References
Alan, R. R. and McWilliams, S. R. 2013. Oxidative stress, circulating
antioxidants, and dietary preferences in songbirds. – Comp. Biochem.
Physiol. - B Biochem. Mol. Biol. 164: 185–193.Alan, A. R. R.,
McWilliams, S. R. and McGraw, K. J. 2013. The importance of antioxidants
for avian fruit selection during autumn migration. – Wilson J.
Ornithol. 125: 513–525.Bishop, C.M., Guglielmo, C. G. 2022. Flight. –
In: Scanes, C.G., Dridi, S. (ed), Sturkie’s Avian Physiology, 7th ed.n.
Academic Press, pp. 1265–1318.Bolser, J. A., Alan, R. R., Smith, A. D.,
Li, L., Seeram, N. P. and McWilliams, S. R. 2013. Birds select fruits
with more anthocyanins and phenolic compounds during autumn migration.
– Wilson J. Ornithol. 125: 97–108.Cabe, P. 1993. European starling
(Sturnus vulgaris ). – A.F. Poole & F.B. Gill (Eds.). Cornell
Lab of Ornithology, in press.Cao, G. and Prior, R. L. 1999. Anthocyanins
Are Detected in Human Plasma after oral administration of an elderberry
extract. – Clin. Chem. 45: 574–576.Carbeck, K. M., DeMoranville, K.
J., D’Amelio, P. B., Goymann, W., Trost, L., Pierce, B., Bryła, A.,
Dzialo, M., Bauchinger, U. and McWilliams, S. R. 2018. Environmental
cues and dietary antioxidants affect breeding behavior and testosterone
of male European starlings (Sturnus vulgaris). – Horm. Behav.
<https://doi.org/10.1016/j.yhbeh.2018.05.020>.Casagrande,
S., DeMoranville, K. J., Trost, L., Pierce, B. J., Bryla, A., Dzialo,
M., Sadowska, E. T., Bauchinger, U. and McWilliams, S. R. 2020. Dietary
antioxidants attenuate the endocrine stress response during
long-duration flight of a migratory bird. – Proc. Natl. Acad. Sci. B
18: 1–8.Catoni, C., Martin Schaefer, H. and Peters, A. 2008. Fruit for
health: the effect of flavonoids on humoral immune response and food
selection in a frugivorous bird. – Funct. Ecol. 22:
649–654.Cooper-Mullin, C., Carter, W. A. and McWilliams, S. R. 2019.
Acute effects of intense exercise on the antioxidant system in birds:
Does exercise training help? – J. Exp. Biol. 222: 1–10.Corder, K. R.
and Schaeffer, P. J. 2015. Summit metabolic rate exibits phenotypic
flexibility with migration, but not latitude in a neotropical migrant,Parkesia noveboracensis . – J. Ornithol. 156:
547–550.Costantini, D. 2014. Oxidative stress and hormesis in
evolutionary ecology and physiology: A marriage between mechanistic and
evolutionary approaches. – Springer-Verlag.Costantini, D. 2016.
Oxidative stress ecology and the d-ROMs test: facts, misfacts and an
appraisal of a decade’s work. – Behav. Ecol. Sociobiol. 70:
809–820.Costantini, D. 2019. Understanding diversity in oxidative
status and oxidative stress: the opportunities and challenges ahead. –
J. Exp. Biol. 222: 1–9.Costantini, D., Cardinale, M. and Carere, C.
2007. Oxidative damage and anti-oxidant capacity in two migratory bird
species at a stop-over site. – Comp. Biochem. Physiol. - C Toxicol.
Pharmacol. 144: 363–371.Costantini, D., Dell’Ariccia, G. and Lipp,
H.-P. 2008. Long flights and age affect oxidative status of homing
pigeons (Columba livia). – J. Exp. Biol. 211: 377–381.Costantini, D.,
Lindecke, O., Pētersons, G. and Voigt, C. C. 2018. Migratory flight
imposes oxidative stress in bats. – Curr. Zool.Dangles, O. and Fenger,
J. A. 2018. The chemical reactivity of anthocyanins and its consequences
in food science and nutrition. – Molecules
<https://doi.org/10.3390/molecules23081970>.Davies,
M. J. 2016. Protein oxidation and peroxidation. – Biochem. J. 473:
805–825.DeMoranville, K. J., Corder, K. R., Hamilton, A., Russell, D.
