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Abstract: This paper is concerned with a class of spherically symmetric analytical so-
lutions to the isentropic compressible Navier-Stokes equations with physical vacuum free
boundary in RY, when the viscosity coefficients are proportional to the pressure function
(see (1.2)-(1.4)). It was shown that the free boundary will grow linearly in time which
is consistent with the linear growth properties of inviscid fluids (Euler equations). We
derived a second order nonlinear ODE of the free boundary r = a(t), and tracked the
profile of a(t) by studying directly the intrinsic structure of the ODE, instead of the usual
energy methods used in the previous literature. In particular, these results can be applied
to the Navier-Stokes equations with constant viscosity and the Euler equations.
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1 Introduction

The evolving boundary of a viscous fluid can be modeled by the following compressible
Navier-Stokes free boundary problem:

[ py +div(pu) =0 in Q(t),
(pu)¢ +div(pu ®u) + V (p(p)) — divk =0 in (:2(15),
p>0 in Q(f), (1.1)
p=0 on I' (t) = 0Q(t),

| (o) = (9o, w0) on 1= 0(0)

Here p, u = (uy, uy, ..., uy) € RY (N > 2) and p = p(p) denote, respectively, the density,
the velocity field and pressure of the fluid, which are functions of the space and time
variable (x,t) € RY x [0,00); Q(t) € RY and T (t) represent, respectively, the changing
volume occupied by a fluid and the moving interface at time ¢, equation (1.1), is called the
vacuum free boundary condition (or continuous density condition). Equation (1.1) can be
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used to describe the boundary expansion of gaseous stars, liquid flow in pipes, atmospheric
flow, etc. For the polytropic gases, the pressure satisfies the v-law assumption

p(p) = Kp”, v>1, (1.2)

where K > 0 is a fixed constant and 7 is the adiabatic exponent. The different values
of ~ imply different physical significance [2], for example, v = 5/3, v = 7/5 and v = 1
correspond to a monatomic gas, a diatomic gas, and isothermal gas, respectively. In this
paper, the viscosity tensor W in (1.1), is assumed to be of the following form:

U =\ (p) Vu+ Ay (p) Vu® + X3 (p) divu Iy, (1.3)
where Iy is the N x N identity matrix, and for simplicity, we set the viscosity coefficients
Ai (p) = kip’}” k; >0, 1=1,2,3, (14)

where k; (i = 1,2, 3) are three constants. Indeed, as in [11] by Guo and Xin, the viscosity
tensor can usually be given by the following form

~ Vu + Vu” )
U= (p) — T (p) divu I, (1.5)
pi(p) >0, pi(p)+ Npz(p) >0, (1.6)

where p; and ps are the Lamé viscosity coefficients, and the inequality (1.6) is derived
from physical constraints. Therefore, the assumptions of the viscosity coefficients in (1.3)-
(1.4) falls within the scope of hypothesis (1.5)-(1.6), and they are physically meaningful.
Due to its importance and challenge in physics and mathematics, the vacuum free
boundary problems are widely studied and many important developments on the well-
posedness theory of weak or strong solutions for both inviscid and viscous flows have
been established in recent years. The difficulty of the problem lies in the degeneration of
the boundary, and the usual method of hyperbolic equations cannot be applied directly.
The local well-posedness was only obtained recently for compressible inviscid flows (cf.
[3, 4, 15]), and for compressible viscous flows (cf. [8, 14]). For the global existence
results to the vacuum free boundary problem in multidimensional space, most of which
are concerned with spherically symmetric solutions (cf. [11, 12, 22, 23, 37]) or affine ones
(cf. [27, 29]). In general, it is still a challenging problem to obtain the global existence
to vacuum free boundary problem of the system (1.1), (1.5) and (1.6) in RY (N > 2).
On the other hand, the construction of exact solutions is a very important part in
mathematical physics, since that it can further understand the nonlinear behaviors of
the system (see [35]). First, for non-rotational flows with k; = ko = k3 = 0, the radially
symmetric solutions or exact solutions for the Euler equations were established in [19, 28]
and references therein, while the blowup of radial solutions to the compressible Euler
equations with/without damping on some fixed bounded domains are given in [6]. For
rotational analytical solutions to the Euler equations, one can refer to [35, 38] and ref-
erences therein. Taking the self-gravity force into consideration, Makino [24] proved the
blowup solutions to the 3D Euler-Poisson equations for v = 4/3, the result was extended
by Deng etal. [5] and Yuen [32] to the case v = (2N —2)/N (N > 3) and the case allowing
viscosity or frictional damping, respectively. For more results on the Euler equations and
related equations, one may refer to [1, 10, 13, 20, 21, 31, 36] and references therein.
When k; = > 1, ko = 0and k3 = y—1 > 0, Guo and Xin [11] constructed spherically
symmetric analytical solutions to the Navier-Stokes equations (1.1) in RY (N > 2) with
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both vacuum free boundary and stress free conditions, and showed that the large time
expanding behaviors at an algebraic rate of the free boundary. Two related spherically
symmetric results for the free boundary problem of damped Euler equations in R? and
Navier-Stokes equations with density-dependent viscosity coefficients that k1 = ky > 0
and k3 = p? (1 < B < 7) in R? were established in [7, 16]. Motivated by the results in
[7, 11, 16], we choose r = a (t) as the free boundary and construct a class of spherically
symmetric analytical solutions for the Navier-Stokes equations (1.1) in RY (N > 2)
space with a general viscosity coefficients satisfying (1.4). These spherically symmetric
and linear-growth solutions will provide reference examples for numerical computation.

