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1 | INTRODUCTION

Over the past few decades, the topic of state estimation for dynamical systems has emerged as a pivotal research interest in control
system engineering. This is because grasping real-time information about the state of the system is crucial in various applications.
Several operations in the control system domain, for instance, controlling systems, monitoring systems, and decision-making,
are executed using such real-time data. One of the techniques used to collect real-time measurements is to deploy sensors
on physical systems. However, the quantity and quality of sensors are frequently restricted in practical scenarios due to cost
and physical constraints. Hence, observers become an indispensable components in modern-day applications assisting in the
collection of current knowledge of systems, for example, autonomous vehicle tracking', the state-of-charge estimation of LI-ion
battery model?, cardiovascular application”, and so on.

Observer design for linear systems has been extensively studied and proven to be quite effective. In the paper®, the proposed
Luenberger observer was the first state estimation method established for linear systems. Compared to linear systems, the de-
velopment of nonlinear observers is still an arduous problem. As a consequence, an abundant amount of research has been
carried out in this domain, and various approaches have been proposed. The authors of the articles®© developed the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF) techniques for the state estimation of nonlinear systems. However,
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the sliding-mode observer and the high-gain observer are deployed for the same task in the papers”8. Recently, linear ma-
trix inequality (LMI)-based methodologies have earned a substantial amount of interest, and several results are outlined in the
publications! 0,

Among these approaches, few LMI methods are dependent on the S-Procedure lemma''Y, the Riccati equations’?, and the
Young inequalityl3. Though each technique provides a conservative LMI condition, there is the possibility for enhancement.
24 ytilised the H, criterion in the observer design for the estimation of the state in the presence of
noise. An alternative for the H_, criterion is the use of the input-to-state stability (ISS) property. An ISS notion was introduced in
the paper>. Further, the authors of the letter'® had proposed an ISS-Lyapunov function to use the ISS property for the stability
of systems. An observer based on the ISS-Lyapunov function was proposed in the publicationsZ181° Al these cited papers
provide efficient state estimation. Along with this, an ISS-Lyapunov function aids in obtaining an LMI condition.

The objective of the proposed article is to design a nonlinear observer for disturbance-affected systems that reconstructs the
states of systems with better noise compensation. In order to achieve the aforementioned goal, two novel LMI conditions are
formulated to compute the observer gain by utilising the H_, criterion and the ISS condition. These established LMIs are derived
by incorporating the well-known linear parameter varying (LPV) approach, a variant of Young inequality, and the reformulated
Lipschitz property. The primary component of the novel LMIs is the newly defined matrix multipliers. The integration of this
matrix multiplier with the LMI framework is inspired by the work presented in the paper®2Y2!, The deployment of such a matrix
multiplier adds some additional numbers of decision variables inside LMIs and enhances the LMI feasibility.

The remainder of this article is structured in the following manner: Section [2]encompasses the notations and the recapitula-
tion of some preliminaries and background results related to the LMI-based observer design. The articulation of the problem
statement is illustrated in Section [3| Further, the development of 7 criterion-based LMI condition is showcased in Section E}
Section[5]includes the LMI synthesis using the notion of ISS. A few comments on the proposed matrix multipliers-based LMIs
are discussed in Section @ Later on, the efficiency of the derived LMI conditions, and the performance of the observer are
emphasised in Section [7]through a numerical example. In last, Section [§|comprises some conclusions and future perspectives.

The authors of the articles

2 | NOMENCLATURE AND SOME BACKGROUND RESULTS

2.1 | Glossary

Throughout the article, the subsequent notations are employed:

e |le|| and ||e]| L, denote the euclidean and the £, norms of a vector e, respectively. Its initial value at ¢ = O is represented
by e.

e We define a vector of the canonical basis of R* in the following manner:

jth

—~N =
e (i)=(0,...,0, 1 ,0,...,00" €R’, s> 1.

N~
§ components

e I and O indicate an identity matrix and a null matrix, respectively.
e The transpose of matrix A is symbolised by AT.

e A € S" implies that a matrix A € R"™" is symmetric. The terms A
eigenvalues of the same matrix A, respectively.

min(A4) and 4., (A) signify the minimum and maximum

e Within a symmetric matrix, repeated blocks are represented by using the symbol ().

e For any matrix A € R™, A > 0 (A < 0) signifies that A is a positive definite matrix (a negative definite matrix).
Similarly, a positive semi-definite matrix (a negative semi-definite matrix) is denoted by A > 0 (A < 0).

A = block-diag(A,, ..., A,) is a block-diagonal matrix having elements A,, ..., A, in the diagonal.
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2.2 | Preliminaries

The objective of this segment is to provide an overview of the mathematical tools and background results that will be required
in the elaboration of the main outcomes.

