References
1 Perkins DJ, Kempaiah P, Davenport GC, Anyona S, Hittner T, Were T
et al. The Global Burden of Severe Falciparum Malaria: An Immunological and Genetic Perspective on Pathogenesis.
Dynamic Models of Infectious Diseases: Volume 1: Vector-Borne Diseases 2013; : 231–283.
2 Sato S. Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol 2021; 40.
3 Frédérique V, Gaëlle N, Catherine L. Host Cell Remodeling by Plasmodium falciparum Sexual Stages. Current Tissue Microenvironment Reports 2022 3:2 2022; 3: 11–20.
4 Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12. doi:10.3390/PATHOGENS12070900.
5 Ferluga J, Singh I, Rout S, Al-Qahtani A, Yasmin H, Kishore U. Immune Responses in Malaria and Vaccine Strategies. Adv Exp Med Biol 2021; 1313: 273–291.
6 Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally Acquired Humoral Immunity Against Plasmodium falciparum Malaria. Front Immunol 2020; 11: 594653.
7 Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2016; 40: 208–257.
8 Wale N, Jones MJ, Sim DG, Read AF, King AA. The contribution of host cell-directed vs. parasite-directed immunity to the disease and dynamics of malaria infections. Proc Natl Acad Sci U S A 2019; 116: 22386–22392.
9 Herbert Mainero A, Spence PJ, Reece SE, Kamiya T. The impact of innate immunity on malaria parasite infection dynamics in rodent models. Front Immunol 2023; 14: 1171176.
10 Mandala WL, Harawa V, Dzinjalamala F, Tembo D. The role of different components of the immune system against Plasmodium falciparum malaria: Possible contribution towards malaria vaccine development. Mol Biochem Parasitol 2021; 246: 111425.
11 Depierre M, Jacquelin L, Niedergang F. Phagocytosis. Encyclopedia of Cell Biology: Volume 1-6, Second Edition 2023; 3: 286–295.
12 Hallett MB. An Introduction to Phagocytosis. Adv Exp Med Biol 2020; 1246: 1–7.
13 Rosales C, Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. Biomed Res Int 2017; 2017: 9042851–9042851.
14 Moretti J, Blander JM. Insights into phagocytosis-coupled activation of Pattern Recognition Receptors and Inflammasomes. Curr Opin Immunol 2014; 26: 100.
15 Gowda DC, Wu X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front Immunol 2018; 9. doi:10.3389/FIMMU.2018.03006/FULL.
16 Camponovo F, Lee TE, Russell JR, Burgert L, Gerardin J, Penny MA. Mechanistic within-host models of the asexual Plasmodium falciparum infection: a review and analytical assessment. Malar J 2021; 20: 1–22.
17 Teo A, Hasang W, Boeuf P, Rogerson S. A Robust Phagocytosis Assay to Evaluate the Opsonic Activity of Antibodies against Plasmodium falciparum-Infected Erythrocytes. Methods Mol Biol 2015; 1325: 145–152.
18 Rogerson SJ, Pollina E, Getachew A, Tadesse E, Lema VM, Molyneux ME. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg 2003; 68: 115–119.
19 Chua CLL, Ng IMJ, Yap BJM, Teo A. Factors influencing phagocytosis of malaria parasites: the story so far. Malaria Journal 2021 20:1 2021; 20: 1–15.
20 Ogonda LA, Orago ASS, Otieno MF, Adhiambo C, Otieno W, Stoute JA. The levels of CD16/Fc gamma receptor IIIA on CD14+ CD16+ monocytes are higher in children with severe Plasmodium falciparum anemia than in children with cerebral or uncomplicated malaria. Infect Immun 2010; 78: 2173–2181.
21 Loughland JR, Woodberry T, Field M, Andrew DW, SheelaNair A, Dooley NL et al. Transcriptional profiling and immunophenotyping show sustained activation of blood monocytes in subpatent Plasmodium falciparum infection. Clin Transl Immunology 2020; 9. doi:10.1002/CTI2.1144.
22 Zhou J, Feng G, Beeson J, Hogarth PM, Rogerson SJ, Yan Y et al. CD14(hi)CD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so. BMC Med 2015; 13. doi:10.1186/S12916-015-0391-7.
23 Dobbs KR, Embury P, Vulule J, Odada PS, Rosa BA, Mitreva M et al. Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria. JCI Insight 2017; 2. doi:10.1172/JCI.INSIGHT.95352.