In the following sections, we will first reformulate the original free boundary problem
in spherical coordinates and state the main results in Section 2, then prove the main the-
orems in Subsections 3.1-3.2. For the reader’s convenience, we give an explicit expression
for the viscous terms divW in spherical coordinates in appendix.

2 Formulation in spherical coordinates and main re-
sults

In spherical coordinates, the region surrounded by vacuum can be described as

Q(t):={(r,t) e R x [0,00)[0 <7 < af(t),t >0}, (2.1)

where r = /22 + 22+ - + 2%, the center of the region (0,0) is fixed and the free
boundary r = a(t) satisfies

d .
Za() = u(a(t),t) with a(0) = ao >0, (2:2)

where the positive and bounded constant ay represents the initial location of the free
boundary. The density and velocity field of the fluid have the following form

p(x,t)=p(rt), u(x,t) =u(rte,, (2.3)

where e, = * = M is the outward unit vector along the radial direction, and the

dissipative term div¥ in the equation (1.1), in the spherical coordinates reads
divl = div (A (p) Vu) + div (A2 (p) Vu") + V (A3 (p) divu)

. umm+xxm+Aum>Qw+9llﬁﬂ)

r

FOu )+ 22 (0) + 20 (), v+ 0, S e 2.0

(The derivation of Eq (2.4) is shown in the appendix.) Thus, the equations (1.1)-(1.4)
can be rewritten in spherical coordinates as follows:
pi+ (pu), + (N —1) &2 =0,
p[ue + ] + py — [(Al + A+ As) (u + M) (2.5)
O A+ ), 1y + (), 252 =0,



or equivalently as

pe+ (pu), + (N —1) 22 =0,
p [+ wr] + Koy = pr = [+ by + k) 7 (wy + 2522 (2.6)

T

+ (k + ks + ks) vp" ey + kwfﬂ*lpr@] =0,
with the initial conditions

(p7 u) (7“, t)'t:o = (p(l, UO) (7“), on (07 aO) ) (27)

and the Dirichlet boundary condition on the center of the region and the vacuum bound-
ary condition on the free boundary

w(rt)l,_g =0, pla(t),t) =0. (2.8)

In the following, we will use C' > 0 to denote the generic constant which only depend
on v, k; (i =1,2,3) and the initial data such as ay, a; and Hy appearing in Theorem
2.1, but are independent of ¢, and they may change from one line to another. The labels
“r Sy and “z ~ y” represent “z < Cy” and Ciy < x < Cyy, respectively. The main
results read:

Theorem 2.1 The problem (2.6)-(2.8) has a global solution of the form

1

k=1 (1 _ 2 \]7 T ,
p(r,t):[ ’ <:N (52“)” ,u(r,t):ZT(tt))r, (2.9)

where constants v > 1, k>0 is an arbitrary constant, and the free boundary a(t) €
C?([0, +0)) satisfies the Emden equation

1 ~  d(t)
m + (k1 + k2 + Nk3) ’Ykm =0, (2.10)

a’ (t) — K~k
with initial values
ag=a(0) >0, a; =d (0) € R. (2.11)

Remark 2.2 In the form of the equation, (2.10) generalized the one studied in [34, The-
orem 1] for the case that ky = ko = 0:

" 7 1 -~ a (t) o

In addition, setting N =2 in (2.10) to deduce that

o

-~ 1
2
a (t) — K’yka?y——l o2 (t)

()

which is a special case studied in [17]. Therefore, the properties of the solution of equation
(2.13) (see (2.14)-(2.16) ), can be studied by using a similar analytical method in [17].



