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1 | INTRODUCTION

Random numbers are useful in many computer programs. Most programming languages provide a method to generate
uniformly random or pseudorandom integers in the range [0, 2%) for some L, commonly 64. We refer to such numbers
as L-bit random words, and the functions which produce them as random number generators. Pseudorandom gener-
ators execute algorithms to produce a sequence of numbers that approximate the properties of random numbers,
starting from a given seed (typically a few bytes). There are a variety of efficient techniques to generate high-quality
pseudorandom binary words, such as the Mersenne Twister [1], linear congruential generators [2, 3, 4, 5, 6], PCG [7],
and so forth [8, 9]. Although they do not produce truly random outputs, many pseudorandom generators can pass
rigorous statistical tests, and are considered to be random in practice [10].

Random binary words are readily available, yet applications often require uniformly random integers from other
bounded ranges, such as [0, b) for some b. We refer to these numbers as bounded random integers, or dice rolls, and
we focus on the case where 0 < b < 2. We are particularly interested in applications which require multiple dice rolls,
and where b may be chosen dynamically rather than known at compile time, such as when shuffling arrays or selecting

random samples [11]. For example, we consider the Fisher-Yates random shuffle described by Knuth [12, 13] and by
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Durstenfeld [14], which we restate here in Algorithm 1.

Algorithm 1 — Fisher-Yates random shuffle

Require: Source of uniformly random integers in bounded ranges
Require: Array A made of n elements indexed from 0 to n—1

Ensure: All n! permutations of A are equiprobable
1: fori=n-1,...,1do
2: Jj « random integer in [0, /]
3: exchange A[/] and A[/]

Algorithms such as random shuffling are commonplace in simulations and other important applications [15, 16, 17,
18,19, 20, 21]. Accordingly, there has been much work done on parallelizing random permutations [22, 23, 24, 25, 26].
In the present work, we demonstrate that batching dice rolls can improve the performance of shuffles and similar
algorithms, by reducing the number of calls to a random number generator.

Perhaps surprisingly, the computational cost of converting binary words into ranged integers can be critical to
good performance. For example, Lemire [27] showed that by simplifying the conversion to avoid most division opera-
tions, the practical performance of a random shuffle could be made up to eight times faster. We aim to show that we
can further multiply the performance in some cases, through the use of batched dice rolls.

Our main theoretical result is in § 4, where we present and prove the correctness of an algorithm to generate
multiple independent bounded random integers from a single random binary word, using in the common case only
one multiplication and zero division operations per die roll. The method is based on an existing algorithm due to
Lemire that generates one such number at a time, which we summarize in & 3. Our proof uses mixed-radix notation

as described in § 2.

In § 5 we demonstrate how our theoretical result can be implemented as a practical algorithm, in § 6 we apply
it to the task of shuffling an array, and in § 7 we show the results of our experiments, with timing measurements

illustrating the speed of array shuffling with and without batched dice rolls. Finally in § 8 we summarize our results.

1.1 | Mathematical notation

We only consider non-negative integers. We use “®” to denote full-width multiplication: a ® b = (x, y) means x and
y are integers such that 2t x + y = ab,and 0 < y < 2. On x64 systems, a full-width multiplication requires only a
single instruction, while ARM systems provide full-width multiplication with two instructions.

We use “+” to denote integer division: a + b = | a/b] is the greatest integer less than or equal to a/b. We use
“mod” to denote the Euclidean remainder: (a mod b) = a — b - (a = b). Because we use only non-negative integers,
we have 0 < (a2 mod b) < b. Note that division and remainder instructions are often slow in practice, and may have

a latency of 18 cycles compared to merely 3 cycles for a multiplication on a recent Intel processor (e.g. Ice Lake) [28].

We use pi notation “[]” to denote products, and we omit the bounds when they can be inferred from context.
Thus if b; is defined for each / from 1 through k, then [] b; = b1 b, - - - by. We also use sigma notation “Y." to denote

sums, and an underlined superscript to denote the falling factorial: n€ = n!/(n—k)! = n(n = 1) --- (n = (k=1)).



