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Abstract
This paper investigates a load frequency control issue for multi-area interconnected unknown power systems
with random communication delays. First, a model-free adaptive control scheme is established by building
an equivalent data relationship model between area control error and corresponding control input. Then,
a dynamic event-triggered scheme is designed to improve resource utilization and reduce computational
burden. Furthermore, random communication delays in the feedback and forward channels are considered.
The results show that the proposed method is independent of any model information about the power system,
only using the controlled system’s control input and output data. Several simulation results validate the
effectiveness of the proposed control scheme.
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1 INTRODUCTION

Load frequency control is a well-known method to balance the load demand and frequency of multi-area interconnected power
systems. Numerous studies have demonstrated that load frequency control can enhance the overall performance of power
systems1. However, improper load frequency control can have significant consequences, including damage to power supply
equipment or even explosions. In order to enhance the control performance, pioneering researchers employed model-based
approaches2,3,4, which have yielded promising results. A significant limitation of these approaches is their dependence on precise
information of the system model. To address this, subsequent researchers proposed model estimation techniques that mitigate the
reliance on exact model information5,6,7. However, these methods also encounter new challenges. Applying model estimation
techniques introduces additional estimation errors, which may result in unsatisfactory control performance when the estimation
error is substantial. Furthermore, when the models are extensive and sophisticated, the computation and time required for model
prediction will be significantly augmented.

In order to circumvent the necessity for a system model, the model-free adaptive control (MFAC) method has been proposed
and implemented in a multitude of fields, such as multi-agent systems8,9, trajectory tracking system10, magnetic levitation
system11, excitation velocity tracking for robotic surface vehicles12, and unmanned aerial vehicle13. The fundamental MFAC
model collects system’s input and output data to construct a data-relationship model by applying dynamic linearization and
pseudo-partialization techniques. Concurrently, scholars are engaged in the development of novel MFAC algorithms14,15,16,17,18.
Zheng et al.14 developed a model-adaptive distributed optimization algorithm for generic nonlinear model-free multi-agent
systems. Segheri et al.15 proposed a model-free adaptive backstepping control for a class of uncertain nonlinear systems. Weng
et al.16 addressed the fast trajectory tracking problem for discrete-time nonlinear systems. The properties above of MFAC render
it an optimal choice for use in load frequency control, mainly when the system model is intricate and challenging to obtain.

Abbreviations: MFAC, model-free adaptive control; DETMFAC, dynamic event-triggered model-free adaptive control
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Nevertheless, the application of MFAC control in power systems has not yet received significant attention, which is one of the
motivations for this study.

Despite the advantages of MFAC, the computation of feasible solutions for the control gain will impose a high real-time
computational burden. Event-triggered algorithms have been implemented to address this challenge, where the control signal is
updated and transmitted only when a specific condition is met. Many researchers proposed static event-triggered algorithms with
fixed trigger conditions19,20,21,22, which have been demonstrated to achieve great results. Some scholars proposed the use of a
switching event triggering algorithm, which involves switching between different triggering conditions according to the system
state24,25. Moreover, dynamic event trigger algorithms have been proposed, in which the trigger conditions are adjusted according
to the system state26,27,28. However, most existing event-triggered methods are static event-triggered methods, especially for load
frequency control with MFAC. Hence, further investigating a dynamic event-triggered MFAC method for a power system is
challenging.

In addition, due to the increasing scale and complexity of the power system, the deployment cost and reliability of the
distributed network control system face significant challenges1. Cloud-based network control systems become more promising
with the advancement of communication technology. This paper deploys the control systems to the cloud, which increases
computing power and saves the cost of distributed deployment. However, it is accompanied by the problem of random
communication delays when the communication environment is imperfect. Regarding random delays, researchers have done
related studies in numerous fields, such as magnetic levitation trains29, electric power systems30, and uncertain nonlinear
networked systems31. Lu et al.32 studied the exponential stability of impulsive control systems with random delays. Shang et
al.30 presented a networked predictive control method to predict the control signals. Zhang et al.33 quantitatively represented the
random time delays in a discrete way.

Motivated by the aforementioned problems, this paper studies the dynamic event-triggered model-free adaptive control
(DETMFAC) for the load frequency control problem in multi-area interconnected power systems under random round-trip time
delays. The main contributions of this paper are summarized below.