Definition 1 (Input-to-State stability®). Let us consider a generalised class of nonlinear systems:

{=fGuw, ey

where { € R" and u € R denote the states and input of the systems, respectively. The function f : R”"XR*® — R" is piece-wise
continuous in ¢, and it is assumed to be locally Lipschitz in ¢ and u. The system (T)) is input-to-state stable if there exist a class
KL function f and a class K function y such that for any initial state {,, and any bounded input u(¢), solution {(¥) exists for all
t > 0 and satisfies:

IEON < BUISL ) + ¥ (llull ). V2 2 0. @

Definition 2 (ISS-Lyapunov function’). A smooth function V(¢) : R" — R is an ISS-Lyapunov function for the system (T)) if
and only if there exist class K, functions a; € (1 <i < 4), such that it fulfills

ay(lnl) < Vi) < ay(llnlD 3)
V(n,u) < —as(lInll) + ay(llul), )
for any n € R" and u € R®.
Definition 3. Let us consider two vectors
)", and B= (b, b, ... )" .

A= (a1 a, ... a,

Then one can define an auxiliary vector A% € R",Vi € {0, ...,n} corresponding to A and B in the following manner:

i}
(b1 b o by @y ona,) o fori=1,.m

AP = 5)
A, for i = 0.
Lemma 1 (1%, Let y : R” — R” be a nonlinear function. Then, the ensuing two statements are equivalent:
i) The function y satisfies the subsequent inequality:
(X)) =Ml < x, IIX =Y, VX,Y eR", (6)
i.e., it is globally Lipschitz.
it) Forall, i,j =1, ..., n, there exist functions y;, TR R"” x R" — R, and constants y; g and y; o suchthat VX, Y € R",
XX =y () =Y g Hy (X =), (7)
i=1 j=1
where H,; = e,(i)e] (j), and y;; £ y,;(X"-1, X"7). The functions y;,(-) are globally bounded as follows:
Hijmia S Xij S Xy ®)
Lemma 2. For any two vectors X,Y € R” and a matrix Z > 0 € S", the following matrix inequality holds:
XY+Y'X<X"Z'x4+Y"ZY. )
In the paper?, the authors had introduced a new variant of (), which is given by
XY +YTX< %(X +ZV)"Z7N(X + ZY). (10)

In this article, both of the aforementioned Young inequalities (9) and (I0) are employed to prevent bilinear multiplications
between some unknown decision variables, and to tackle the nonlinearities in the Lyapunov analysis, respectively.

In the sequel, the main contributions of this article are presented.
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3 | ARTICULATING PROBLEM STATEMENT

Let us consider the subsequent equations which represent a class of disturbance-affected nonlinear systems with nonlinear
outputs:
x=Ax+Gf(x)+ Bu+ E 0, (1D
y=Cx+ Fg(x) + D|w,,

where

i) x € R" and y € R” denote the states and the measurements of the systems, respectively. The input of the system is described
by u € R°.

il) w; € R% and w, € R% are the exogenous signals such as noise or disturbances affecting the system dynamics and outputs,
respectively.

iii) A,G,B,C, F, E, and D, are known constant matrices of appropriate dimensions.

Since there are no specific constraints imposed on the dimension of the disturbances @, and w,, or on the structure of the
matrices E; and D, the model (1)) can be reformulated as:

x=Ax+Gf(x)+ Bu+ Ew,

12
y=Cx+ Fg(x)+ Dw, (12)

where E = [E1 O], D= [O Dl], and w = Zl

The system depicts a more generalized form and is often encountered in practical scenarios. Whereas, the form
facilitates the simplification of the observer design.
The functions f(-) : R" - R™ and g(:) : R” — R" are assumed to be globally Lipschitz. The detailed form of f(-) and g(-)

are illustrated as follows: _ _
S1(Hx)

= f-zg
fx) 1| (13)

| Sn(H,,X)

and _ -
£1(Gx)

0;

gx)=| ~—/— | (14)
g( Gix )

| £(G,x) |
where H; e R™"Vie {1,...,m}and G, e RP*" Vi € {1,...,r}.

The ensuing observer form is employed for the state estimation purpose:
X=AR+GfR)+ Bu+ L(y - ),
y=Cx+ Fg(x).

where % is the estimated state, and L € R"*? is the observer gain matrix.

The estimation error of the observer (13) is defined as X = x —%. From (12)) and (T3)), the subsequent estimation error dynamic
is obtained:

s)

% =A%+ Gf(x,%) — LF3(x,%) + Eo, (16)
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where
A=A-LC, a7
E=E-LD, (18)
Sfivp) f10)

Fos) = fo - f = | 20 o[ L0, (19)
| | £
g0)| [&@)

2. %) = g0 — g = |2 | [£ )], 20)

g©0)| |&@®,)

Since f(-) and g(-) are globally Lipschitz, then through utilisation of Lemma there exist functions f;; : R"x R" - R,
8 - R? x R? —» R, and known constants f 0y f b, 8a, and 8, which fulfill:

fea%)=) fiH,HZ, @1
ij=1
r.p
g% =) g,6,G%, (22)
ij=1
where M, = e,(e] (j), G, = e,()el (), f; 2 f,,(v; %1, v, %) and g, £ g,,(6]"", 6.
The functions f;;, g;; satisfy:

faij < fij < fbij; g"u < gij Sgbu'

