
L2 (rdr) L2 (rdr) r r L2(rdr)
L2(rdr)
and which implies, with the help of Lemma (7), that
" gllc w 2 || 8kw
ZHd,ﬁ“; <y Hgkw 8kw +k ‘7
g = g 2
k>ko L2(rdr) k>ko L(rdry r L2(rdr) g L(rdr)
< CV*Vlllzq s (84)

here we recall that gy, is the k™- Fourier series coefficient of
V(ra)—z (r)sinkie—Zv (r,0)
w7’ = 8k,w w = kw\Is V).
>1 k>1

Now, and on the other hand, since Vi, € H 2(Q0) ﬂHé(Qw), one can check that AV, = fi ., (the k- Fourier series coefficient of
f.,) then by the “second fundamental inequality”, cf. (%, Corollary 2.3.6 p.31), see also the proof of Theorem |I| which states that

IV2Velllz,) < AVl 2., = Wewllzaq,),

we conclude that

IVValllzo,) < Y IV Viullipg,) < Wil
k>4 k>4

(4)
> [
k>ko

and, consequently, by (84), one obtains

< fi o2 .
Ldr) = ; fewllzy,)
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Henceforth,

km w

(4) . (4)

E d, (r)sin o 0 < ,/5 g Hd,w
k>ko

kzko 2

L2(rdr)

w
<4\/3 > Miwlliza,) < Clfullg,)-

k>4

Thus, we obtained
4,0
US| iy € CWelliza)-

For the other derivatives to complete the V*, the arguments are similar. Finally, the proof of the theorem is achieved. O

4 | PROOF OF THE MAIN RESULT

In this section, we present the proof of the main Theorem [2] stated in Section[2]

Proof of Theorem 2] The proof now is direct as a consequence of theorems 3] ] [5]and[7] and the former Fourier series analysis.
In order to lighten the length of the manuscript, a rough outline can be written as follows:

We use four problems: we write the Fourier series expansion of f,, separating the singular frequencies k = 1,2, 3 from the
regular ones k > 4, as follows:

fw =f1,<.u +f2,w +f3,w + Zﬁcw

>4
where .
Frao(r0) = ¢jo(r) sin %9, > (85)

By Theorem
’ EL P 24y T LT
(/\1,17’ “ 4+ A gF w)smf€+b],w(r)s1n—9
w w

is the solution of Problem (1)) with r.h.s fi ., corresponding to the singular frequency k = 1. Thus u!) (r,0) = by ,(r)sin It9
: w
belongs to H*(£2,,), and the estimate (18) follows from (31).
By Theorem[d] and Theorem 3]
= . T T
A3jr e sin=—0 + b;,(r) sin—0
w w
forj = 2,3, is the solution of Problem (E[) with r.h.s fj, corresponding to a superposition of the singular frequencies j = 2 and 3.
Therefore, u¥) (r,0) = bj (1) sinjiﬁ belongs to H*(€),).
’ w
Next, by Theorem the Fourier series of solution of Problem with r.h.s Ekz +Jkw corresponding to a superposition of all
regular frequency k > 4 is given by

N Nk

> (bk,w(r) + AL 4 Bk,wr%> sin— 0= Upu(r.0),
w

k>4 >4

and the uniform estimate (I9) follows from the three theorems ]3] and[7] corresponding to the two singular frequencies k = 2,3
and the regular ones k > 4 respectively.

Now, as discussed in the beginning of Section a power function of r, (r, 0) — r® sin ’%9, ay, non-integer, belongs to the
Sobolev space H>*?(£2,,) for all o < ay — 1. Thus, the regularity H>* of the singular part

Jusy

s .o 2w . 2T 3x . 3T
()\1,1}’2_“’ + A2,1r2+w) sin —6 + +A3,r @ sin —0+ Az3rw sin —0,
w w w

is achieved for all o such that

o<2-"_1=1-T.
w w

So, u,, € H*7(Q,,) N H}(Q,,) and the decomposition follows with their explicit expressions as given in Section
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Finally, the sharpness Estimate (I8) follows directly from theorems [3] - Inequality (31)) and the three theorems ][5 and
corresponding to the two singular frequencies k = 2,3 and the regular ones k > 4 respectively. The proof of the theorem is
achieved. O

5 | CONCLUSION AND OUTLOOK

Throughout this paper, we have given explicit extraction formulas via Fourier analysis of the coefficients of singularity and
regular part of the solutions of a family of bi-harmonic equations with Navier’s boundary conditions on a family of open non-
convex planar sectors with opening angle w € (m,47/3). We have shown that explicit and sharp estimates can be obtained by
highlighting the decomposition of the solution into regular/singular parts whose behavior in the vicinity of the critical angle
w = 7 is as follows:

e The regular part associated the the first Fourier frequency k = 1 is unstable in H* norm in the vicinity of 7. Two coefficients
of singularity A;; and A, both are unbounded for w close to 7*.

e The second and third frequencies k = 2, 3 produce bounded coefficients of singularity A3, and A3 3 w.r.t w in the vicinity of .

e A stable regular part in the norm H* corresponding to all frequencies higher than 1.

e The global solution remains stable in the H> norm from standard uniform estimates of the weak variational solution. This
problem is actually quite similar to that of Babuska, cf.'>, when additional regularity on the source term f,, is assumed at
the origin. To the authors knowledge, question of existence of stable H* decomposition near a concave corner was never
addressed in the literature and still an open problem.

e Possible extension of the results herein are envisaged for boundary value problems with general (mixed) boundary conditions.

e Another possible and open question is: Can we approach a nearly flat boundary by another completely flat one in the case of
a non-convex opening angle? This will be of great interest in numerical approximation for fourth order elliptic problems
when the error depends on the finite elements, the mesh used, and the regularity of the solutions.
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