1. Develop a MFAC based load frequency control scheme for multi-area interconnected power systems that eliminates the
need to use the power system model information. Unlike Wang et al.6 and Qi et al.7, this paper avoids introducing model
estimation errors by using only the input and output data data.

2. Present a data-driven dynamic event-triggered strategy for load frequency control. Compared with the existing event-trigger
strategies in the works19,20,21, proposed strategy can further reduce the number of trigger times and ensure the stability of
the system.

3. Propose an input design-based compensation control method that considers both the feedback and forward channels. In
contrast to the compensation control schemes in the works30,34,35, the random communication delays in both the feedback
and forward channels are considered and compensated.

The rest of this article is organized as follows: Section 2 modifies the multi-area power system and introduces the DETMFAC
and input design-based compensation control schemes. Section 3 illustrates the stability analysis. Section 4 gives the simulation
results. Finally, Section 5 concludes this paper.
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2 DESIGN OF DETMFAC AND COMPENSATION CONTROL SCHEME

2.1 Modeling of Multi-area Power System

Refer to Bu et al.23, the dynamic model of ith power system is described as

∆ḟi(t) = –
Di

Mi
∆fi(t) –

1
Mi

∆Ptie –i(t)

+
1

Mi
(∆Pmi(t) – ∆Pdi(t))

∆Ṗtie-i (t) = 2π
N∑

j=1,j̸=i

Tij∆fi(t) – 2π
N∑

j=1,j̸=i

Tij∆fj(t).

∆Ṗmi(t) = –
1
Tti

Pmi(t) +
1
Tti

Pgi(t)

∆Ṗgi(t) = –
1

RiTgi
∆fi(t) –

1
Tgi

Pgi(t) +
1

Tgi
∆Pci(t)

Based on the Euler approximation law, The discrete-time model of ith power system is described as

{
xi (k + 1) = Gixi (k) + Hiui (k) + Wiϑi (k)

ACEi (k) = Cixi (k)
(1)

where xi(k) = [∆fi(k)∆Ptie –i(k)∆Pmi(k)∆Pgi(k)]T is the state vector, k denotes the discrete instant, ui(k) = ∆Pci(k) is defined as
the system’s input variable and the disturbance vector is ϑT

i (k) = [∆Pdi(k)
∑N

j=1,j ̸=i Tij∆fj(k)]. Wi =
∫ T

0 eAitFidt, Hi =
∫ T

0 eAitBidt,
and Gi = eAiT . Furthermore,

Ai =


– Di

Mi
– 1

Mi

1
Mi

0
2π
∑N

j=1,j̸=i Tij 0 0 0
0 0 – 1

Tti

1
Tti

– 1
RiTgi

0 0 – 1
Tgi


Bi =

[
0 0 0 1

Tgi

]T
Ci =

[
βi 1 0 0

]
and

Fi =
[

– 1
Mi

0 0 0
0 –2π 0 0

]T

In this article, the parameters are given in Table 1 and matrices Gi, Hi, and Wi are unknown. The area control error signal of ith
area is given as

ACEi (k) = βi∆fi (k) + Ptie–i (k) (2)

where βi = 1/Ri + Di denotes the frequency bias factor. From Eq. (1), one can obtain that

ACEi (k + 1) = CiGix (k) + CiHiui (k) + CiWiϑi (k) (3)

Furthermore, ACEi (k + 1) can be rewritten as

ACEi (k + 1) = fi (ACEi (k) , ui (k)) + ωi (k) (4)

where ωi(k) = CiWiϑi(k) is bounded disturbance. fi(·) is an unknown nonlinear function. The nonlinear system (4) satisfies the
following two assumptions.

Assumption 1. The partial derivative of fi(·) with respect to ui(k) is continuous.
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Assumption 2. The nonlinear system (4) satisfies the generalized Lipschitz condition, that is, for any k ≥ 0, and ∆ui(k) ̸= 0,
there is ∣∣∆ACEi(k + 1)

∣∣ ≤ b
∣∣∆ui(k)

∣∣ (5)

where ∆ACEi(k + 1) = ACEi(k + 1) – ∆ACEi(k),∆ui(k) = ui(k) – ui(k – 1), and b > 0.