24 Xuan KM, Bakar NA, Fadzli Mustaffa KM, Azlan M. The role of monocytes in malaria infection. Cent Eur J Immunol 2023; 48: 54.
25 Fraser M, Jing W, Bröer S, Kurth F, Sander LE, Matuschewski K et al. Breakdown in membrane asymmetry regulation leads to monocyte recognition of P. falciparum-infected red blood cells. PLoS Pathog 2021; 17. doi:10.1371/JOURNAL.PPAT.1009259.
26 Garcia-Senosiain A, Kana IH, Singh S, Das MK, Dziegiel MH, Hertegonne S et al. Neutrophils dominate in opsonic phagocytosis of P. falciparum blood-stage merozoites and protect against febrile malaria. Commun Biol 2021; 4. doi:10.1038/S42003-021-02511-5.
27 Alfaki DA, Hussein M, Hassan M, Eloraish AG, Elbasheir MM. Inflammatory immune mediators and Plasmodium falciparum infection: a cross-sectional study among Sudanese patients with severe and uncomplicated malaria. Open Exploration 2019 3:4 2023; 3: 406–415.
28 Corbett Y, Parapini S, Perego F, Messina V, Delbue S, Misiano P et al. Phagocytosis and activation of bone marrow-derived macrophages by Plasmodium falciparum gametocytes. Malar J 2021; 20: 1–10.
29 Winkel BMF, Pelgrom LR, van Schuijlenburg R, Baalbergen E, Ganesh MS, Gerritsma H et al. Plasmodium sporozoites induce regulatory macrophages. PLoS Pathog 2020; 16: e1008799.
30 Yang B, Wang X, Jiang N, Sang X, Feng Y, Chen R et al. Interaction Analysis of a Plasmodium falciparum PHISTa-like Protein and PfEMP1 Proteins. Front Microbiol 2020; 11: 611190.
31 Bujila I, Schwarzer E, Skorokhod O, Weidner JM, Troye-Blomberg M, Östlund Farrants AK. Malaria-derived hemozoin exerts early modulatory effects on the phenotype and maturation of human dendritic cells. Cell Microbiol 2016; 18: 413–423.
32 Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT. Innate sensing of malaria parasites. Nature Reviews Immunology 2014 14:11 2014; 14: 744–757.
33 Jide C, Ying H, Wenyue X, Fusheng H. Toll-like receptors, a double-edged sword in immunity to malaria. Journal of Medical Colleges of PLA 2009; 24: 118–124.
34 Baratin M, Roetynck S, Pouvelle B, Lemmers C, Viebig NK, Johansson S et al. Dissection of the Role of PfEMP1 and ICAM-1 in the Sensing of Plasmodium falciparum-Infected Erythrocytes by Natural Killer Cells. PLoS One 2007; 2. doi:10.1371/JOURNAL.PONE.0000228.
35 Avril M, Bernabeu M, Benjamin M, Brazier AJ, Smith JD. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells. mBio 2016; 7. doi:10.1128/MBIO.00615-16.
36 Fraser M, Jing W, Bröer S, Kurth F, Sander LE, Matuschewski K et al. Breakdown in membrane asymmetry regulation leads to monocyte recognition of P. falciparum-infected red blood cells. PLoS Pathog 2021; 17. doi:10.1371/JOURNAL.PPAT.1009259.
37 Li J, Liu L, Chen D, Yin W, Huang J. Trained immunity from the perspective of Plasmodium infection. Eur J Immunol 2023; 53: 2250268.
38 Chan CL, Rénia L, Tan KSW. A Simplified, Sensitive Phagocytic Assay for Malaria Cultures Facilitated by Flow Cytometry of Differentially-Stained Cell Populations. PLoS One 2012; 7. doi:10.1371/JOURNAL.PONE.0038523.
39 Schrum JE, Crabtree JN, Dobbs KR, Kiritsy MC, Reed GW, Gazzinelli RT et al. Plasmodium falciparum induces trained innate immunity. J Immunol 2018; 200: 1243.
40 Muniz-Junqueira MI, Tosta CE. Stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes. Rev Soc Bras Med Trop 2009; 42: 103–106.
41 Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol 2004; 34: 163–189.
42 Ayi K, Patel SN, Serghides L, Smith TG, Kain KC. Nonopsonic Phagocytosis of Erythrocytes Infected with Ring-Stage Plasmodium falciparum. Infect Immun 2005; 73: 2559.