Nevin Brackett-Rozinsky and Daniel Lemire 3

2 | MIXED-RADIX NUMBERS

We use mixed-radix notation in the proof of our main result. Mixed-radix notation is a positional number system in
which each digit position has its own base. This contrasts with decimal notation where every digit is in base 10, or
binary where every digit is in base 2. Mixed-radix numbers are allowed, but not required, to have a different base for
each digit. Each base is a positive integer, and each digit is a non-negative integer smaller than its base.

We denote both the bases and digits of a mixed-radix number with ordered tuples beginning with the most-
significant digit, and use context to distinguish them. For example, a 2-digit mixed-radix number in base (b1, b;)
whose digits are (a;, ay) represents the value a = a1 b, + a,. A k-digit mixed-radix number in base (b1, by, . .., b¢) can
represent all the integers from O through b—1, where b = b1 b, - - - by, and this representation is unique. If its digits

are (aj, ap, ..., ay) then it represents the value:

k
a:Z(a,-nbj): a1(b2b3~~~bk)+az(b3b4~~~bk)+~~~+ak_1bk+ak
i=1 J>i

Given a non-negative integer a < [] b;, its mixed-radix representation can be obtained by taking the remainders of

successive quotients when dividing by by, b¢_1, . . ., by, meaning all the b; in reverse order.
Lemma 1 If a uniformly random integer a in [0, b) is written as a mixed-radix number in base (b4, by, ..., by ), where b =
[1 b;, then its digits (a1, az, . . ., ax ) are independent and uniformly random integers in the ranges 0 < a; < b;.

Proof Every possible sequence of digits is equally likely, so each a; takes all integer values in [0, b;) with uniform
probability regardless of the values of the other digits.

3 | EXISTING ALGORITHMS

There are many ways to generate bounded random integers from random bits, and it is nontrivial to do so efficiently.
Several widely-used algorithms are described by Lemire [27], including a then-novel strategy to avoid expensive divi-
sion operations. This method has now been adopted by several major systems: GNU libstdc++, Microsoft standard
C++ library, the Linux kernel, and the standard libraries of the Go, Swift, Julia, C# and Zig languages.

It works as follows. Let r be a uniformly random integer in [0,2%), and [0, b) the desired target range with
0 < b < 2-. Perform the full-width multiplication 6 ® r = (x, y). If r is picked uniformly at random and we have
y > (2L mod b)—which we call Lemire’s criterion—then x is uniformly random in [0, b). Otherwise, try again with a
new r. That is, apply the rejection method [29].

In the common case, Lemire's method uses one L-bit random word and one multiplication per die roll. Sometimes
we must compute the remainder (2t mod b) = ((2- — b) mod b) which may require a division instruction. Thankfully,
we can often avoid the division. Because (2- mod b) < b, we only need to compute (2- mod b) when y < b. When

b is much smaller than 2L the division is often avoided, and when required it is computed at most once per die roll.

3.1 | Batched dice rolls

One way to generate bounded random numbers in batches is that, to simulate rolling dice with 6; and b, sides, a

single die with by b, sides is rolled instead. The resulting number is uniformly random in [0, b15,), and the desired
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dice rolls can be obtained by taking its remainder and quotient upon dividing by b6;. These values are independent
and uniformly random integers in [0, b1) and [0, b;) respectively, and the method generalizes to more dice by taking
successive remainders of quotients upon dividing by each b;. This strategy uses fewer random bits than rolling each
die separately, however it is only of theoretical interest because division operations are slow in practice.

Our approach works differently. Rather than extract the values via division, we instead build them up through
multiplication. Specifically, we extend Lemire’s method in order to generate multiple bounded random integers from

a single random word, with zero division operations in the common case.