Theorem 1. Under Assumptions 1 and 2, when
∣∣∆ui(k)

∣∣ ≠ 0, the system can be transformed into the following compact form
dynamic linearization model:

∆ACEi(k + 1) = ϕi(k)∆ui(k) + ∆ωi(k) (6)

where ϕi(k) is a time-varying parameter called pseudopartial derivative (PPD), and ∆ωi(k) = ωi(k) – ωi(k – 1). ϕi(k) is an
unknown time-varying parameter, which reflects the dynamic evolution relationship between control input ui(k) and systems
output ACEi(k). Furthermore, since system (4) satisfies the generalized Lipschitz condition, we have |ϕi(k)| ≤ b for any instant k.

Proof. : From the definition of ACEi(k + 1) in Eq. (4), one has

∆ACEi(k + 1) = fi (ACEi(k), ui(k)) + ωi(k) – fi (ACEi(k – 1), ui(k – 1)) – ωi(k – 1)

= fi (ACEi(k), ui(k)) + ∆ωi(k) – fi (ACEi(k), ui(k – 1))

+ fi (ACEi(k), ui(k – 1)) – fi (ACEi(k – 1), ui(k – 1)) . (7)

By employing Assumption 1 and Cauchy mean-value Theorem, Eq. (7) can be rewritten into the following form:

∆ACEi(k + 1) =
∂f ∗i
∂ui(k)

∆ui(k) + ψi(k) + ∆ωi(k) (8)

where
ψi(k) = fi (ACEi(k), ui(k – 1))

– fi(ACEi(k – 1), ui(k – 1))
(9)

For each discrete time instant k, consider the following data equation with the variable ςi(k) :

ψi(k) = ςi(k)∆ui(k) (10)

Since
∣∣∆ui(k)

∣∣ ̸= 0, there exists an unique solution ς∗i (k) to Eq. (10). Denote ϕi(k) = ∂f ∗i /∂ui(k) + ς∗i (k), then Eq. (7) can be
expressed as ∆ACEi(k + 1) = ϕi(k)∆ui(k) + ∆ωi(k). The proof is completed. □

2.2 Data-Driven Control Algorithm

To design the data-driven load frequency control algorithm, the linearization data model in Theorem 1 is rewritten as

ACEi (k + 1) = ACEi (k) + ϕi (k)∆ui (k) + ∆ωi (k) (11)

Consider the following criterion function of control input ui(k):

J (ui (k)) =
∣∣ACEd (k + 1) – ACEi (k + 1)

∣∣2 + λi
∣∣ui (k) – ui (k – 1)

∣∣2 (12)

where λi > 0 is a weighting factor used to limit the changes of ui(k) ,and ACEd(k) is the desired output trajectory.
In the context of the communication graph depicted in Fig. 1, The controller computes control commands only when it

receives a feedback packet, of which the timestamp is supposed to be ks ≤ k.
Substitute Eq. (11) into the criterion function and set the derivative of the criterion function with respect to ui(k) be zero.

Accordingly, the following control algorithm can be obtained as

∆ui (ks) =
ρiϕi (ks)

λi +
∣∣ϕi (ks)

∣∣2 (ACEd (ks + 1) – ACEi (ks)) (13)

where ρi ∈ (0, 1] is a step-size factor added to make the algorithm more general.
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F I G U R E 1 System block diagram with dynamic event-trigger and input design-based compensation control method.

In order to implement the control algorithm (13), the value of PPD needed to be known in advance. However, because the
parameter matrices of the system are unknown, and PPD is a time-varying parameter, its exact value is difficult to obtain. As a
result, an estimation algorithm of PPD is designed, and the criterion function is set as

J (ϕi (ks)) = |ACEi (ks) – ACEi (ks – 1) | – ϕi (ks)∆ui (ks – 1) |2 + µi

∣∣∣ϕi (ks) – ϕ̂i (ks – 1)
∣∣∣2 (14)

where µi > 0 is a weighing factor. ϕ̂i(k) is the estimation value of ϕi(k). The method similar to one above is adopted to minimize
the criterion function (12). Then, an estimation algorithm of PPD can be obtained

∆ϕ̂i (ks) =
(
∆ACEi (ks) – ϕ̂i (ks – 1)∆ui (ks – 1)

)
× ηi∆ui (ks – 1)
µi + ∆ui(ks – 1)2 (15)

where ηi denotes a step-size factor. To ensure the invariability of frequency and interchange power, the desired value of area
control error signal is set as ACEd(k) = const = 0.