43 Celada A, Cruchaud A, Perrin LH. Assessment of immune phagocytosis of Plasmodium falciparum infected red blood cells by human monocytes and polymorphonuclear leukocytes. A method for visualizing infected red blood cells ingested by phagocytes. J Immunol Methods 1983; 63: 263–271.
44 del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MVG. The role of the spleen in malaria. Cell Microbiol 2012; 14: 343–355.
45 Ferrer M, Martin-Jaular L, De Niz M, Khan SM, Janse CJ, Calvo M et al. Imaging of the spleen in malaria. Parasitol Int 2014; 63: 195–205.
46 Flannagan RS, Grinstein S. Signaling of Phagocytosis. Encyclopedia of Immunobiology 2016; 3: 83–96.
47 Sadhu RK, Barger SR, Penič S, Iglič A, Krendel M, Gauthier NC et al. Engulfment of particles by vesicles containing curved membrane proteins coupled with active cytoskeletal forces. Advances in Biomembranes and Lipid Self-Assembly 2023; 37: 1–27.
48 Giribaldi G, Ulliers D, Mannu F, Arese P, Turrini F. Growth of Plasmodium falciparum induces stage-dependent haemichrome formation, oxidative aggregation of band 3, membrane deposition of complement and antibodies, and phagocytosis of parasitized erythrocytes. Br J Haematol 2001; 113: 492–499.
49 Turrini F, Giribaldi G, Carta F, Mannu F, Arese P. Mechanisms of band 3 oxidation and clustering in the phagocytosis of Plasmodium falciparum-infected erythrocytes. Redox Report 2003; 8: 300–303.
50 Reuterswärd P, Bergström S, Orikiiriza J, Lindquist E, Bergström S, Andersson Svahn H et al. Levels of human proteins in plasma associated with acute paediatric malaria Marcel Hommel. Malar J 2018; 17: 1–19.
51 Goka BQ, Kwarko H, Kurtzhals JAL, Gyan B, Ofori-Adjei E, Ohene SA et al. Complement binding to erythrocytes is associated with macrophage activation and reduced haemoglobin in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 2001; 95: 545–549.
52 Biryukov S, Stoute JA. Complement activation in malaria: Friend or foe? Trends Mol Med. 2014; 20: 293–301.
53 Taylor RP, Pawluczkowycz AW, Lindorfer MA, Waitumbi JW. Hematin promotes complement alternative pathway-mediated deposition of C3 activation fragments on human erythrocytes: Potential implications for the pathogenesis of anemia in malaria. Mol Immunol 2007; 44: 3927.
54 Musasia FK, Nkumama IN, Frank R, Kipkemboi V, Schneider M, Mwai K et al. Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria. Nat Commun 2022; 13. doi:10.1038/S41467-022-31640-6.
55 Quintana MDP, Anabire NG, Hviid L. Measuring Naturally Acquired Phagocytosis-Inducing Antibodies to Plasmodium falciparum Parasites by a Flow Cytometry-Based Assay. Journal of Visualized Experiments 2020; 2020: 1–12.
56 Fall AKDJ, Kana IH, Dechavanne C, Garcia-Senosiain A, Guitard E, Milet J et al. Naturally acquired antibodies from Beninese infants promote Plasmodium falciparum merozoite-phagocytosis by human blood leukocytes: implications for control of asymptomatic malaria infections. Malar J 2022; 21: 356.
57 Dobbs KR, Crabtree JN, Dent AE. Innate immunity to malaria—The role of monocytes. Immunol Rev 2020; 293: 8–24.
58 Lautenschlager S de OS, Kim T, Bidóia DL, Nakamura CV, Anders H-J, Steiger S. Plasma Proteins and Platelets Modulate Neutrophil Clearance of Malaria-Related Hemozoin Crystals. Cells 2019; 9: 93.
59 Garred P, Nielsen MA, Kurtzhals JAL, Malhotra R, Madsen HO, Goka BQ et al. Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes. Infect Immun 2003; 71: 5245–5253.
60 Sakoguchi A, Arase H. Mechanisms for Host Immune Evasion Mediated by Plasmodium falciparum-Infected Erythrocyte Surface Antigens. Front Immunol 2022; 13: 901864.
61 Tomlinson A, Semblat JP, Gamain B, Chêne A. VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria. Front Immunol 2021; 11: 624126.