E., Huss, J. M. and Schaeffer, P. J. 2019. PPAR expression, muscle size
and metabolic rates across the gray catbird’s annual cycle are greatest
in preparation for fall migration. – J. Exp. Biol. 222: 1–11.Dick, M.
F. and Guglielmo, C. G. 2019. Flight muscle protein damage during
endurance flight is related to energy expenditure but not dietary
polyunsaturated fatty acids in a migratory bird. – J. Exp. Biol. 222:
1–9.Dogan Comert, E. and Gokman, V. 2017. Antioxidants bound to an
insoluble food matrix: their analysis, regeneration behavior, and
physiological importance. – Compr. Rev. Food Sci. Saf. 16:
382–339.Eikenaar, C., Källstig, E., Andersson, M. N., Herrera-Dueñas,
A. and Isaksson, C. 2017. Oxidative challenges of avian migration: A
comparative field study on a partial migrant. – Physiol. Biochem. Zool.
90: 223–229.Engel, S., Biebach, H. and Visser, G. H. 2006. Metabolic
costs of avian flight in relation to flight velocity: a study in Rose
coloured starlings (Sturnus roseus, Linnaeus ). – J. Comp.
Physiol. B Biochem. Syst. Environ. Physiol. 176: 415–427.Forman, B. M.,
Chen, J. and Evans, R. M. 1997. Hypolipidemic drugs, polyunsaturated
fatty acids, and eicosanoids are ligands for peroxisome
proliferator-activated receptors α and δ. – Proc. Natl. Acad. Sci.
United States Am. 94: 4312–4317.Frawley, A. E., DeMoranville, K. J.,
Carbeck, K. M., Trost, L., Bryła, A., Dzialo, M., Sadowska, E. T.,
Bauchinger, U., Pierce, B. J. and McWilliams, S. R. 2021a. Flight
training and dietary antioxidants have mixed effects on the oxidative
status of multiple tissues in a female migratory songbird. – J. Exp.
Biol.Frawley, A. E., DeMoranville, K. J., Carbeck, K. M., Trost, L.,
Bryła, A., Dzialo, M., Sadowska, E. T., Bauchinger, U., Pierce, B. J.
and McWilliams, S. R. 2021b. Season, anthocyanin supplementation, and
flight training have mixed effects on the antioxidant system of
migratory European Starlings. – Ornithology 138: 1–16.Ginn, H. and
Melville, D. 1983. Moult in birds. – British Trust for
Ornithology.Guglielmo, C. G. 2018. Obese super athletes: fat-fueled
migration in birds and bats. – J. Exp. Biol. 221: 1–16.Gutiérrez, J.
S., Sabat, P., Castañeda, L. E., Contreras, C., Navarrete, L.,
Peña-Villalobos, I. and Navedo, J. G. 2019. Oxidative status and
metabolic profile in a long-lived bird preparing for extreme endurance
migration. – Sci. Rep. 9: 1–11.Hall, Z. J., Bauchinger, U., Gerson, A.
R., Price, E. R., Langlois, L. A., Boyles, M., Pierce, B., Mcwilliams,
S. R., Sherry, D. F. and Macdougall-Shackleton, S. A. 2014.
Site-specific regulation of adult neurogenesis by dietary fatty acid
content, vitamin E and flight exercise in European starlings. – Eur. J.
Neurosci. 39: 875–882.Halliwell, B. and Gutteridge, J. M. 2007. Free
radicals in biology and medicine. – Oxford University Press.Hamilton,
A., Ly, J., Robinson, J. R., Corder, K. R., DeMoranville, K. J.,
Schaeffer, P. J. and Huss, J. M. 2018. Conserved transcriptional
activity and ligand responsiveness of avian PPARs: potential role in
regulating lipid metabolism in migratory birds. – Gen. Comp.