Without loss of generality, we presume that fa[/ =0 and 8a, = 0, that is,
0< [y < fi- (23)
0<g; < 8, 24

One can refer to the paper? for additional information about this.
By employing (ZI) and (22)), the error dynamic (T6) is reformulated as follows:

m,i r.p
$=A%+ ) f,GH H%- ) g,LFG,G%+Eow. (25)
ij=1 ij=1

Remark 1. In various practical applications, it is possible to have f, , g, # 0. In such cases, (23) is rewritten as
ij ij

m,i r.p m,i r.p
%= <A + ) fo,GH,H, — Y g, LFG,G, >x + (= fo)GH HX = Y (g, — 8, ) LFG,GX +Eo.
ij=1 ij=1

1= e, e’ 1j=1 e !
N ~ -/ f’j &
A
It yields:
m,it r.p
¥ =A%+ ) f,GH H%- ) §,LFG,G%+Eo. (26)
ij=1 ij=1

For the error dynamic (26)), the functions f;; and g,; satisfy (23) and (24), respectively. Moreover, both forms, i.e., (23) and (26)
are analogous.

The objective of this letter is to develop new LMI conditions that compute the observer gain L, such that
1) When w = 0, the estimation error dynamic (23) is converging towards zero at t — oo.

2) When w # 0, the estimation error dynamic (23) converges asymptotically with maximum noise attenuation at t — oo.
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In the literature, numerous LMI-based methodologies have been established for tackling the aforementioned problem. For in-
stance, one can refer to the articles#2'1% Each of these approaches provides an improved LMI condition through the utilisation
of different mathematical tools. Despite advances in this area of LMI relaxations, the resulting LMIs remain conservative, so
there is a potential for further enhancements. In the subsequent sections, two novel LMIs will be proposed by employing a newly
defined matrix multiplier.

4 | THE SYNTHESIS OF A ROBUST CIRCLE-CRITERION BASED LMI CONDITION

This section is dedicated to the development of the new LMI condition. In order to mitigate the impact of external dis-
turbances/noise @ on the estimated states, the H_ criterion is commonly used in the control system domain (Refer to the
papers?1422) "and it is illustrated as

15lley < \fullolly, + VIl @7
2
where ¢ > 0. The term \/ﬁ indicates the disturbance attenuation level, and v > 0 is to be estimated. The condition stated in the

criterion (27)) ensures the asymptotic stability of the error dynamic (23) att — oo along with optimal disturbance compensation.
In order to analyse the M, stability of the error dynamic (23), let us consider the following quadratic Lyapunov function:

V(%) = X' PX, where P >0 € S". (28)
The error dynamic (23)) fulfills the H, criterion (Z7)) if it admits a Lyapunov function (28) such that
WEVE + X - ullol® <0. (29)

Remark 2. 1f the inequality (Z9) is true, then one can obtain:

t

[V G0+ 15 - ool <0 (30)
0
Since Vt > 0 V(X(¢)) > 0, the following inequality is derived:

-V (%) + ||)~c||f:; —/4||a)||i; <0 whent - oo. (31)

It leads to
112, < mllollZ, +V (%o)- (32)
Additionally, we have V(%) < 4. (Pl %1%, and it yields:
1212, < Hll@lZs + Amax (Pl (33)
2 £2

Inequality (33) is equivalent to (27)) if we consider v = 4,,,,(P) > 0. Hence, the error dynamic (25) satisfies the H criterion
if it possesses a Lyapunov function which fulfills (29).

Further, V(%) is calculated along the trajectories of (23), and illustrated as follows:

m,i m,ii T
V() =% (ATP + PA)X + X7 K > f,-jPGH,-jH,-> + ( > f,.jPGH,.jH,) ]x

ij=1 ij=1

(34)
r.p r.p T
%7 K 2 gijPLngjGi> + < Z gijPLngjG[> ]fc + 3" (PE)w + ' (E" P)x.
ij=1 i,j=1
From (29) and (34), we get:
we|® "[ATP+PA-PLC-CTLTP+1, PE - PLD] [*
) ] (%) —qu )
T[ mna T
X - PGH,, PGH,, X
* [z)] z ( [( 0 U)] [/, H; O] + [ £, H, O]T [( 0 ”)] >l [;C)] (35)
=
17 [ rp T ~
h: (-PLFG,,) 1 [(-PLFG;,) 5
B [E (75 e oirias o [75%] )]
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Now, the necessary condition to obtain W < 0 is established as follows:
A +N; +N, <0, (36)
where . . .
A'P+PA-R C-C'R+1, PE-PLD
AL=[ " ] (37)
(%) —ul,
H;
m,ii f-/\
(PGH,)) T
N1=Zl<[ o |fulH: O] +VjU, ). (38)
J= -\Vlf—‘
Ut !
G;
r.p T —~N =
(-RTFG,)) .
N2=Z<[ o " |8slGi O] +NjM, ). (39)
ij=1 ——
EZ—J -
MT Ny
and R" = PL.
To improve the readability, the subsequent notations are introduced for the further part of this section:
T
u=[u! ...ul ..Ul Ul 42)
v=T ..V v v, 3)
T
_ T T T T
M= [M11 oMM Mrﬁ] , (44)
T
_ a7 T T T
N = [N11 L NI LNT L N,ﬁ] , 45)
where U;;, V;;, M;; and N, are defined in (38) and (39).
Further, V' and N can be expressed as
[v,,] [H, 0 ...0 ... O ... O][f, 1]
Vi, * H ... 0 ... 0 ... O] f,I
: * x 0 ...0 ..0 :
Via * x x H ... O ... O]ffil
=| "= | =Ho 46
v : * % x x - 0 ... 0 : ’ (4)
V. * % x % x H, ... O||f,I
: * *x *k x %k x - O :
| Vi | IR O S G S G ¢ |]'|]m_ _fmﬁI_
N ~ S ——
H @
[N,]1 [G, O ...0 ... 0 ... O][g,TI]
Ny, * G, ... 0 ...0 ... Offgp,I
: * *x - 0..0..0 :
Ny; *x % *k G, ... 0O ... Of]g;l
N=| "= ! P =Gy 4
: * % *x x . 0..0 : &Y, “47)
N, * *x *x x % G, ... O]|gl
: * *k Kk ok x *k . O :
[Nl Lx *x x *x % x % G [|g,]I]
~ ~- — N——
G v

where H; and G; are described in (38)) and (39)), respectively. By incorporating all these notations, (@6) and (7)), one can rewrite

N, and N, as

N, = UT(H®) + (H®)"U,
N, = M"(GYP) + (G¥)"M.

(48)
(49)
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le Zal2 Z Zbll Zbll Zbll cee Zbll Zbll . Zbll
1 21 22 20 ml m2 mn
Za{z le Zﬂ% Zbiz Zb’l7 Zb,')g . Z 121 Zblz’) . Zblz
Zy Zp oo Zig Zys Zys oo Zys o Zys Zyn oo Zys
Zyn Zyp oo Zyp Zyy Zy o Zay o Ty Zpr o Ly
21 21 21 ii m m mi
Zoy Zog o Zop Loy, Zmoe Zg, o Ly Lo D
Z=[ : P s C : (40)
Ly Zyo oo Zyn Zg L oo Log oo Ly Ly Ly
Zyn Zye oo Zys Ty Zyo o Ty Zgy Zg e Za
ml m m ml ml ml m mn
Zyn Zyo o Zys Ty Zypo o Zyi o Zg Zyy e Zg
Zb'l"l” Zb’]”2’l Zb']”’; Z/)Zl 2/7’1 Z/,mv . Za,lnﬁ Z 2 . Zmn
where Z;; >0 e S, Zk>OESnVlkE{1 ,m},&j € {1,...,n}; Zk1>OESnVl€{2 oml,ke {l,...,m—
1},&]6{1, n}suchthatZ>O
Si S oo Sa Sy Sy e Sy Sy Sy e Sy 1
Saiz S12 cen Saf, Sb,l,f Shé% e Sb,172, Sblll Sbl72 Sblg
P .. . 2 2p .r r2 P
Saly S, oo Sty Sy Syl Sy Sy Sy e Sy
Sb;i Shé% . Sb;[: S21 Sa;z . Saé’; SV/?;G ASV/);J AS‘/]:"‘
Sbéé Shé% . Sbé[zi Saéz S22 . Sagﬁ . As‘hyl‘l ASV/’,:wl AS‘hir
S= P F 3 z P P (41)
Sip Sy o Syp Sap S o Sop o Sy Sy Sy
Sb,lll SbI]12 cen Sb'l{) AS/),‘.]] AS/);]‘ . AS/)/:; . Srl Salz .o Sa:ﬁ
Sbylj_l Sbl; e Sbrlf LSvh’l:] AS‘/),ljl . ASVI)"? . Salz Sr2 . Sazﬁ
Sh]l Sb:; S p 5/) S/f . S/;f;'/’ . Sa:ﬁ Szp . Srﬁ
where S;; > 0 € 7, Sk >0e$S? Vl ke{l,... r} &jefl,....p}; Sy >0e8?, Vie {2,...,r},k€ {1,....,r—1},&j €
{1, ..,p}sothat§>0 '
The deployment of the new variant of Young inequality on (@8) and (@9 yield:
1 —
NI < SU + ZH®) 77\ (U + ZH®), (50)
< %(M + SGY¥)'S™H (M + SGWP), 31
where the matrices Z and S are defined in and (@T), respectively.
Hence, the condition (36) is reformulated as
+ %(U + ZH®)'Z"\(U + ZHD) + %(M +SG¥)'S™I (M + SGY) < 0. (52)

Inequalities (23) and (24) imply that each element inside ® and ¥ is bounded and belong to convex sets 7, and G,, respectively.