4 | MAIN RESULT

Theorem 1 Let ry be an L-bit random word, meaning rq is a uniformly random integer in [0,2L). Let (b1, bo, ..., by) be
positive integers with b = [] b; < 2-. Starting with ry and by, for each i from 1 to k, perform the full-width multiplication
b; ® ri_1 and set a; to the most significant L bits and r; to the least significant L bits of the 2L-bit result:

e (a,n)«bi®n

o (az.n)—byo®n
L]
o (ak,rk) < b ®ri_q

If ro is picked uniformly at random and r, > (2L mod b) is satisfied, then the a; are independent and uniformly random
integers in the ranges 0 < a; < b;.

Proof We will first show that when the conditions of the theorem are met, if the resulting values (ay, a, ..., ar) are
interpreted as the digits of a mixed-radix number a in base (b1, by, ..., b¢), then a is a uniformly random integer in
[0, b). Once this is established, we will invoke Lemma 1.

For each i from 1 to k, the full-width product b; ® r;_; = (a;, r;) means b;ri_; = 2-a; + r;. Since both r;_; and r;
are in [0,25), this implies 0 < a; < b;. So each a; is a valid mixed-radix digit for base b;, and a is well-defined. Let ¢;
be the value obtained by truncating a to its first / digits. In other words, c; is the value represented by the mixed-radix
number (ay, az,...,a;) inbase (b1, by,...,b;). Thus ¢y = a1,and ¢; = bjcj_1 +a; for 1 <i < k.

Let b1 by - - - b; be the product of b1, by, ..., b;. We claim that (616, - - - b;) ® ro = (c;, rj), and we prove it by finite
induction on i. The claim is equivalent to ro(b1b, - - - b;) = 2L¢; + r;, which is true for i = 1. If 1 < i < k we use the

inductive hypothesis that the claim is true for i—1, in order to prove it for /. Thus, we have:

ro(b1by - -+ bj) = ro(b1by - - - bi—1)b;

= (2Lcii1 +ri_q)b; (inductive hypothesis)
=2Lbici_1 + bjri_s (distributivity)

= 2Lb;c,,1 + 2La,- +ri (definition of a; and r;)
=2L(bjci_1 +aj) +ri (distributivity)
=2bci+r (formula for ¢;)

This completes the induction and proves the claim for each / from 1 to k. We know that ¢, = a and [] b; = b, hence
substituting i — k in the claim gives b ® ro = (a, r¢). But this is just the full-width product of 6 with a random word,

so we can apply Lemire’s criterion [27]: if rg is an L-bit random word such that r, > (2L mod b6) then a is a uniformly
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random integer in [0, b).

By Lemma 1, since a is uniformly random in [0, b), its mixed-radix digits in base (b1, b,, ..., by) are independent
and uniformly random in the ranges [0, b;). But those digits are (a1, a2, ..., ax), so the theorem is proved. Each a;
produced this way is a uniformly random integer in [0, b;), and the a; are independent, provided that ry > (2- mod b)
and rp was picked uniformly at random.

5 | IMPLEMENTATION

In some applications the values of b; are known ahead of time, possibly even at compile time. In that case the value
of t = (2F mod b) can be precomputed, and Theorem 1 can be implemented succinctly as shown in Algorithm 2. In
other applications the values of b; are not known ahead of time. In that case the threshold ¢ must be computed when

needed, which involves a division operation. It can be avoided when ry > b, as shown in Algorithm 3.

Algorithm 2 — Batched dice rolls (known threshold)

Require: Source of uniformly random integers in [0, 2L)

Require: Target intervals [0, b;) foriin1...k, with1 < []b; <2t
Require: The value ¢t = (2- mod [] ;)

Ensure: The a; are independent and uniformly random in [0, b;)
1: repeat

2 r « random integer in [0, 25)

3 foriin1...kdo

4

(aj,r) — b;®r > Full-width multiply
5: until r > ¢
6: return (a1, ay,...,a;)

We must have b < 2L in order to use Theorem 1, and for Algorithm 3, we would prefer to have b at least an order
of magnitude smaller than 2L. If 6 is too close to 2L then there is a high probability of taking the slow path that needs
to calculate t, and possibly having to reroll the whole batch of dice. In many applications it is possible to bound the
b; in such a way that a value v satisfying b < u < 2% is known ahead of time. This allows for a faster implementation
that avoids computing b most of the time, by enclosing lines 4-10 of Algorithm 3 within an “if r < u” block. We review
such an approach in § 6.