Endocrinol. 268: 110–120.Ito, F., Ito, T., Suzuki, C., Yahata, T.,
Ikeda, K. and Hamaoka, K. 2017. The application of a modified d-ROMs
test for measurement of oxidative stress and oxidized high-density
lipoprotein. – Int. J. Mol. Sci. 18: 454.Jenni-Eiermann, S., Jenni, L.,
Smith, S. and Costantini, D. 2014. Oxidative stress in endurance flight:
An unconsidered factor in bird migration. – PLoS One 9: 1–6.Jensen, J.
K., Isaksson, C., Eikenaar, C. and Andersson, M. N. 2020. Migrant
blackbirds, Turdus merula , have higher plasma levels of
polyunsaturated fatty acids compared to residents, but not enhanced
fatty acid unsaturation index. – Ecol. Evol. 1–11.Jimenez, A. G.,
Ruhs, E. C., Tobin, K. J., Anderson, K. N., Le Pogam, A., Regimbald, L.
and Vézina, F. 2020. Consequences of being phenotypically mismatched
with the environment: no evidence of oxidative stress in cold- and
warm-acclimated birds facing a cold spell. – J. Exp. Biol.
<https://doi.org/10.1242/jeb.218826>.Kennedy, S. R.,
Bickerdike, R., Berge, R. K., Porter, A. R. and Tocher, D. R. 2007.
Influence of dietary conjugated linoleic acid (CLA) and
tetradecylthioacetic acid (TTA) on growth, lipid composition and key
enzymes of fatty acid oxidation in liver and muscle of Atlantic cod
(Gadus morhua L. ). – Aquaculture 264: 372–382.Li, M., Chen, L.,
Qin, J. G., Li, E., Yu, N. and Du, Z. 2013. Growth performance,
antioxidant status and immune response in darkbarbel catfishPelteobagrus vachelli fed different PUFA/vitamin E dietary levels
and exposed to high or low ammonia. – Aquaculture 406–407:
18–27.Loughland, I. and Seebacher, F. 2020. Differences in oxidative
status explain variation in thermal acclimation capacity between
individual mosquitofish (Gambusia holbrooki ). – Funct. Ecol. 34:
1380–1390.McArdle, A., Vasilaki, A. and Jackson, M. 2002. Exercise and
skeletal muscle ageing: cellular and molecular mechanisms. – Aging Res.
Rev. 1: 79–93.McWilliams, S.R., Ramenofsky, M., Pierce, B. J. 2022.
Physiological Challenges of Migration. – In: Scanes, C.G., Dridi, S.
(ed), Sturkie’s Avian Physiology, 2nd ed.n. Academic Press, pp.
1331–1360.McWilliams, S. R., Guglielmo, C., Pierce, B. and Klaassen, M.
2004. Flying, fasting, and feeding in birds during migration: A
nutritional and physiological ecology perspective. – J. Avian Biol. 35:
377–393.McWilliams, S. R., Pierce, B. J., Wittenzellner, A., Langlois,
L., Engel, S., Speakman, J., Fatica, O., DeMoranville, K. J., Goymann,
W., Trost, L., Bryla, A., Dzialo, M., Sadowska, E. T. and Bauchinger, U.
2020. The energy savings-oxidative cost trade-off for birds during
migration. – Elife.McWilliams, S. R., Carter, W. A., Cooper-Mullin, C.,
DeMoranville, K. J., Frawley, A. E., Pierce, B. J. and Skrip, M. M.
2021. How birds during migration maintain (oxidative) balance. – Front.
Ecol. Evol.Merry, T. L. and Ristow, M. 2016. Do antioxidant supplements
interfere with skeletal muscle adaptation to exercise training? – J.