2.3 Dynamic Event-Triggered Mechanism

The designed MFAC algorithm is predicated on the assumption that the network will engage in continuous communication.
However, the network resources are finite, and continuous communication will waste them. A dynamic event-triggered mechanism
has been introduced to mitigate this issue. Subsequently, a dynamic event-triggered function is designed as

θi (k) =
1
vi

∣∣φi (k)
∣∣ + mi –

∣∣er
i (ks)

∣∣ (16)

where er
i (ks) = ei

(
ki,r
)

– ei(ks) represents the triggering error. ki,r is the latest event-triggered instant. ei(k) = ACEd – ACEi(k)
denotes the tracking error. It is clear that for the triggering instant, er

i (k) is equal to zero. vi and mi are positive constants and can
be set as desired. φi (k) represents the dynamic variable satisfying

φi (k + 1) = γiφi (k) + mi –
∣∣er

i (k)
∣∣ ,φi (1) = φ0 (17)
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where γi > 0 and φ0 are the designed parameter and initial value, respectively.
The event-triggered condition is designed as

ki,r+1 = inf
{

k ∈ N | k > ki,r, θi (k) < 0
}

(18)

Then, a DETMFAC scheme for the ith area is developed as follows:

∆ϕ̂i(k) =


ηi∆ui(ks–1)

µi+∆ui(ks–1)2

×

(
∆ACEi(ks)

–ϕ̂i(ks – 1)∆ui(ks – 1)

)
, ks = ki,r

0, ks ∈
(
ki,r–1, ki,r

) (19)

ϕ̂i(k) = ϕ̂i(1), if
∣∣∣ϕ̂i(k)

∣∣∣ ≤ ε, or
∣∣∆ui(k∗s – 1)

∣∣ ≤ ε (20)

∆ûi (ks) =


ρiϕ̂i(ks)

λi+
∣∣∣ϕ̂i(ks)

∣∣∣2 (ACEd – ACEi (ks)) , ks = ki,r

0, ks ∈
(
ki,r–1, ki,r

) (21)

where ε is a small positive constant, and ϕ̂i(1) is the initial value of ϕ̂i(k).

Remark 1. Eq. (13) indicates that, with ϕi (ks) > 0, ϕi(ks + 1) > 0, and λi > 0, we can obtain that sign(∆ui (ks + 1)) =
sign (∆ui (ks)), and further

∣∣∆ui (ks + 1)
∣∣ <
∣∣∆ui (ks)

∣∣ if ϕi (ks + 1) ≈ ϕi (ks), which will inspire us in the following to design a
compensator in the actuator.

2.4 Input Design-based Compensation Control

In the actuator, a compensator is designed (see Fig. 1) to buffer the received packets and only store the latest packet through the
comparison of timestamps and to compensate for random network-induced delays based on the latest packet. For our purpose,
the effect of the network-induced delays in both channels is described by redefining the round trip time delays τk as

τk = k – k∗s (22)

where k∗s is the timestamp of the latest packet with k∗s ≤ ks ≤ k. Thus, the latest control increment available in the actuator can
be expressed as ∆û

(
k∗s
)
.

It is assumed that the round trip time delay τk is bounded by τ̄ , i.e., τk ≤ τ̄ for all k, which means that at least one packet can
arrive at the actuator during τ̄ sampling periods. According to the fact mentioned in Remark 1, a network delays compensation
strategy based on the control input design is presented as follows:

∆ui(k) = Γτk
i ∆ûi

(
k∗s
)

(23)

where Γi > 0 is the compensation factor. Then we have

ui(k) = ui
(
k∗s – 1

)
+

τk∑
t=0

Γt
i∆ûi

(
k∗s
)

. (24)

3 STABILITY ANALYSIS

This section studies the stabilization of multi-area interconnected power systems under the DETMFAC and input design-based
compensation control schemes. Before presenting the primary results, it is necessary to give an assumption presented here.