Whichever version of the algorithm is used, at its core is a loop containing a single full-width multiplication “b; ® r".
The value of b; is known, but each pass through the loop computes the value of r that will be used for the next iteration.
This constitutes a loop-carried dependency, and it means that each iteration must complete before the next can begin.
Modern commaodity processors generally have the ability to carry out more than one operation at a time, a feature
called instruction-level parallelism or superscalarity [30]. We expect that the computation of Algorithm 3 can be
executed while other operations are completed (e.g., memory loads and stores), or the processor might speculatively
use generated values of a; for upcoming operations if the probability of r < b is low. It would also be possible to
interleave more than one batch of dice rolls.
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Algorithm 3 — Batched dice rolls (unknown threshold)

Require: Source of uniformly random integers in [0, 2%)
Require: Target intervals [0, b;) foriin 1...k, with1 < [[b; < 2-
Ensure: The a; are independent and uniformly random in [0, b;)
: r « random integer in [0, 2L)
: foriin1...kdo
(ar) —b;®r > Full-width multiply
b [1b;
. if r < b then
t — (2- mod b)
while r < t do

r « random integer in [0, 2L)

D AT L - - I

foriin1...kdo

N
=4

(aj,r) = bj®r

-
[

: return (aq, ay,...,ax)

6 | SHUFFLING ARRAYS

The Fisher-Yates shuffle of Algorithm 1 is widely used for permuting the elements of an array. It requires n—1 dice rolls
to shuffle n elements. With a traditional implementation this involves n—1 calls to a random number generator, but by
rolling dice in batches of k we can reduce that by a factor of k. As written, Algorithm 3 requires the computation of
the product b = [] ;. In a batched shuffle, that is & = nX. One key insight is that we can replace an exact computation

by an upper bound u > b. As long as ry > u, there is no need to compute b exactly.

We denote by ny the largest array length n at which we will use batches of k dice. We want an upper bound
u > nk, ideally with u < 2 so the fast path succeeds with high probability. One possible choice is ug = ni%, which
is the largest product we will ever see for a batch of k dice. We could use vy as the upper bound for all batches of
size k, however to improve efficiency we would like to lower the value of v as n decreases. A convenient approach is,
whenever the current upper bound fails and we need to compute the true product, we assign that product to v and

use it for subsequent batches of size k in the shuffle.

We illustrate this approach in Algorithm 4, which carries out the dice rolls and swaps for a single batch of size k,
when there are n elements to shuffle. It takes an upper bound v as input, and at the end returns an upper bound for
the next iteration. Usually the return value equals the input, however if the batch needed to calculate its true product

then the return value equals that product.

To shuffle a full array, we first select the largest & such that ny > n, and set u = ug. Then we shuffle in batches of
k, updating v along the way, until n < ngy. At that point we set u = vy and shuffle in batches of k+1, and so forth
up to some predetermined maximum batch size. Finally, when the number of remaining elements becomes smaller

than the previous batch size, we finish the shuffle with one last batch.
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Algorithm 4 — Batched partial shuffle (immediate swap)

Require: Source of uniformly random integers in [0, 2%)
Require: Array z whose first n elements need to be shuffled
Require: Batch size k < n for which n¥ < 2-

Require: Upper bound u > nk

Ensure: Only the first (n — k) elements of z remain to be shuffled

1: r « random integer in [0, 2L)