The sets F,, and G, are defined as follows:

F,2{®:0<f;
G, 2{¥Y:0<g, < g, Vie(l ...

Sfb,,j,Vie {1,....,m}&j €

(...
I &jell,...

L}
B}
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The set of vertices of F,, and G, are given by
H, = {{ru,...,rlﬁ,...,Pml,...,rmﬁ} L F, € [O,fbl/]}, (53)
H, = {{gl,,_..,g,ﬁ,...,gﬂ,...,g,ﬁ} LG, € [o,g,,u]}. (54)
Therefore, the inequality (52) is rewritten as

<0. (55)
vV WeH,,

Ap+ l%(U +ZH®) 7 \(U + ZI]-IKD)] + l%(M +SGY)'S™'(M + SGY)
v deH,

Now, we are ready to state the following theorem:

Theorem 1. Let us consider the matrices Z, S, which are expressed in the form of {@0), {T)), respectively. The estimation
error dynamic (23)) is H,, asymptotically stable if there exist two matrices P > 0 € S” and R € RP" such that the ensuing
optimization problem is solvable:

min u subject to
A, (U +ZH®)T (M + SG¥)T
(%) -27 (0] <0, Vo e H,, WWeH,
0 ) -2S
where A;, U, H, M and G are specified in 37), @2), @6), @4) and (@7), respectively. The gain matrix L is calculated by
utilising L = P~'RT.

(56)

Proof. The implementation of the Schur Lemma on the expression (33) yields the LMI (56). From convexity principle which
is proposed in the paper, the error dynamics (23)) satisfies H_, criterion (27) with v = A, (P) > 0 and minimum  obtained
from the solution of LMI (56)) if LMI (56) is solved for all ® € 7 and ¥ € G . Hence, proved. O

In order to ensure the stability of the estimation error dynamic (23]) in the absence of the exogenous disturbances (i.e., ® = 0),
one can follow the succeeding remark:

Remark 3. At w = 0, an inequality (29) becomes:

V() + |IX])? <0. (57)

An inequality leads to the exponential stability condition V(%) < —cV (%), along with ¢ = L_ > 0. Since the error

dynamics (23)) admits the exponential stability criterion, it ensures that the error dynamics (23) is exponentially stable when
w = 0.

In the next part, we propose a second LMI approach.

S | NEW LMI DESIGN BY EXPLORING ISS CRITERION

In this section, the novel LMI condition is derived by incorporating the ISS notion with a popular LPV approach, which ensures
the stability of the error dynamic (23)).

In order to facilitate the lucidity of the presentation and to enhance the comprehensibility of the contributions, this section is
divided as follows:

1. In the first part, we will derive certain conditions which guarantee that the error dynamic (23)) is ISS w.r.t. .

2. Later on, a necessary criterion in the form of an LMI is deduced by deploying these conditions.

5.1 | Establishing the essential criterion for ISS
The following theorem provides the required conditions which ensure the ISS behaviour of the system (23) w.r.t. w:

Theorem 2. 1) The error dynamic (23) is ISS with respect to w if it possesses an ISS-Lyapunov function (28).
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II) The trajectories of the system (23) satisfy the following constraints:

150l < 1/ 2me P e b [ — o2 (58)
- /lmin(P) 0 GAmin(P) 2’

IIT) In addition to this, X(¢) is bounded at ¢t — oo, such that:

for any £, bounded w € RY.

O T L (59)

min(

Proof. For simplicity, the proof of the theorem is provided in the subsequent parts:

e ISS-Lyapunov function:
Let us consider the Lyapunov function (28). One can easily notice that the function V(%) satisfies:

(PIXI? S V() < Ay (PIEII. (60)

)‘min max

Further, the derivative of the function V(%) along the trajectories of (23)) is calculated and illustrated in (34).
By implementing the inequality (9) on the term %" PEw + o' E" PX of (34), we obtain:

%" PEw + w'E"P% < 67'3"(PE)"(PE)X + 600 w,

where 6 > 0.
Thus, the inequality (34)) is reformulated as follows:

m,i m,i T
V) <x [ATP +PA + [ETP(5‘11)P[E] 4+ 57 K > f,-jPGH,-J-H,) + < > f,.jPGH,.jH,) ]x

ij=1 ij=1

rp P T 6D
— %7 K > g[.jPLFQ[jG[> + < D g[jPLFQ,»jGi> ]x + 60" .
ij=1 ij=1
Let us consider a positive scalar ¢ such that the following inequality holds:
m,n m,n T
[AUP + PA + [ETP(5—11)P[E] + K > f,-jPGHini) + < D f,.jPGH,.jH,) ]
ij=1 ij=1
. . T (62)
+ < > gijPLngjG,) + ( > gijPLFQijGi> +oP<0.
ij=1 i,j=1
It leads to:
V(%) < - (6P)X + b0 w. (63)
which gives:
V(®) < =0 2o (P)IZI? + 8ll0]|. (64)

From (60) and (64), one can notice that the Lyapunov function (Z8) fulfills (3)) and @) along with
(%) = Anin(PIIEIP, (%) = A (PRI, 3(%) = =0 Ay (P)IXII* and ay(@) = 8]lo]|*.