Assumption 3. For any instant k and ∆ui(k) ̸= 0, the sign of PPD remains unchanged, that is ϕi(k) > b̄i > 0, where b̄i denotes a
small positive constant.
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Theorem 2. Consider that event-triggered data-driven load frequency control algorithm Eq. (19)-(21) is used for the unknown
systems model (4). For the given task ACEd = 0, when conditions 0 < γi + 1/vi < 1 and 2 –

√
2 < ρi/

√
λi < 2 hold, the tracking

error ei(k) is convergent and the ultimate upper bound of the tracking errors is related to the bound of
∣∣∆ωi(k)

∣∣.
Proof. : Defining the estimation error δi (k) = ϕ̂i (k) – ϕi (k) and subtracting δi (k) from both sides of Eq. (15), one has

δi (k) =ϕi (k – 1) – ϕi (k) + δi (k – 1) +
ηi∆ui (k – 1)

µi + ∆ui(k – 1)2 ×
(
∆ACEi (k) – ϕ̂i (k – 1)∆ui (k – 1)

)
=ϕi (k – 1) – ϕi (k) + δi (k – 1) +

ηi∆ui(k – 1)2

µi + ∆ui(k – 1)2 ×
(
ϕi (k – 1) – ϕ̂i (k – 1) +

∆ωi (k – 1)
∆ui (k – 1)

)
=ϕi (k – 1) – ϕi (k) + δi (k – 1) +

ηi∆ui(k – 1)2

µi + ∆ui(k – 1)2 δi (k – 1) + Di (25)

where Di = ηi∆ui(k–1)
µi+∆ui(k–1)2 ∆ωi (k – 1). Taking the absolute value of Eq. (25), one can obtain

δi (k) ≤

∣∣∣∣∣1 –
ηi∆ui(k – 1)2

µi + ∆ui(k – 1)2

∣∣∣∣∣× ∣∣δi (k – 1)
∣∣ ∣∣ϕi (k – 1) – ϕi (k)

∣∣ +
∣∣Di
∣∣

Due to the reset policy, the minimum of ηi∆ui(k–1)2

µi+∆ui(k–1)2 is ηiε
2

µi+ε2 . One has
∣∣∣1 – ηi∆ui(k–1)2

µi+∆ui(k–1)2

∣∣∣ ≤ 1 – ηiε
2

µi+ε2
∆= di < 1. From Theorem 1,

we have |ϕi(k)| ⩽ b. Thus, |ϕi(k – 1) – ϕi(k)| ⩽ 2b. Then, according to Eq. (25), we have

δi (k) ≤ di
∣∣δi (k – 1)

∣∣ + 2b + Di

≤ d2
i

∣∣δi (k – 2)
∣∣ + 2dib + 2b + diDi + Di

≤ . . .

≤ dk
i

∣∣δi (0)
∣∣ +

1 – dk
i

1 – di
(2b + Di) (26)

which means that δi (k) is uniformly bounded. Considering the boundedness of ϕi (k) in Theorem 1, δi (k) is bounded.
Now we proof the boundedness of φi (k).

|φi (k + 1)| ≤ γi
∣∣φi (k)

∣∣ + mi +
∣∣er

i (k)
∣∣

≤ γi
∣∣φi (k)

∣∣ + mi +
1
vi

∣∣φi (k)
∣∣ + mi

≤
(
γi +

1
vi

) ∣∣φi (k)
∣∣ + 2mi

≤
(
γi +

1
vi

)2 ∣∣φi (k – 1)
∣∣ + 2

(
γi +

1
vi

)
mi + 2mi

...

≤
(
γi +

1
vi

)k ∣∣φi (1)
∣∣ +

2mi

[
1 –
(
γi + 1

vi

)k
]

1 –
(
γi + 1

vi

) (27)

When conditions hold, φi (k) converges to the following set:{
φi (k) |

∣∣φi (k)
∣∣ ≤ 2mi

1 – (γi + 1/vi)

}
(28)

Now we proof the boundedness of tracking error ei (k). The ei(k + 1) can be rewritten as

ei (k + 1) = ei (k) – ϕi (k)∆ui (k) – ∆ωi (k)

= (1 – Φi (k)) ei (k) – ∆ωi (k) (29)
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where Φi (k) = ρiϕ̂i(k)

λi+
∣∣∣ϕ̂i(k)

∣∣∣2 , the Lyapunov function is defined as Vi (k + 1) = e2
i (k + 1), and ones has

∆Vi (k + 1) = Vi (k + 1) – Vi (k)

= e2
i (k + 1) – e2

i (k) (30)

Substituting ei (k + 1) into Eq. (30), one has

∆Vi (k + 1) = ((1 – Φi (k)) ei (k) – ∆ωi (k))2 – e2
i (k)

=
(
2(1 – Φi (k))2 – 1

)
Vi (k) + 8b2

ωi
(31)

If conditions hold, there exists a const Ξ ∈ (0, 1) makes

0 <

∣∣∣∣∣∣∣
ρi

λi +
∣∣∣ϕ̂i (k)

∣∣∣2
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣ ρiϕ̂i (k)

2ϕ̂i (k)
√
λi

∣∣∣∣∣ =
∣∣∣∣ ρi

2
√
λi

∣∣∣∣ < Ξ ≤ 1 (32)

The Lyapunov function can be rewritten as

Vi (k + 1) = e2
i (k + 1)

≤ΞVi (k) + 8b2
ωi

≤Ξ2Vi (k – 1) + 8Ξb2
ωi

+ 8b2
ωi

...