2: foriin1...k do

3: (a,r) —(n+1-i)®r > Full-width multiply
4: exchange z[a] and z[n—/] > Zero-based indexing
5. if r < u then

6 u— nk > Falling factorial
7: t — (2- mod v)

8 while r < t do

9

r « random integer in [0, 2L)

10: foriin1...kdo

11 (a,r) — (n+1-i)®r

12: exchange z[a] and z[n—/]

13: return u > For the next batch

6.1 | Batch sizes

The batch size k presents a tradeoff. On one hand, we want to roll as many dice as we can with each random word.
On the other hand, we want each batch to succeed on the first try with high probability so we do not have to reroll.
These goals are in opposition, and we seek a balance between them. The question becomes, at what array length
n should we start rolling dice in batches of k. In other words, what values of n; should be used. This depends on
the bit-width L, and can only truly be answered through benchmarks on the target hardware. However, a preliminary
analysis can help to identify the right ballpark.

One possibility is to maximize the expected number of dice which succeed on the first try. That would suggest
choosing ng so the product n X is about 2L / k, where the expected number of successful dice rolls is approximately k —1
for either a batch of size k or k—1. However this is not optimal, because the second roll is much more computationally
expensive than the first, as it incurs the cost of calculating both nX and (2- mod n).

Instead, we can estimate the cost for each die roll. Let us assume that calling the random number generator is
as fast as 2 multiplications, and dividing is as slow as 16 multiplications. These are conservative estimates, since a
fast random number generator reduces the benefit of batching, and a slow division operation increases the cost of
rerolling. Using those parameters, and assuming that v ~ nX, we can find the cost per element for batches of size k at
each n. By choosing ny so this cost is cheaper with a batch of k than k-1 for all n up to ng, but not ng + 1, we obtain
the values shown in Table 1.

These are likely to be overestimates for the optimal ny because we have omitted some of the cost (e.g., mispre-
diction cost). As a rough attempt to adjust for this, we may reduce the values of ny from Table 1 to the next-lower

power of 2. In the 64-bit case, we propose the following bounds:

o 1y =2%0r1073741824
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TABLE 1 Estimated values for ng

k L=64 L=32
2 1358187913 20724
3 929 104 581
4 26573 109
5 3225
6 815
7 305
8 146

o 13 =2"0r524288
o ny=2"or16384
o ns=2"0r2048

e ng=2°0r512

7 | EXPERIMENTS

We have implemented Algorithm 4 in the C programming language, and used it for a batched Fisher-Yates shuffle.
To help ensure that our results are reproducible, we make our source code freely available.! We use three different

random number generators:

e Our fastest generator is a linear congruential generator proposed by Lehmer. It has good statistical properties [2].
Using a 128-bit integer seed as the state, we multiply it by the fixed 64-bit integer 0xda942042e4dd58b5. The
most-significant 64 bits of the resulting state are returned.

e Our second generator is a 64-bit version of O'Neill's PCG [7]. This relies on a 128-bit parameter m acting as a
multiplier (0x2360ed051fc65da44385df649f ccf645). With each call, a 128-bit state variable s is updated: s «
ms + ¢ where s and c are initialized once. The 64-bit random value is generated from the 128-bit state with a bit
rotate and an exclusive or. We use O’Neill's own implementation adapted to our code base.

e Finally, we use ChaCha as a 64-bit cryptographically strong generator [31]. The chosen implementation? is written
in conventional C, without advanced optimizations.

We measure the speed of this shuffle across a range of array lengths from 2'3 through 2'8 elements (8192 through
262 144), with a maximum batch size of either 2 or 6. Each element of the array occupies 64 bits and the entire arrays
fit in CPU cache. To get accurate measurements, we shuffle the same array until the total elapsed time is 100 ps, and
we record both the average and the minimum time per shuffle. We use the difference between the average and the
minimum as an indication of our precision.