Theorem 2.3 For the Emden equation (2.10), it has a unique and positive solution a(t)
such that

O<a<a(t) <C(1+t), fort>0, (2.14)

7\ VING-1) = A
Kk Kyk_ —N(y-1
whereg = (m) , HO = % [a% + ]\?(711) Qg (v=1) and C = max {ao, (2H0)1/2}

Furthermore, the large time behaviors of a(t) and a’ (t) can be described as follows

. o
tlgrnooa (t) /t = tl}glooa (t)=Co >0, (2.15)
a(t) ~ Cot + ag for a suitably large t > 0, (2.16)

with constant

. (kl + kQ + ng) ")/,I; —[N(y=1)+1] too K")/’l;
Go=a— (h—1)+1 O A NGO (1) dt.

Remark 2.4 The constant Cy appears in (2.15) is well-defined through (3.34) and (3.35).
Similar to the derivation of equation (2.10), the following two special cases hold:

Case (1): A\ (p) = k1, A2 (p) = ko and A3 (p) = ksp?, then a(t) satisfies that

~ 1 ~ d(t)
" —
Case (2): X\ (p) =k; (i =1,2,3), then a(t) satisfies that
~ 1
" (t) — Kyk——— = 0. (2.18)

aNO-D+1 (¢)

By comparing equations (2.10), (2.17) and (2.18), it can be seen that the different effects
of wviscosity. Moreover, Theorems 2.1 and 2.3 also apply to equations (2.17)-(2.18), except
that Cy needs to be made with small adjustments. Indeed, (2.9) also gives a special solution
to the Euler equations, due to the fact that the viscosity term vanished ((u+ %), =0, see
(2.6),). Note that the spherically symmetric solution in (2.9) is exactly the simplest affine
solution, and we guess that the results in Theorems 2.1-2.3 can be extended to the general

affine solutions without symmetry, by using the matrix and curve integration theories, as
has been done in [9, 27, 29, 30].

Remark 2.5 If one sets ky =~ > 1, ko =0 and ks =y — 1 > 0, then (2.17) reduces to

o . d(1)
which is a generalization of equation (40) studied by Guo and Xin [11] for N = 3. In

fact, they [11] assumed that the Bresch-Desjardins equality

p2(p) = puy(p) — pa(p), (2.20)

by setting that pu1(p) = p7 and pus(p) = (y—1)p?. Here, we remove the Bresch-Desjardins
equality condition and obtain a global solution to equation (2.10) by studying the equation
directly instead of the normal energy method.



Remark 2.6 We remark that the solution in (2.9) satisfies the physical vacuum boundary
conditions (see [18, 26, 36]). Indeed, (3.2), (3.3), (3.7) and (2.10) give that

Y—2

Kyp'p, = L P (t) — (k1 + ko + Nk3) Vua’ (t)
a(t) T
pr ~ 1 Kv%p

aN(=D+1 (t) T gNO-D+2 (t)r,
which implies that

Kfy%

Ky 1) — -2,
), =K e = e

v—1

and ~
1 Eyk(y=1)(a(t) +7)
_ 1 _
p/ (p) - Kﬁ)/p’y - 2aN(—1)+2 (t) (a (t) - T) : (221)
This, together with (2.14), implies that the sound speed ¢ = \/p’ (p) is CY/*-Hélder con-
tinuous across the vacuum boundary (the physical vacuum boundary).

Remark 2.7 In this paper, we have selected special viscosity coefficients in (1.4):
Xi(p)=Fkip, k; >0, i=1,2,3. (2.22)

The remain problem is how to extend the range of parameters in equation (2.22), or to
wvestigate a more general form of the viscosity coefficient as follows:

A1 (p) = kip9i7 1=1,2,3, (223)

with some constants 0; > 0 and k; > 0 (1 = 1,2,3), and it will motivate our future work.

3 Proof of Theorems

3.1 Proof of Theorem 2.1

Now, we are ready to show the proof by some direct calculations. Firstly, we quote a
result of the self-similar solution for the continuity equation of mass obtained by Yuen:

Lemma 3.1 (Lemma 3 of Ref. [33]) For the equation of conservation of mass (2.6),

i radial symmetry,
U
po+ (pu), + (N =1 2= =0,

there exist solutions,

p(rt) = 1172 0) %‘zg”, u(rty= 210, (3.1)

with the form f >0 € C' and a(t) >0 € CL.