Since V(%) meets the criterion illustrated in (3) and (@), it is an ISS-Lyapunov function. Therefore, the system (23) is ISS
with respect to w as it admits an ISS-Lyapunov function (Z8). Hence, statement [[ of Theorem [2]is proved.

e The proof of statements [T and [[IT};

From (63),
V(%) < —oV(%) + 8|0, (65)
It implies that the trajectories of V' (X) hold:

t
V(@) < V(Xp)e ™ + e / e llo(s)llZds < V(X)e ™™ + g(l —e™) sup [lw(s)]3. (66)
0

s€[0,1]
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Since0 < 1—e < 1and sup [lw(s)|]? < ||co||iz, the inequality (66) is altered as:
s€[0,1]

- e\ -t O
VE®D) SV (Ee + —llol,. (67)
As we have A, (P)||X@®)]1? < V(X,1) < A (P)|X(D)]|%, it is easy to derive:
vy _ < VEO+8le0l; Amax (P | %o~ + 80~ |o||7,

X(1)])? < 68
HX( )” h Amin(P) B imin(P) - /lmin(P) ( )
Thus, for any £, bounded w,
~ /lmax(P) —Zt~ 5
XD < 4/ 5 2 %l + 4/ 5 ol -
A’min(P) Ullmin(P) ?
Hence, statement|[Il}is proved.
Att — oo, the inequality (58) becomes:
x(H)|| < —_— 2
150l <\ /-5 ol
Therefore, X(¢) is bounded at t — oo.
This ends the proof of the theorem. O

Remark 4. In the case of @ = 0, the condition specified in (38) is reformulated as

Anax(P) _e
K0l < 4/ 20 5.

Hence, the error dynamic (23)) is exponentially stable in the absence of disturbances (i.e., at @ = 0).

5.2 | Formulating a matrix-multipliers based LMI

This segment of the section encompasses the development of an LMI condition which is based on the aforementioned conditions
described for stability.

Theorem 3. Let us assume that there exist two symmetric positive definite matrices Z and S, which are defined in @0), @I),
respectively. The estimation error dynamic (23) is ISS w.r.t. w if the following optimization problem is solvable:

min § subject to

T T
L, (U+ZF®) (M+SHY) (69)
* -27Z (0] <0,vdeF, VWeH,
* * -2

where P = PT >0 € R™ R e R § ¢>0and
ATP+PA-R'"C—C"R+06P PE-R'D

L= (%) i

(70)

Other variables remain consistent with those specified in Theorem In addition to this, L = P~'RT aids in the determination
of the gain matrix L.

Proof. One of the essential conditions described in the proof of Theorem [I]is showcased in (62)). Further, one can rewrite the

inequality (62)) in the subsequent manner:
L, +N, +N, <0, 1)

where L;, N, and N, are defined in (70), (38) and (39), respectively. Additionally, RT = PL.
From (30) and (51)), we obtain:

L, + %(U + ZH®) 7z \(U + ZH® + %(M +SGY)'S™ (M + SGY) < 0. (72)
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Analogous to (33), the inequality (72)) is rewritten as

L, + %(U +ZH®) 7 \(U + Z[H]CD)] + l%(M +SGY)'S™H (M + SGY) <O0. (73)
v ®eH, v YeH,,

The Schur compliment of yeilds LMI (69). According to the convexity principalll, if LMI (69) is evaluated for every
elements of ® € 7 and ¥ € G; , then the error dynamic (25) satisfies (62)). It ensures that all conditions specified in Theorem
are fulfilled by the error dynamics (23). Hence, from Theorem 2} system (23) is ISS w.r.t. . Hence, the proof is completed. [J

In the following segment, the effectiveness of the proposed LMIs is discussed.

6 | COMMENT ON THE PROPOSED LMlIs: EXPLOITING THE NUMBER OF DECISION
VARIABLES

The introduction of the newly defined matrix multipliers aids in the improvement of the LMI conditions as compared to the
existing approaches. These advancements are mainly because of the additional number of decision variables in the proposed
LMIs. Hence, these matrix multipliers play a vital role in LMI enhancement. In addition to this, one must know how these
matrix multipliers add extra numbers of decision variables. The objective of this section is to tackle such questions and to prove
the uniqueness of the proposed LMIs. First, the computation of the number of decision variables inside the derived LMIs is
presented. Further, the comparison with existing LMI approaches is provided to validate the novelty of the proposed method.