We provide the C source code for shuffling with batch sizes up to 6 in Appendix A. We use two different computer
architectures, Apple M2 and Intel Ice Lake, see Table 2. We compare the results to a standard Fisher-Yates shuffle

without any batching, but using an efficient bounded-number algorithm [27].

lh1:1:ps ://github.com/lemire/batched_random
2nttps://github.com/nixberg
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Processor

Frequency

Microarchitecture

Memory
Compiler

Cache (LLC)

TABLE 2 Systems

Intel Xeon Gold 6338

2.0GHzto 3.2GHz
Ice Lake (x64, 2019)
DDR4 (3200 MT/s)
GCC 12
48 MiB

Apple M2

up to 3.49 GHz

Avalanche (aarch64, 2022)
LPDDRS5 (6400 MT/s)

Apple/LLVM 14
16 MiB

For each architecture and random number generator, we plot the resulting time per element to shuffle an array

using each maximum batch size. See Figure 1, Figure 2 and Figure 3. Normalizing per element keeps the scale of

the result stable, and makes the relative speeds easy to see. In these graphs, “shuffle” is the standard unbatched
Fisher-Yates shuffle, “shuffle_2" uses batches of 2, and “shuffle_6" uses batches of up to 6.
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FIGURE 3 Shuffle timings with ChaCha random number generator

The thickness of each curve shows the range between the fastest run and the average run in our tests. Across all
the graphs, we see a similar trend. Unbatched shuffles are the slowest, batches of 2 are in the middle, and batches of
up to 6 are the fastest. Note that for the range of sizes shown in the graphs, shuffle_é uses batches of 3 above length
2'* where it switches to batches of 4, then to 5 at 2'" and 6 at 2°. It would use batches of 2 from 23 until 2'°, but
that is outside the graphed region.

With the ChaCha random number generator, the speedups approach the theoretical ideal of 2x for batches of 2,
3x for batches of 3, and 4x for batches of 4. The faster generators show proportionally smaller speedups, especially
the Lehmer random number generator at large array sizes where the benefit of batching is only about 1.3x

To better understand these results, we use performance counters to record the number of instructions retired by
our functions during the shuffling. The number of instructions does not, by itself, determine the performance because
a variety of factors affect the number of instructions that can be executed in a given unit of time. In particular, cache
and memory latency limit our maximal speed. Nevertheless, we find that our batched procedures (shuffle_2 and
shuffle_6) use significantly fewer instructions per element than a conventional unbatched shuffle. See Table 3 where
we consider the case when there are 16 384 elements in the array to be shuffled.

The reduction in the number of instructions between a conventional shuffle function and our most aggressively
batched one (shuffle_6) is about 50% in the case of the Lehmer generator, and rises up to a threefold reduction when
using the ChaCha generator. This suggests that the batched shuffles run at a higher speed in large part because they
use far fewer instructions. In turn, they use fewer instructions because fewer calls to the random number generator
are required.
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TABLE 3 Instructions retired per element (16 384 elements)

generator  function Intel Xeon Gold 6338  Apple M2

Lehmer shuffle 22 22
shuffle_2 1.6 1.8
shuffle_é 1.1 1.4
PCG64 shuffle 3.3 3.0
shuffle_2 2.3 22
shuffle_é6 1.4 1.6
ChaCha shuffle 17.4 16.6
shuffle_2 9.4 9.0
shuffle_6 4.8 4.8

8 | CONCLUSION

We have shown that Lemire’s nearly-divisionless method of generating bounded random integers can be extended
to generate multiple such numbers from a single random word. When rolling several dice or shuffling an array, this
batched approach can reduce the number of random bits used, without increasing the amount of computation re-
quired. Though our approach is more beneficial when the random bits are more computationally expensive, we still
find it beneficial with a fast random number generator (e.g., Lehmer [2]).