Next, we will seek two suitable functions f (s) of self-similar variable s = aLt), and

a(t) satisfies the Emden equation (2.10). Substituting (3.1) into the equation (2.6), to
deduce that

plu + uw] + Kyp' ™ p — [(/ﬁ +ky + ks) p (u i
(N -1) u}

r

(N—l)u)

r

+ (k1 + ko + k3) vp " pruy + ksyp? s

a' () a' (t) a(t) 1
— _— K U s
pKa(N)ﬁa(w%u) TR

—kh+%+N&Mﬁlmi$}=Q (3:2)

which is equivalent to the following
a// (t)
a(t)

In view of (3.1), the third term on the righthand side of the equation above can be
rewritten as

P’ *pra (1)
a(t)

P 2p,

P 1 ( f (5) ) fls) 1 _1f2(s) f(5) (3.4)
r r\aV (1) aV(t)a(t) r aNO-DHL(E) " '
To seek a solution to equations (3.3)-(3.4), similar to that in [7, 11], we set
FI72(s) fl(s) = —ks, k>0, (3.5)

integrating it over (s, 1) and using the boundary condition that f (1) = 0 (due to (2.8))

to get ) )
f(s) = [w (1_32)] N — [@ (1—@27’(75))]7 . (3.6)

Hence, (3.4) can be rewritten as follows

p’yizpr _ 1 _kﬁ _ _L (3 7)
, r aNG-D (1) aNO-D¥2 (7)’ :

Thus, inserting (3.7) into (3.3), one gets

a” (t) K~k k a' (t)
() T NGz 0 + (k1 + ko + Nk3) ’yaN(W—l)—i-z 0 a () =

which implies that the Emden equation (2.10) holds. So, (3.1) and (3.6) are solutions to
system (2.6)-(2.8), the proof of Theorem 2.1 is complete.

3.2 Proof of Theorem 2.3

Indeed, the global existence and the large time asymptotic behavior of solution to equation
(3.8), as described in theorem 2.3, can be obtained by a similar way as that done in [17].

7



For the convenience of the reader, we give the detailed proof and which consists of three
steps. We first rewrite equation (2.10) as follows

1 a (t)
" J—
a’(t) = Gy N(=1+1 (¢) T aVO=1)+2 (¢) =0 (38)
where two positive constants
Cy = Kyk >0 and Cy = (ky + ky + Nks) vk > 0. (3.9)

Step 1. In this step, we show the local and global existence of solution to (3.8). To this

end, one can rewrite (3.8) as follows
q N0+ (t)) = —"—"— (3.10)

which gives that

Cy ~[N(v=1)+1]
"HN=ay — ———m=—— 7
@ (t) = ZV(7—1)+1%
&% —[N(y=1)+1] /t Ci
—_ t —— | dt 3.11
+N(7—1)+1a () + o \aNO=D+1 () ’ (3.11)

Notice the equivalence of (3.8) and (3.11), the local existence of solution to equation (3.8)
that there exists a small 7" such that (3.8) has a positive solution a(t), which is unique in
C?([0,T)) and satisfies 0 < ag/2 < a(t) < 2ag, can be obtained by using the contraction
mapping principle as in [7, 11], we omit the details here. Then, the global existence
of solutions to Eq (3.8) can be proved by establishing the a priori estimates using the
standard continuity argument:

Lemma 3.2 (Global existence) The Emden equation (3.8) has a positive solution a(t),
which is unique in C*([0,+00)) and satisfies (2.14):

0<a<a(t)<C(1+t), fort>0,

where C' = max {aq, (2Hp)"?} , a = ( G , C1 and Cy are given by (3.9),

1/[N(v=1)]
N(’Yfl)H())
and Hy is defined by (3.15).

Proof: Assume a(t) € C*([0,T)) is a solution to (3.8), we first prove the a priori estimate

0<a<a(t)<C(1+t), forallte[0,T]. (3.12)

Multiplying (3.8) by a’ (¢) yields

a’ (t) a (t) _ C«la—[N(’Y—l)—H] (t) a (t) + OQGN((,C:/S—% ~0.

then it follows that

/ ’ 2
201 afN('yfl) (t) + 02 (CL (t>)
a
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Now, we define H (t) as follows

10 =3 (@ OF + ot ). .10

which, together with (3.13), for all ¢ € [0, T, gives that

t / 2
(d' (1)) _
H () + /O (@m dt — Ho, (3.15)
where Hy = 1 |a? + N?S_ll)agN(v—l)} Obviously, (3.14) and (3.15) imply that
) c, (1)