≤ΞkVi (1) +
8b2

ωi

(
1 – Ξk

)
1 – Ξ

(33)

Due to Ξ ∈ (0, 1) and lim
k→∞

Ξk = 0, ei (k) is bounded.
This end the proof.

Next, the stability of the input design-based compensation control scheme is proved. The following introduces the necessary
lemma:
Lemma 1. 36 Consider the following discrete-time scalar system:

x(k + 1) = x(k) – α(k)x (k – τk) ,

x(k) = ψ(k), k = –τ̄ , –τ̄ + 1, · · · , 0,

where x(k) is the scalar state, α(k) is the time-varying parameter, and ψ(k) is the initial condition. The above system is stable if
0 < α(k) < 2/(2τ̄ + 1).

Theorem 3. If the following inequality holds

Γi <
τk

√√√√√ (2 – (2τ̄ + 1)χ̄i)
(
λi +

∣∣∣ϕ̂i (k – τk)
∣∣∣2)

(2τ̄ + 1)ϕ̄iϕ̂i (k – τk)
(34)

the tracking error ei(k) is convergent and the power systems (4) are stable.

Proof. : The tracking error ei(k + 1) can be rewritten as

ei(k + 1) = ei(k) – ∆ACEi(k + 1)

= ei(k) – ϕi(k)∆ui(k) – ∆ωi(k)

= ei(k) – αi(k)ei (k – τk) – ∆ωi(k),
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with

αi(k) = ϕi(k)Γτk
i

ρiϕ̂i (k – τk)

λi +
∣∣∣ϕ̂i (k – τk)

∣∣∣2 + χi (35)

where χi = ∆ωi(k)/ei(k – τk). Define ϕ̄i and χ̄i as the upper bound of ϕi and χi respectively. If Eq. (34) holds, we have

0 < αi(k) ≤ ϕ̄Γτk
i

ρiϕ̂i (k – τk)

λi +
∣∣∣ϕ̂i (k – τk)

∣∣∣2 + χ̄i <
2

2τ̄ + 1
(36)

According to Lemma 1, ei(k) is bounded.
This end the proof.

4 SIMULATION RESULTS

In order to verify the effectiveness of the proposed strategy, a simulation study is carried out to address the frequency fluctuation
caused by initial load disturbance. Fig. 2 illustrates three identical interconnected control regions with a sampling period of
0.005s. Table 2 presents the selected parameter values. Moreover, T12 = T21 = 0.20 p.u./Hz, T13 = T31 = 0.25 p.u./Hz, and
T23 = T32 = 0.12 p.u./Hz.

Load2

Load1 Load3

Generator1

Generator2

Generator3

Tie-Line

Control
Area1 Control

Area3

Control Area2

F I G U R E 2 Three-area power system.

It should be emphasized that the established parameter values given in the simulation are only used to generate the necessary
input and output data data for the controller.

4.1 Example I

In this section, we demonstrate the control effectiveness of DETMFAC method and its ability to save communication resources
under static load disturbances. The controller parameters are shown in Table 3. The power system’s initial state is set to zero, and
0.02p.u. load step disturbances are added 5s later.

In Fig. 3, the output curves of power systems are plotted. As illustrated in Fig. 4, the horizontal coordinate represents
the triggering moment, while the vertical coordinate represents the interval between two triggering moments. The proposed
DETMFAC triggers 1,320 times, 9,79 times, and 1,270 times, saving 89.00%, 91.84%, and 89.41% communication resources in
three areas, respectively. It is worth noting that the trigger times for area 1 in the work23 is 6116 times, which represents that the
method used in this paper can further reduce resource utilization.

As indicated in Fig. 5, the network round-trip time delays are observed to range between 0 and 4 seconds. Fig. 6 shows the
dynamic event-triggered parameters θi of three areas.
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F I G U R E 3 Response of ∆fi (a) and ∆Ptie (b) (example I).
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F I G U R E 4 Triggering instants and intervals in three areas (example I).
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F I G U R E 5 round trip time delays.

