References
Alan, R. R. and McWilliams, S. R. 2013. Oxidative stress, circulating antioxidants, and dietary preferences in songbirds. – Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 164: 185–193.Alan, A. R. R., McWilliams, S. R. and McGraw, K. J. 2013. The importance of antioxidants for avian fruit selection during autumn migration. – Wilson J. Ornithol. 125: 513–525.Bishop, C.M., Guglielmo, C. G. 2022. Flight. – In: Scanes, C.G., Dridi, S. (ed), Sturkie’s Avian Physiology, 7th ed.n. Academic Press, pp. 1265–1318.Bolser, J. A., Alan, R. R., Smith, A. D., Li, L., Seeram, N. P. and McWilliams, S. R. 2013. Birds select fruits with more anthocyanins and phenolic compounds during autumn migration. – Wilson J. Ornithol. 125: 97–108.Cabe, P. 1993. European starling (Sturnus vulgaris ). – A.F. Poole & F.B. Gill (Eds.). Cornell Lab of Ornithology, in press.Cao, G. and Prior, R. L. 1999. Anthocyanins Are Detected in Human Plasma after oral administration of an elderberry extract. – Clin. Chem. 45: 574–576.Carbeck, K. M., DeMoranville, K. J., D’Amelio, P. B., Goymann, W., Trost, L., Pierce, B., Bryła, A., Dzialo, M., Bauchinger, U. and McWilliams, S. R. 2018. Environmental cues and dietary antioxidants affect breeding behavior and testosterone of male European starlings (Sturnus vulgaris). – Horm. Behav. <https://doi.org/10.1016/j.yhbeh.2018.05.020>.Casagrande, S., DeMoranville, K. J., Trost, L., Pierce, B. J., Bryla, A., Dzialo, M., Sadowska, E. T., Bauchinger, U. and McWilliams, S. R. 2020. Dietary antioxidants attenuate the endocrine stress response during long-duration flight of a migratory bird. – Proc. Natl. Acad. Sci. B 18: 1–8.Catoni, C., Martin Schaefer, H. and Peters, A. 2008. Fruit for health: the effect of flavonoids on humoral immune response and food selection in a frugivorous bird. – Funct. Ecol. 22: 649–654.Cooper-Mullin, C., Carter, W. A. and McWilliams, S. R. 2019. Acute effects of intense exercise on the antioxidant system in birds: Does exercise training help? – J. Exp. Biol. 222: 1–10.Corder, K. R. and Schaeffer, P. J. 2015. Summit metabolic rate exibits phenotypic flexibility with migration, but not latitude in a neotropical migrant,Parkesia noveboracensis . – J. Ornithol. 156: 547–550.Costantini, D. 2014. Oxidative stress and hormesis in evolutionary ecology and physiology: A marriage between mechanistic and evolutionary approaches. – Springer-Verlag.Costantini, D. 2016. Oxidative stress ecology and the d-ROMs test: facts, misfacts and an appraisal of a decade’s work. – Behav. Ecol. Sociobiol. 70: 809–820.Costantini, D. 2019. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. – J. Exp. Biol. 222: 1–9.Costantini, D., Cardinale, M. and Carere, C. 2007. Oxidative damage and anti-oxidant capacity in two migratory bird species at a stop-over site. – Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 144: 363–371.Costantini, D., Dell’Ariccia, G. and Lipp, H.-P. 2008. Long flights and age affect oxidative status of homing pigeons (Columba livia). – J. Exp. Biol. 211: 377–381.Costantini, D., Lindecke, O., Pētersons, G. and Voigt, C. C. 2018. Migratory flight imposes oxidative stress in bats. – Curr. Zool.Dangles, O. and Fenger, J. A. 2018. The chemical reactivity of anthocyanins and its consequences in food science and nutrition. – Molecules <https://doi.org/10.3390/molecules23081970>.Davies, M. J. 2016. Protein oxidation and peroxidation. – Biochem. J. 473: 805–825.DeMoranville, K. J., Corder, K. R., Hamilton, A., Russell, D. E., Huss, J. M. and Schaeffer, P. J. 2019. PPAR expression, muscle size and metabolic rates across the gray catbird’s annual cycle are greatest in preparation for fall migration. – J. Exp. Biol. 222: 1–11.Dick, M. F. and Guglielmo, C. G. 2019. Flight muscle protein damage during endurance flight is related to energy expenditure but not dietary polyunsaturated fatty acids in a migratory bird. – J. Exp. Biol. 222: 1–9.Dogan Comert, E. and Gokman, V. 2017. Antioxidants bound to an insoluble food matrix: their analysis, regeneration behavior, and physiological importance. – Compr. Rev. Food Sci. Saf. 16: 382–339.Eikenaar, C., Källstig, E., Andersson, M. N., Herrera-Dueñas, A. and Isaksson, C. 2017. Oxidative challenges of avian migration: A comparative field study on a partial migrant. – Physiol. Biochem. Zool. 90: 223–229.Engel, S., Biebach, H. and Visser, G. H. 2006. Metabolic costs of avian flight in relation to flight velocity: a study in Rose coloured starlings (Sturnus roseus, Linnaeus ). – J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 176: 415–427.Forman, B. M., Chen, J. and Evans, R. M. 1997. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. – Proc. Natl. Acad. Sci. United States Am. 94: 4312–4317.Frawley, A. E., DeMoranville, K. J., Carbeck, K. M., Trost, L., Bryła, A., Dzialo, M., Sadowska, E. T., Bauchinger, U., Pierce, B. J. and McWilliams, S. R. 2021a. Flight training and dietary antioxidants have mixed effects on the oxidative status of multiple tissues in a female migratory songbird. – J. Exp. Biol.Frawley, A. E., DeMoranville, K. J., Carbeck, K. M., Trost, L., Bryła, A., Dzialo, M., Sadowska, E. T., Bauchinger, U., Pierce, B. J. and McWilliams, S. R. 2021b. Season, anthocyanin supplementation, and flight training have mixed effects on the antioxidant system of migratory European Starlings. – Ornithology 138: 1–16.Ginn, H. and Melville, D. 1983. Moult in birds. – British Trust for Ornithology.Guglielmo, C. G. 2018. Obese super athletes: fat-fueled migration in birds and bats. – J. Exp. Biol. 221: 1–16.Gutiérrez, J. S., Sabat, P., Castañeda, L. E., Contreras, C., Navarrete, L., Peña-Villalobos, I. and Navedo, J. G. 2019. Oxidative status and metabolic profile in a long-lived bird preparing for extreme endurance migration. – Sci. Rep. 9: 1–11.Hall, Z. J., Bauchinger, U., Gerson, A. R., Price, E. R., Langlois, L. A., Boyles, M., Pierce, B., Mcwilliams, S. R., Sherry, D. F. and Macdougall-Shackleton, S. A. 2014. Site-specific regulation of adult neurogenesis by dietary fatty acid content, vitamin E and flight exercise in European starlings. – Eur. J. Neurosci. 39: 875–882.Halliwell, B. and Gutteridge, J. M. 2007. Free radicals in biology and medicine. – Oxford University Press.Hamilton, A., Ly, J., Robinson, J. R., Corder, K. R., DeMoranville, K. J., Schaeffer, P. J. and Huss, J. M. 2018. Conserved transcriptional activity and ligand responsiveness of avian PPARs: potential role in regulating lipid metabolism in migratory birds. – Gen. Comp. Endocrinol. 268: 110–120.Ito, F., Ito, T., Suzuki, C., Yahata, T., Ikeda, K. and Hamaoka, K. 2017. The application of a modified d-ROMs test for measurement of oxidative stress and oxidized high-density lipoprotein. – Int. J. Mol. Sci. 18: 454.Jenni-Eiermann, S., Jenni, L., Smith, S. and Costantini, D. 2014. Oxidative stress in endurance flight: An unconsidered factor in bird migration. – PLoS One 9: 1–6.Jensen, J. K., Isaksson, C., Eikenaar, C. and Andersson, M. N. 2020. Migrant blackbirds, Turdus merula , have higher plasma levels of polyunsaturated fatty acids compared to residents, but not enhanced fatty acid unsaturation index. – Ecol. Evol. 1–11.Jimenez, A. G., Ruhs, E. C., Tobin, K. J., Anderson, K. N., Le Pogam, A., Regimbald, L. and Vézina, F. 2020. Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell. – J. Exp. Biol. <https://doi.org/10.1242/jeb.218826>.Kennedy, S. R., Bickerdike, R., Berge, R. K., Porter, A. R. and Tocher, D. R. 2007. Influence of dietary conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) on growth, lipid composition and key enzymes of fatty acid oxidation in liver and muscle of Atlantic cod (Gadus morhua L. ). – Aquaculture 264: 372–382.Li, M., Chen, L., Qin, J. G., Li, E., Yu, N. and Du, Z. 2013. Growth performance, antioxidant status and immune response in darkbarbel catfishPelteobagrus vachelli fed different PUFA/vitamin E dietary levels and exposed to high or low ammonia. – Aquaculture 406–407: 18–27.Loughland, I. and Seebacher, F. 2020. Differences in oxidative status explain variation in thermal acclimation capacity between individual mosquitofish (Gambusia holbrooki ). – Funct. Ecol. 34: 1380–1390.McArdle, A., Vasilaki, A. and Jackson, M. 2002. Exercise and skeletal muscle ageing: cellular and molecular mechanisms. – Aging Res. Rev. 1: 79–93.McWilliams, S.R., Ramenofsky, M., Pierce, B. J. 2022. Physiological Challenges of Migration. – In: Scanes, C.G., Dridi, S. (ed), Sturkie’s Avian Physiology, 2nd ed.n. Academic Press, pp. 1331–1360.McWilliams, S. R., Guglielmo, C., Pierce, B. and Klaassen, M. 2004. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. – J. Avian Biol. 35: 377–393.McWilliams, S. R., Pierce, B. J., Wittenzellner, A., Langlois, L., Engel, S., Speakman, J., Fatica, O., DeMoranville, K. J., Goymann, W., Trost, L., Bryla, A., Dzialo, M., Sadowska, E. T. and Bauchinger, U. 2020. The energy savings-oxidative cost trade-off for birds during migration. – Elife.McWilliams, S. R., Carter, W. A., Cooper-Mullin, C., DeMoranville, K. J., Frawley, A. E., Pierce, B. J. and Skrip, M. M. 2021. How birds during migration maintain (oxidative) balance. – Front. Ecol. Evol.Merry, T. L. and Ristow, M. 2016. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? – J. Physiol. 594: 5135–5147.Nebel, S., Bauchinger, U., Buehler, D. M., Langlois, L. A., Boyles, M., Gerson, A. R., Price, E. R., McWilliams, S. R. and Guglielmo, C. G. 2012. Constitutive immune function in European starlings, Sturnus vulgaris , is decreased immediately after an endurance flight in a wind tunnel. – J. Exp. Biol. 215: 272–278.Pierce, B. J. and McWilliams, S. R. 2005. Seasonal changes in composition of lipid stores in migratory birds: causes and consequences. – Condor 107: 269–279.Pierce, B. J. and McWilliams, S. R. 2014. The fat of the matter: how dietary fatty acids can affect exercise performance. – Integr. Comp. Biol. 54: 903–912.Pierce, B. J., McWilliams, S. R., Place, A. R. and Huguenin, M. A. 2004. Diet preferences for specific fatty acids and their effect on composition of fat reserves in migratory Red-eyed Vireos (Vireo olivaceous ). – Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 138: 503–514.Piersma, T. and Van Gils, J. A. 2011. The flexible phenotype: a body-centred integration of ecology, physiology, and behaviour. – Oxford University Press.Price, E. R., Krokfors, A. and Guglielmo, C. G. 2008. Selective mobilization of fatty acids from adipose tissue in migratory birds. – J. Exp. Biol. 211: 29–34.Price, E. R., Bauchinger, U., McWilliams, S. R., Boyles, M. L., Langlois, L. A., Gerson, A. R. and Guglielmo, C. G. 2022. The effects of training, acute exercise and dietary fatty acid composition on muscle lipid oxidative capacity in European starlings. – J. Exp. Biol. <https://doi.org/10.1242/jeb.244433>.Rattan, S. I. S. 2008. Hormesis in aging. – Ageing Res. Rev. 7: 63–78.Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., Stumvoll, M., Kahn, C. R. and Blüher, M. 2009. Antioxidants prevent health-promoting effects of physical exercise in humans. – PNAS 2: 2–7.Schaefer, H., McGraw, K. and Catoni, C. 2008. Birds use fruit colour as honest signal of dietary antioxidant rewards. – Funct. Ecol. 22: 303–310.Skrip, M. M. and McWilliams, S. R. 2016. Oxidative balance in birds: an atoms-to-organisms-to-ecology primer for ornithologists. – J. F. Ornithol. 87: 1–20.Skrip, M. M., Bauchinger, U., Goymann, W., Fusani, L., Cardinale, M., Alan, R. R. and Mcwilliams, S. R. 2015. Migrating songbirds on stopover prepare for, and recover from, oxidative challenges posed by long-distance flight. – Ecol. Evol. 5: 3198–3209.Skrip, M. M., Seeram, N. P., Yuan, T., Ma, H. and McWilliams, S. R. 2016. Dietary antioxidants and flight exercise in female birds affect allocation of nutrients to eggs: how carry-over effects work. – J. Exp. Biol. 219: 2716–2725.Smith, S. B. and McWilliams, S. R. 2010. Patterns of fuel use and storage in migrating passerines in relation to fruit resources at autumn stopover sites. – Auk 127: 108–118.Swanson, D. L. 2010. Seasonal metabolic variation in birds: functional and mechanistic correlates. – Current Ornithology, Thompson C. pp. 131–189.Tou, J. C., Altman, S. N., Gigliotti, J. C., Benedito, V. A. and Cordonier, E. L. 2011. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats. – Lipids Health Dis. 10: 1–14.Zengi̇n, H. and Yilmaz, Ö. 2016. Antioxidant defence of the actively feeding Oncorhynchus mykiss (Walbaum 1792) larvae in relation to dietary PUFA and vitamin E contents. – Reg. Stud. Mar. Sci. 8: 515–522.