As stated earlier, the use of the matrices Z and S in LMIs (56) and (69) allows the inclusion of additional numbers of decision
variables. Both LMIs contain the ensuing number of decision variables:

N, =np_|_n(n_+1)_‘_q_i_ mii(mii + 1) \ (a1 + 1) 4 rp(rp+ 1)\ (P(p+ 1) ’
: 2 2 2 2 2 (74)
ﬁ,—/ . N )
NP Naddl Naddz

where Np, N, aad, and N, add, are the number of variables obtained from matrices L;, Z and S, respectively. Moreover, the terms

add, an .dq. represent the additional number of decision variables in the propose s. The total number of additiona
j\fdddl deddz p t the additional ber of d bl the proposed LMIs. The total ber of additional
variables is given by,

o= N = (PEOEED (RO (BN (BPEDY

Now, let us determine the number of decision variables in the subsequent cases:

1 Case 1: Block-diagonal matrix multipliers (similar to the paper?)
If one deploys the block-diagonal matrices in the proposed LMIs, then the following number of decision variables is obtained:

nn+1)

+q+ N,

N;ddzmﬁ<ﬁ(ﬁ; l)>+rﬁ<ﬁ(ﬁ; D). (76)

N ald 4 denotes the number of variables obtained from block-diagonal matrices.

N,,. =np+

Uy

where

2 Case 2: Diagonal matrix multipliers (same as the one proposed in")
Here, if we use Z and S as the diagonal matrices, then the number of additional variables is achieved as follows:

nn+1)

Ny, =np+ +q+ N

Uy

along with

2
Nadd
N azd 4 signifies the number of variables obtained from diagonal matrices.

= mi* + rp’. (77)
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3 Case 3: Matrix-multiplier showcased in the paper!
Here, if we employ the matrices Z and S in the form of Equation (28) of the article’”l, then we get:

n(n + 1)

Ny, =np+ > q+ f\f:dd,
along with
N2y =Cm—1D2i- )<M> +(2r—1)(2ﬁ—1)<@>. (78)
N ;’d 4 represents the number of variables obtained in Case 3.
Since m and 7 are positive integers, it is easy to interpret
Nia S N S N £ Naga: (79

Hence, the number of additional decision variables obtained from the proposed matrix multipliers is greater than the one
employed in the existing methods. These additional variables add extra degrees of freedom and improve the feasibility of LMI.
In the sequel, the effectiveness of the derived LMI approaches is highlighted through a numerical example.

7 | EVALUATING THE PERFORMANCE OF THE PROPOSED LMIS AND THE OBSERVERS

The primary aim of this section is to emphasise the significance of the derived LMI conditions. In order to achieve this objective,
a numerical example of the Lipschitz nonlinear system is utilised.
Let us consider a nonlinear system under the form of (I2) with the subsequent parameters:

o 1 0 0 0 00 1
—-48.6 —1.25 48.6 0 0 00 1 1000 10 1
4=l 0 0 o 1’B_z’G_10’E‘1’C‘[o100]’F‘[01]andD‘H'

195 0 -1950 0 01 1

The nonlinearities of the dynamics and outputs are illustrated as
fi1(H,x) sin (0.3x,) | g,(F;x) sin (0.5x,)
= = d = =
Fx) [fz(Hzx) cos (0.3x,x)| " ™" 8= (Fpo| = |sin0.5%0)]

(1)(1)_018 _01(1)(1)8 01 00O 0010
where H, = ; Hy = ;Fp=11-1 1 0fland F,=|0 1 00].

-10 10 1 000 00 10 0-100

0000 0000

Thus,m=2,r=2,n=4and p =

It is easy to infer that both functions f(x) and g(x) fulfill (23)) and (24), respectively. Therefore, LMIs (56) and (69) can be
implemented to design the observer (13).

Let us consider the ensuing cases for the analysis of the proposed LMI performance:

I) Case 1: LMI (56) with the following matrices:
S S
and S = [ a bﬂ] , (80)

an
where Z;;, Z, . Z, € R™"Vi,je€{l, 2} and Sy, Sy, Sy, € RPP are symmetric matrices such that Z > 0 and S > 0.

The form of the matrices illustrated in (80) is equivalent to the one described i in (@0) and @I).

II) Case 2: LMI (56) along with
Zy aZy aZy
S S
Z=\aZy Zy aZy|andS = [ﬂ; ﬂS 21] , (81)
aZy aZy Zy 2
where Z;; = Z; € R™S,, = S; eR™ Vi je{l,2};a=p=02sothat Z > 0and S > 0. The structure of the
matrices specified in (8T) is equivalent to the one proposed in the paper"
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III) Case 3: LMI (56) by using

where all the matrices are same as the one defined in (80) such that Z > 0 and S > 0. The structure of the matrices
illustrated in (82) is similar to the one utilised in the article®.