Physiol. 594: 5135–5147.Nebel, S., Bauchinger, U., Buehler, D. M.,
Langlois, L. A., Boyles, M., Gerson, A. R., Price, E. R., McWilliams, S.
R. and Guglielmo, C. G. 2012. Constitutive immune function in European
starlings, Sturnus vulgaris , is decreased immediately after an
endurance flight in a wind tunnel. – J. Exp. Biol. 215:
272–278.Pierce, B. J. and McWilliams, S. R. 2005. Seasonal changes in
composition of lipid stores in migratory birds: causes and consequences.
– Condor 107: 269–279.Pierce, B. J. and McWilliams, S. R. 2014. The
fat of the matter: how dietary fatty acids can affect exercise
performance. – Integr. Comp. Biol. 54: 903–912.Pierce, B. J.,
McWilliams, S. R., Place, A. R. and Huguenin, M. A. 2004. Diet
preferences for specific fatty acids and their effect on composition of
fat reserves in migratory Red-eyed Vireos (Vireo olivaceous ). –
Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 138: 503–514.Piersma,
T. and Van Gils, J. A. 2011. The flexible phenotype: a body-centred
integration of ecology, physiology, and behaviour. – Oxford University
Press.Price, E. R., Krokfors, A. and Guglielmo, C. G. 2008. Selective
mobilization of fatty acids from adipose tissue in migratory birds. –
J. Exp. Biol. 211: 29–34.Price, E. R., Bauchinger, U., McWilliams, S.
R., Boyles, M. L., Langlois, L. A., Gerson, A. R. and Guglielmo, C. G.
2022. The effects of training, acute exercise and dietary fatty acid
composition on muscle lipid oxidative capacity in European starlings. –
J. Exp. Biol.
<https://doi.org/10.1242/jeb.244433>.Rattan, S. I.
S. 2008. Hormesis in aging. – Ageing Res. Rev. 7: 63–78.Ristow, M.,
Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M.,
Stumvoll, M., Kahn, C. R. and Blüher, M. 2009. Antioxidants prevent
health-promoting effects of physical exercise in humans. – PNAS 2:
2–7.Schaefer, H., McGraw, K. and Catoni, C. 2008. Birds use fruit
colour as honest signal of dietary antioxidant rewards. – Funct. Ecol.
22: 303–310.Skrip, M. M. and McWilliams, S. R. 2016. Oxidative balance
in birds: an atoms-to-organisms-to-ecology primer for ornithologists. –
J. F. Ornithol. 87: 1–20.Skrip, M. M., Bauchinger, U., Goymann, W.,
Fusani, L., Cardinale, M., Alan, R. R. and Mcwilliams, S. R. 2015.
Migrating songbirds on stopover prepare for, and recover from, oxidative
challenges posed by long-distance flight. – Ecol. Evol. 5:
3198–3209.Skrip, M. M., Seeram, N. P., Yuan, T., Ma, H. and McWilliams,
S. R. 2016. Dietary antioxidants and flight exercise in female birds
affect allocation of nutrients to eggs: how carry-over effects work. –
J. Exp. Biol. 219: 2716–2725.Smith, S. B. and McWilliams, S. R. 2010.
Patterns of fuel use and storage in migrating passerines in relation to
fruit resources at autumn stopover sites. – Auk 127: 108–118.Swanson,
D. L. 2010. Seasonal metabolic variation in birds: functional and
mechanistic correlates. – Current Ornithology, Thompson C. pp.
131–189.Tou, J. C., Altman, S. N., Gigliotti, J. C., Benedito, V. A.
and Cordonier, E. L. 2011. Different sources of omega-3 polyunsaturated
fatty acids affects apparent digestibility, tissue deposition, and
tissue oxidative stability in growing female rats. – Lipids Health Dis.
10: 1–14.Zengi̇n, H. and Yilmaz, Ö. 2016. Antioxidant defence of the
actively feeding Oncorhynchus mykiss (Walbaum 1792) larvae in
relation to dietary PUFA and vitamin E contents. – Reg. Stud. Mar. Sci.
8: 515–522.