Due to ap > 0 and the continuity property, one derives from (3.16) that
a(t) >0, for all t € [0,T]. (3.17)
Thus, (3.16) and (3.17) yield that
— (2Ho)V? < d () < (2H,)"? (L)l/wmm <al(t). (3.18)
B B "A\N(y—1) Ho -
It follows that
a(t) <ag+ (2Hy)*t < C(1+1), forallt e [0,T], (3.19)

where C' = max {ao, (2Ho)"/?}. Thus, (3.12) follows from (3.18) and (3.19) . Therefore,
combining the local existence, the a priori estimates in (3.12), and the standard conti-
nuity argument, we know that the equation (3.8) has a globally defined positive solution
a(t) satisfying (2.14). Thus, the proof of Lemma 3.2 is complete. O

Step 2. In this step, we show the monotonically increasing property of a(t) after time
to which is determined by (3.25). We define

Cy

ht)=d O - 57 Ca NV h(0) = ar - oo cag O (3.20)
It follows from (3.10) and (2.14) that
(h(t), = a]\f(%)lﬂ(t) >0, (3.21)
and . c
h(t) =h(0) +/O (m) dt > h(0). (3.22)

According to the sign of initial value h (0), there are roughly two kinds of profiles of a(t).
If h(0) < 0, due to the monotonicity and continuity property of h (t), (3.21) implies
that h(t) will increase in a time interval until some finite time tq > 0 (If ¢ty = 400, (3.20)

implies that
h(t) <0 fort >0, (3.23)
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then it holds that

Cy a—ING=1)+1] (1), (aN(7—1)+2 (t))/ < Cy[N(y—1)+2]

a'(t) <

N(y—-1)+1 N(H—-1)+1

and hence

o<\ “Np-D 11

1
GING-1+7  N\FTE
1+)¥e-D+2 for ¢t > 0.
( NG -1+ 1 ag (1+1) or

(02 [N (7 - 1>+2]t+a2v>’“””“
0

IN

Inserting (3.24) into (3.22) to get, for a suitably large t* > 0, that

t
¢,
b= ho)+ [ (am_lm (t)) it
N(y—1)+1

(
_ TNh-D1z [t
> 1 (0) + (CQ Ny—1) +2] +a§”) : / S S
0 (14t

NG—1)+1 o
> 0 for t > t*,
which contradicts with (3.23)) such that h(ty) = 0, and ¢, can be determined by

Cy

—[N(y=1)+1] —
— 2 to) = 0.
N(Hr—-1+1 (to)

h(to) = a' (t()) —

Thus, after time t¢, (3.22) implies that h(t) > h(to), namely,

Cy

—[N(v=1)+1]
R, ) > 0, for t > to,
N(r—-1)+1 (*) 0

a'(t) =
where ¢ is determined by (3.25).
If h(0) > 0, it follows from (3.22) and (3.20) that

Cy

‘02§

a"NO=DHI (1) > 0, for t > 0,

so a(t) increases for all time. Thus, it follows from (3.26) and (3.27) that

a' (t) > 0 and a(t) > a is increasing in (g, +00).

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Step 3. In this step, we show the asymptotic behaviors of a(t) and a'(¢). First, we
derive from (3.28) and the monotone bounded principle that the limit tlifrn a (t) exists
—+00

and belongs to [a, +00]. Moreover, we claim that

lim a (t) = 0.

t—+o0

Otherwise, suppose that there holds

lim a(t) =7 € (a,+00) and a(t) < 27 for t > t*,

t—o00

10
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for a suitably large t* > 0, then it follows from (3.11) and (3.30) that

C2 —[N(y—=1)+1
a/(t):al_—N(fy—l)—i—laO[ (=1)+1]
&: NG+ / t i
S — t B —
EICEnEey O+ ), \avone g
Sa o @ “ING-D+H]
N(H-1)+1
Co [N (y=1)+1] &
2 (op)NO — -t
* N(H-1)+1 (2r) + (QF)N(v—l)Jrl ( )

> (2H,)Y? for a suitably large t > 0,

which contradicts (3.18) . So, the supposition (3.30) fails, and (3.29) is true.
Due to (3.29) and (3.18), the following fact holds

a0
e a (1)