Our results are based on a system-oblivious computational model described in § 6. We expect that further tuning,
especially system-specific tuning, might have some additional benefits. Our implementation is in the C language. We
expect that our good results should carry over to other languages such as C++, Rust, Go, Swift, Java, C# and so forth
with relative ease. However, care might be needed to ensure that the generated compiled code is comparable to the
result of our C code. We expect that our approach can find broad applications. Future work should examine other
applications such as sampling algorithms and simulations, as well as the shuffling of very large and very small arrays.

A | CODE SAMPLES

Unbatched shuffle:

// generates a bounded random integer
uint64_t random_bounded(uint64_t range, uint64_t (*rng)(void)) {
__uint128_t random64bit, multiresult;
uint64_t leftover;
uint64_t threshold;
random64bit = rng();
multiresult = random64bit * range;
leftover = (uint64_t)multiresult;
if (leftover < range) {
threshold = -range % range;
while (leftover < threshold) {
random64bit = rng();
multiresult = random64bit * range;
leftover = (uint64_t)multiresult;

}

return (uint64_t) (multiresult >> 64);
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// Fisher-Yates shuffle
void shuffle(uint64_t *storage, uint64_t size,
uint64_t (*rng) (void)) {
uint64_t i;
for (i = size; i > 1; i--) {
uint64_t nextpos = random_bounded(i, rng);
uint64_t tmp = storageli - 1];
uint64_t val = storage[nextpos];
storagel[i - 1] = val;
storage [nextpos] = tmp;

Batched shuffle:

// performs k steps of a shuffle
void batched(uint64_t *storage, uint64_t n, uinté4_t k,
uint64_t bound, uint64_t (*rng) (void)) {
__uint128_t x;
uint64_t r = rngQ);
uint64_t posl, pos2;
uint64_t vall, val2;
for (uint64_t i = 0; i < k; i++) {
x = (__uint128_t)(n - i) * (__uint128_t)r;
r = (uint64_t)x;
posl =n - i - 1; pos2 = (uint64_t) (x >> 64);
vall = storagelposi]l; val2 = storagel[pos2];
storage[pos1] = val2; storagelpos2] = vall;

if (r < bound) {
bound = n;
for (uint64_t i = 1; i < k; i++) {
bound *= n - ij;
}
uint64_t t = -bound % bound;
while (r < t) {
r = rngQ);
for (uint64_t i = 0; i < k; i++) {
x = (__uint128_t)(n - i) * (__uint128_t)r;
r = (uint64_t)x;
posl =n - i - 1; pos2 = (uint64_t) (x >> 64);
vall = storagelposl]; val2 = storagel[pos2];
storage[pos1] = val2; storagelpos2] = vall;

}
}

return bound;

// Fisher-Yates shuffle, rolling up to siz dice at a time
void shuffle_6(uint64_t *storage, uint64_t size,
uint64_t (*rng) (void)) {
uint64_t i = size;
for (; i > 1 << 30; i--) {
batched(storage, i, 1, i, rng);

}
// Batches of 2 for sizes up to 2730 elements
uint64_t bound = (uint64_t)1 << 60;
for (; i > 1 << 19; i -=2) {

bound = batched(storage, i, 2, bound, rng);
}
// Batches of 3 for sizes up to 2719 elements
bound = (uint64_t)1 << 57;
for (; i > 1 << 14; i -= 3) {

bound = batched(storage, i, 3, bound, rng);

}
// Batches of 4 for sizes up to 2714 elements
bound = (uint64_t)1 << 56;
for (; i > 1 << 11; i -=4) {

bound = batched(storage, i, 4, bound, rng);
¥
// Batches of 5 for sizes up to 2°11 elements
bound = (uint64_t)1 << 55;
for (; i >1<<9; i -=5){

bound = batched(storage, i, 5, bound, rng);

}
// Batches of 6 for sizes up to 2°9 elements
bound = (uint64_t)1 << 54;
for (; i > 6; i -=6) {
bound = batched(storage, i, 6, bound, rng);



Nevin Brackett-Rozinsky and Daniel Lemire 13

}
if (1> 1) {
batched(storage, i, i - 1, 720, rng);
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