Fig. 7 and Fig. 8 show the ∆f curves with different dynamic event-triggered and input compensation parameters. It should be
noted that the system stability can not be ensured when m1,2,3 = 0 and Γ1,2,3 = 0.75. The former is due to few trigger times, while
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F I G U R E 6 Trajectory of θ (example I).
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F I G U R E 7 Response curves of ∆f with different dynamic event-trigger parameters (example I).

the latter is attributed to the excessive compensation parameter, which leads to oscillations. The experimental data are listed in
TABLE 2

4.2 Example II

In this section, we demonstrate the effectiveness of proposed DETMFAC methods under dynamic load disturbances. The
dynamic load disturbance ∆Pdi(k) = 0.02 + 0.005sin(kπ/n) are added 5s after the system has commenced its simulation, n is the
total sampling number.

In Fig. 9, the output curves of power systems are plotted. As illustrated in Fig. 10, the horizontal coordinate represents the
triggering moment under dynamic load disturbances. The proposed DETMFAC triggers 4,214 times, 3,036 times, and 4,413
times, saving 64.88%, 74.70%, and 63.23% communication resources in three areas, respectively. Therefore, this method is
effective under dynamic load disturbances.
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F I G U R E 8 Response curves of ∆f with different input compensation parameters (example I).

0 10 20 30 40 50 60
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

D
f(H

z)

Time(s)

 Area 1
 Area 2
 Area 3

(a)

0 10 20 30 40 50 60

-8

-6

-4

-2

0

2

4

6

8
D
P t

ie
(p

. u
.)

Time(s)

 Area 1
 Area 2
 Area 3

´10-3

(b)

F I G U R E 9 Response of ∆fi (a) and ∆Ptie (b) (example II).
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F I G U R E 10 Triggering instants and intervals in three areas (example II).
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5 CONCLUSION

This paper designed a data-driven load frequency control approach for multi-area interconnected power systems. A dynamic
event-triggered method and input design-based compensation control scheme have been designed for load frequency control.
Compared with the existing methods, the proposed method can further reduce the communication burden and effects of dual-
channel communication delays. The efficacy of the presented algorithm has been validated through a practical demonstration,
and the control effects under varying parameters are contrasted. In the future, studying fixed-time load frequency control for
multi-area interconnected power systems with input saturation will be challenging.
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T A B L E 1 SIGNALS OF THE iTH AREA SYSTEM
Symbol Quantity

Mi inertia of generator (p.u. s)
∆fi frequency deviation (Hz)
Tti turbine time constants (s)
∆Ptie-i tie line power deviation (p.u.)
Tgi governor time constants (s)
Tij synchronizing torque coefficient of tie-line

between two different areas (p.u./Hz)
ACEi area control error (ACE) (p.u.)
∆Pmi generator output power deviation (p.u.)
βi frequency bias factor (p.u./Hz)
Di generator unit damping coefficient (p.u./Hz)
∆Pgi governor valve position deviation (p.u.)
Ri speed droop (Hz/p.u.)

T A B L E 2 Relationship of Parameters and Transmission Quantity

v1,2,3 m1,2,3 Total triggering times Transmission saving rate
15 7 × 10–3 443 98.77%
15 7 × 10–4 3,569 90.09%
15 7 × 10–5 10,247 71.54%
15 0 15,405 58.21%

T A B L E 3 PARAMETERS of POWER SYSTEMS
Parameters Area 1 Area 2 Area 3
D/( p.u. /Hz) 0.016 0.015 0.016
M/ (p.u. ·s) 0.1677 0.2006 0.1236
R/(Hz/ p.u.) 2.98 2.69 2.81
Tg/s 0.07 0.06 0.08
Tt/s 0.40 0.44 0.30
β/( p.u. /Hz) 0.3479 0.3826 0.3689

T A B L E 4 PARAMETERS of CONTROLLERS
Parameters Area 1 Area 2 Area 3
ρi 0.84 0.86 0.83
µi 1.3 1.1 1.2
ηi 0.3 0.5 0.2
λi 1.1 1.2 1.3
εi 10–5 10–5 10–5

vi 15 15 15
mi 7×10–3 7×10–3 7×10–3

ϕ̂i(1) 0.1 0.1 0.1
γi 0.7 0.7 0.7
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