:(ﬁ)7

which and (3.8) give that, for a suitably large t; > 0,

"o 1 a’(t)
O =G~ Cane g

= e (1 caty)
Ch

>1 0, fort >t 3.31
_§m>,or > 11, (3.31)

which implies that a(t) is convex in (¢, 4+00). Thus, (3.18), (3.28), (3.31), and the mono-
tone bounded principle yield that

lim o (t) = Cy, 0 < Cy < (2H)"?, (3.32)

t——+00

and it follows that, for a suitably large ¢* > 0,
a(t) ~ Cot + ag for t > t*, (3.33)

for some positive constant Cj to be determined later. By (3.33) and (3.9), we know the
following integrability:

/ t (L@Q a< [ - (L@)) dt < +oo. (3.34)

Now, letting t — 400 in (3.11) and noting (3.34), one has that

Cy —[N(=1)+1]
/ t) = e A Y
a(f) = Ne—1)+17"
C, t C
72 —[N(v-D+]] ¢ I S dt
RN ”*/o (aNMH <t>)
Cy C[N(y=1)+1] /+°° o
oy — ———2 — 1  _\at:=cC 3.35

BT NGH-) 1 ), @ o (3.35)

as t — +oo. Thus, (2.15) and (2.16) follow from (3.33), (3.35), (3.9), and the the
L’Hospital rule, and we finish the proof of Theorem 2.3.
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Appendix

Expression for the viscous terms in spherical coordinates in RY

Noting the definition of viscous stress tensor ¥ given by (1.3), its divergence can be
calculated as follows

divl = div (A1 (p) Vu) +div (A2 (p) Vu') + V (A3 (p) divu) (3.36)
={(\.(p) + X (p) (Vp-V)u+ A (p) Au+ X (p)div (Vu')}
+ {3 (p) V (divu) + (divu) N5 (p) Vp}. (3.37)

Now, we calculate the terms in equation (3.37) in the following three cases in the spherical

coordinates.
(1) Vp and divu

For a scalar functions f (r,t) = f(x,t) with x = (z1,29,...,2y) and r = |x| =
V#2423 + -+ + 22, the chain rule gives us that
d 0 or

Li .
f(r,t)—gf(r,t)' —?fT,Z—l,Z,...,N,

then
x x x X
vf(r>:(f:v1afa:27"' 7f$N): <_1f7’7_2f7"7'” 7_Nf7’) :fT_ = fTeT' (338)
r r r r
Let the function f in (3.38) to be the density or pressure of the fluid, one will have
Vp=pe., Vp=p,e,. (3.39)
For the vector function velocity field u(x,t) = u (r,t) X (see (2.3)), we can deduce that

divu = (u(r,t) ﬂ) + (u(?“,t) %)xz L (u(?“,t) :E_N>96N

T r
_ i) u(r,t) o (u(r,t)) 2 (u(r,t)) @—l--“—i-xN (u(r,t)) TN
r r ), ro ). ro ).
:Nm—i—r(M) :ur—k(N—l)E. (3.40)
r r ), r
(2) Au = div(Vu) and div(Vu?)
If we set
(e = BT oy
Vu-V(u LU U ) =V (u(r,t) " su(r,t) o ,u(rt) . )
(u(r’t> m’r‘_1>zl (U T’t) %)xl ( (T,t) xTN)xl
_ (u (r’ t) mr_l)xg (u (T.’ t) %)xg ('LL (r’ t) xTN)xQ
| (u(r) ), (u(rt)$),, (u(r ) 55),,
s (o), ma(),  oom (),
Cmmn ey, sy
am ), =), oo,
= Vu’, (3.41)
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which is a symmetric matrix, and thus
Au = div(Vu) = div(Vu®).

Then, it follows that

20 2CO)] B2 e)
s [20) RG]

[ ) (L)) - 2 ), ()]

2 -3

()G G)) e ()

TN

o[22 ()
=), e (G 0)) ]
e (@) e (@) - 2]
and
A) =divV () == u+ (N=1)=] | (=3 N)
Thus,
Au = (At A2, Au) = [u LN 1) %]e (3.42)

which is exactly the same as that in [25, 37].
(3) (Vp-V)u

13



By direct calculations, one has, for 1 < ¢ < N, that

i u
(Vp-V)u" = (pg, 00, + POy + -+ + PxNa:CN> (;x2>

u u U
= Pz (_ZEZ> + -+ Pxi_q <_xz> + Px; <_xz>
r T xi—1 r T;