IV) Case 4: LMI (69) by utilising the matrices specified in (80).
V) Case 5: LMI (69) by deploying the matrices illustrated in (§T).
VI) Case 6: LMI (69) by employing the matrices described in (82).

VII) Case 7: LMI approach proposed in the article®. (We have considered K, = 0)

Table 1 A synopsis of LMI solutions obtained in several cases

Parmeters obtained from LMI solution
No. | Cases

VH 6 r= aamiw)
1 Case 1 N.A. (Not Applicable)
2 | Case2 | 3.4457 N.A.
3 | Case3 | 2.8374 N.A.
4 | Cased4 | N.A. | 0.2652 1.6284
5 | Case5 | N.A. | 1.0273 32.0516
6 | Case6 | N.A. | 0.7351 2.7113
7 | Case7 | 2.0153 N.A.

The feasibility of LMIs (36) and (69) is tested in all the aforementioned cases using MATLAB LMI toolbox by considering
o = 0.01. The optimal values obtained from LMI solutions are outlined in Table|1| It showcases that the value of \/ﬁ obtained
in Case 1 is better as compared to the one obtained in Case 2, Case 3 and Case 7. It interprets that the proposed LMI (56)
provides a more optimal solution with the newly defined matrix multipliers compared to other matrices used in literature and
the existing methods. Additionally, Table [T] conveys that LMI (69) provides the optimal values of § and y with the proposed
matrix multipliers (i.e., (80)) than with the existing matrix multipliers (that is, (81)) and (82)). Thus, Table[T]aids in highlighting
the superiority of the proposed matrix-multiplier-based LMIs over the existing methods.

Further, the performance of the observer is analysed for the above-mentioned cases. The initial conditions of the systems
are as follows: x, = [1 11 I]T. The input of the system is considered as u = 2sint V¢ € [0,20]. Let us presume that the
dynamics and outputs of the systems are corrupted with the Gaussian noise (o ~ N (0, 1)). Through the utilisation of the observer
gain matrices obtained from LMI solutions, the observer (T3] is implemented in a MATLAB environment. Figure [T|represents
the plot of the estimation error (X) obtained in Case 1. Whereas, the estimation error achieved in Case 4 and Case 7 are shown
in Figure[2]and[3] respectively. All these figures highlight the asymptotic convergence of the estimation error. In addition to this,
these figures infer that the observer (34) with the proposed LMIs (i.e., (56) and (69)) provides a better noise compensation as
compared to the method proposed in the article”. To validate this, the RMSE values of the estimation errors are computed over
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Figure 2 Estimation error (X) for Case 4

the duration (5 to 20 sec) and summarised in Table [2] The RMSE values of the estimation error (X) are smaller in Case 1 and
Case 4 than in other cases. It infers that gain obtained in Case 1 and Case 4 provides better noise compensation as compared to

other cases. Hence, the significance of the proposed LMI-based observer is emphasised.
In the sequel, some concluding remarks regarding the proposed methods are provided.
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Figure 3 Estimation error (X) for Case 7

Table 2 Comparison of RMSE values of X in different cases

Different cases Estimation error (X)
X X, X5 X,

Case 1

Case 2 0.0235 | 0.0359 | 0.0169 | 0.0240
Case 3 0.0180 | 0.0263 | 0.0113 | 0.0221
Case 4 0.0025 | 0.0029 | 0.0018 | 0.0022
Case 5 0.0037 | 0.0116 | 0.0027 | 0.0055
Case 6 0.0038 | 0.0102 | 0.0028 | 0.0049
Case 7 0.0131 | 0.0254 | 0.0084 | 0.0148

8 | CONCLUSIONS

This letter delved into the establishment of an LMI-based observer for nonlinear systems whose system dynamics and outputs are
affected by noise/disturbance. To determine the parameter of the proposed observer, two novel LMI conditions are developed in
this article by employing the H_ criterion and the ISS notion. Both LMI conditions are formulated through the utilisation of the
reformulated Lipschitz property, the well-known LPV approach and a newly defined matrix multiplier. The primary component
of this new design approach is the use of a generalized matrix multiplier, which allows us to add some extra numbers of decision
variables inside LMIs. The incorporation of such additional decision variables yields the introduction of some extra numbers of
degrees of freedom, which enriches the LMI feasibility. Further, the superiority of the newly defined matrix multiplier and the
performance of the proposed LMI-based observers are highlighted through a numerical example in the MATLAB environment.
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This paper presents a novel matrix-multiplier-based Linear Matrix Inequality (LMI) approach for the observer design of a class
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e the Young inequality in a convenient form;
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multiplier matrix, compared to those existing in literature, the introduction of a novel mathematical tool, under the form of a
new Lemma, was necessary. Hence the importance of the paper, as such a tool may be leveraged in other control design issues,
such as stabilization; trajectory tracking; and fault diagnosis.
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