(3

u
+pdfz+1< xl) +pr <_ Z)
fcz+1 r TN
Uu 1 Ti—1 [ u Ti—1 Z; u Z;
2 n2) BB ) 2 2 ), 2
T T T L r/r T T r/r T
L 1 U i+1 TN uy In
+or = o (5 +] ko o (D) T
T [ /U U T
Sl 2 [ =n2 (), = 2o
L r/r T r

and thus
(Vp-V)u=p,u,e,.
Substituting expressions (3.39)-(3.43) into (3.36)-(3.37) produces

div(A1 (p) Vu) =X (p) Au+ XN (p) (Vp-V)u
=X () ((w+ (N =1)2) &) + X (6) (prure,)
= o) (s + (N =1 2) + (o)), ] e
div (A2 (p) Vu') = div (A2 (p) Vu)
=) (w+ (N =12) + (), w] e,

r

T

and
V (A3 (p)divu) = A3 (p) V (divau) + (divu) A (p) Vp
=2 (p)V (ur+ (N =1) =) + (ur+ (N = 1) =) X () U

=X (p) (w+ (V=1 =) e+ X (o) pr (e + (N =1) =) e,

= [ (e + =12 +0a (o), (w0 + (V=D 2)] e

Finally, inserting (3.44)-(3.46) into (3.36) gives (2.4) directly.

Use of Al tools declaration

u

r

]

(3.43)

(3.44)

(3.45)

(3.46)

The authors declare they have not used Artificial Intelligence (AI) tools in the creation

of this article.

Acknowledgments

This work was partially supported by Natural Science Research of Jiangsu Higher Ed-
ucation Institutions of China (Natural Science Foundation of Colleges and Universities
in Jiangsu Province) (22KJB110011), and Doctoral Research Fund of Huaiyin Normal
University (31LKQO00). The author also thank the referees for helpful comments which

improve the presentation of the paper significantly.

14



Data availability statement

The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Conflict of interest

The author declares there is no conflict of interest in relation to this article.

References

1]

[10]

[11]

H. An, J. Yang and M. Yuen, Nonlinear exact solutions of the 2-dimensional rota-
tional Euler equations for the incompressible fluid, Commun. Theor. Phys., 63 (2015)
613-618.

S. Chandrasekhar, An Introduction to the Study of Stellar Structures, University of
Chicago Press, Chicago, 1938.

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the
moving-boundary 1-D compressible Euler equations in physical vacuum, Comm.
Pure Appl. Math., 64 (2011) 328-366.

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the
moving-boundary three-dimensional compressible Euler equations in physical vacu-
um, Arch. Ration. Mech. Anal., 206 (2012) 515-616.

Y. Deng, J. Xiang and T. Yang, Blowup phenomena of solutions to Euler-Possion
equations, J. Math. Anal. Appl., 286 (2003) 295-306.

J. Dong and M. Yuen, Blowup of smooth solutions to the compressible Euler equa-
tions with radial symmetry on bounded domains, Z. Angew. Math. Phys., 71 (2020)
Article No: 189.

J. Dong and J. Li, Analytical solutions to the compressible Euler equations with
time-dependent damping and free boundaries, J. Math. Phys., 63(10) (2022) 101502.

Q. Duan, Some Topics on Compressible Navier-Stokes Equations, PhD thesis, The
Chinese University of Hong Kong (Hong Kong), 2011.

E. Fan, Z. Qiao and M. Yuen, The Cartesian analytical solutions for the N-
dimensional compressible Navier-Stokes equations with density-dependent viscosity,
Commun. Theor. Phys., 74 (2022) 105005 (7pp).

J. Geng, N. Lai, M. Yuen and J. Zhou, Blow-up for compressible Euler system with
space-dependent damping in 1-D, Adv. Nonlinear Anal., 12 (2023) Article No: 1.

Z. Guo and Z. Xin, Analytical solutions to the compressible Navier-Stokes equation-
s with density-dependent viscosity coefficients and free boundaries, J. Differential
Equations, 253 (2012) 1-19.

15



[12]

[13]

[14]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. Hong, T. Luo and C. Zhu, Global solutions to physical vacuum problem of non-
isentropic viscous gaseous stars and nonlinear asymptotic stability of stationary so-
lutions, J. Differential Equations, 265 (2018) 177-236.

F. Hou and H. Yin, On the global existence and blowup of smooth solutions to
the multidimensional compressible Euler equations with time-depending damping,
Nonlinearity, 30 (2017) 2485-517.

J. Jang, Local well-posedness of dynamics of viscous gaseous stars, Arch. Ration.
Mech. Anal., 195 (2010) 797-863.

J. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a
physical vacuum, Commun. Pure Appl. Math., 68 (2015) 61-111.

H. Li and X. Zhang, Global strong solutions to radial symmetric compressible Navier-
Stokes equations with free boundary, J. Differential Equations, 261 (2016) 6341-6367.

K. Li, Analytical solutions and asymptotic behaviors to the vacuum free boundary
problem for 2D Navier-Stokes equations with degenerate viscosity, AIMS Math., 9
(2024), 12412-12432.

K. Li and Z. Guo, Global wellposedness and asymptotic behavior of axisymmetric
strong solutions to the vacuum free boundary problem of isentropic compressible
Navier-Stokes equations, Calc. Var. Partial Differential Equations, 62 (2023) Article
No: 109.

T. Li, Some special solutions of the multidimensional Euler equations in R, Com-
mun. Pure Appl. Anal., 4 (2005) 757-762.

T. Li and D. Wang, Blowup phenomena of solutions to the Euler equations for
compressible fluid flow, J. Differential Equations, 221 (2006) 91-101.

T.-P. Liu, Compressible flow with damping and vacuum, Japan J. Indust. Appl.
Math., 13 (1996) 25-32.

X. Liu and Y. Yuan, The self-similar solutions to full compressible Navier-Stokes
equations without heat conductivity, Math. Models Methods Appl. Sci., 29 (2019)
2271-2320.

T. Luo, Z. Xin and H. Zeng, Nonlinear asymptotic stability of the Lane-Emden
solutions for the viscous gaseous star problem with degenerate density dependent
viscosities, Commun. Math. Phys., 347 (2016) 657-702.

T. Makino, Blowing up solutions of the Euler-Poisson equation for the evolution of
the gaseous stars, Transport Theory Statist. Phys., 21 (1992) 615-624.

Y. Ou, On globally large smooth solutions of full compressible Navier-Stokes equa-
tions with moving boundary and temperature-dependent heat-conductivity, Nonlin-
ear Anal. Real World Appl., 64 (2022), 103430.

X. Pan, On global smooth solutions of the 3D spherically symmetric Euler equations
with time-dependent damping and physical vacuum, Nonlinearity, 35(6) (2022) 3209-
3244.

16



[27]

[33]

[34]

[35]

[36]

[37]

[38]

C. Rickard, M. Hadzi¢ and J. Jang, Global existence of the nonisentropic compress-
ible Euler equations with vacuum boundary surrounding a variable entropy state,
Nonlinearity, 34 (2021) 33-91.

P. Sachdev, K. Joseph and M. Haque, Exact solutions of compressible flow equations
with spherical symmetry, Stud. Appl. Math., 114 (2005) 325-342.

S. Shkoller and T.-C. Sideris, Global existence of near-affine solutions to the com-
pressible Euler equations, Arch. Ration. Mech. Anal., 234 (2019) 115-180.

T.-C. Sideris, Spreading of the free boundary of an ideal fluid in a vacuum, J.
Differential Equations, 257 (2014) 1-14.

Q. Wu and L. Luan, Large-time behavior of solutions to unipolar Euler-Poisson
equations with time-dependent damping, Commun. Pure Appl. Anal., 20 (2021)
995-1023.

M. Yuen, Blowup solutions for a class of fluid dynamical equations in RY, J. Math.
Anal. Appl., 329 (2007) 1064-1079.

M. Yuen, Analytical solutions to the Navier-Stokes equations, J. Math. Phys., 49
(2008), 113102.

M. Yuen, Analytical solutions to the Navier-Stokes equations with density-dependent
viscosity and with pressure, J. Math. Phys., 50 (2009), 083101.

M. Yuen, Exact, rotational, infinite energy, blowup solutions to the 3-dimensional
Euler equations, Phys. Lett. A, 375 (2011) 3107-3113.

H. Zeng, Time-asymptotics of physical vacuum free boundaries for compressible
inviscid flows with damping, Calc. Var. Partial Differential Equations, 61 (2022)
Article No: 59.

T. Zhang and D. Fang, Global behavior of spherically symmetric Navier-Stokes-
Poisson system with degenerate viscosity coefficients, Arch. Ration. Mech. Anal.,
191 (2009) 195-243.

T. Zhang and Y. Zheng, Exact spiral solutions of the two-dimensional Euler equa-
tions, Discrete Contin. Dyn. Syst., 3 (1997) 117-133.

17



	Introduction
	Formulation in spherical coordinates and main results
	Proof of Theorems
	Proof of Theorem 2.1
	Proof of Theorem 2.3