62 Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13: 1091961.
63 Kennedy AT, Schmidt CQ, Thompson JK, Weiss GE, Taechalertpaisarn T, Gilson PR et al. Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage Plasmodium falciparum Infection. Journal of Immunology 2016; 196: 1239–1248.
64 Kiyuka PK, Meri S, Khattab A. Complement in malaria: immune evasion strategies and role in protective immunity. FEBS Lett 2020; 594: 2502–2517.
65 Tougan T, Edula JR, Takashima E, Morita M, Shinohara M, Shinohara A et al. Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Sci Rep 2018; 8: 5052–5052.
66 Morrot A. Editorial: Immune Evasion Strategies in Protozoan-Host Interactions. Front Immunol 2020; 11: 609166.
67 Belachew EB. Immune Response and Evasion Mechanisms of Plasmodium falciparum Parasites. Clin Dev Immunol 2018; 2018: 6529681–6529681.
68 Hirako IC, Antunes MM, Rezende RM, Hojo-Souza NS, Figueiredo MM, Dias T et al. Uptake of Plasmodium chabaudi hemozoin drives Kupffer cell death and fuels superinfections. Sci Rep 2022; 12. doi:10.1038/S41598-022-23858-7.
69 Kyei-Baafour E, Kusi KA, Arthur FKN, Tiendrebeogo RW, Owusu-Yeboa E, Singh SK et al. High opsonic phagocytosis activity and growth inhibition of merozoites are associated with RON4 antibody levels and protect against febrile malaria in Ghanaian children. Front Immunol 2023; 14: 1161301.
70 Quintana MDP, Angeletti D, Moll K, Chen Q, Wahlgren M. Phagocytosis-inducing antibodies to Plasmodium falciparum upon immunization with a recombinant PfEMP1 NTS-DBL1α domain. Malar J 2016; 15: 1–9.
71 Bjerkan L, Visweswaran GRR, Gudjonsson A, Labbé GM, Quinkert D, Pattinson DJ et al. APC-Targeted DNA Vaccination Against Reticulocyte-Binding Protein Homolog 5 Induces Plasmodium falciparum-Specific Neutralizing Antibodies and T Cell Responses. Front Immunol 2021; 12: 720550.
72 Ibanez J, Fendel R, Lorenz FR, Granados-Bayon P, Brückner S, Esen M et al. Efficacy, T cell activation and antibody responses in accelerated Plasmodium falciparum sporozoite chemoprophylaxis vaccine regimens. NPJ Vaccines 2022; 7. doi:10.1038/S41541-022-00473-1.
73 Othoro C, Johnston D, Lee R, Soverow J, Bystryn JC, Nardin E. Enhanced Immunogenicity of Plasmodium falciparum Peptide Vaccines Using a Topical Adjuvant Containing a Potent Synthetic Toll-Like Receptor 7 Agonist, Imiquimod. Infect Immun 2009; 77: 739–748.
74 Espinosa DA, Christensen D, Muñoz C, Singh S, Locke E, Andersen P et al. Robust antibody and CD8+ T-cell responses induced by P. falciparum CSP adsorbed to cationic liposomal adjuvant CAF09 confer sterilizing immunity against experimental rodent malaria infection. NPJ Vaccines 2017; 2: 1–9.
75 Osier FHA, Feng G, Boyle MJ, Langer C, Zhou J, Richards JS et al. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med 2014; 12. doi:10.1186/1741-7015-12-108.
76 Zavala F, Tam JP, Hollingdale MR, Cochrane AH, Quakyi I, Nussenzweig RS et al. Rationale for Development of a Synthetic Vaccine Against Plasmodium falciparum Malaria. Science (1979) 1985; 228: 1436–1440.
77 Smith TG, Serghides L, Patel SN, Febbraio M, Silverstein RL, Kain KC. CD36-mediated nonopsonic phagocytosis of erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum. Infect Immun 2003; 71: 393–400.
78 Thylur RP, Wu X, Gowda NM, Punnath K, Neelgund SE, Febbraio M et al. CD36 receptor regulates malaria-induced immune responses primarily at early blood stage infection contributing to parasitemia control and resistance to mortality. Journal of Biological Chemistry 2017; 292: 9394–9408.
79 Su Z, Fortin A, Gros P, Stevenson MM. Opsonin-Independent Phagocytosis: An Effector Mechanism against Acute Blood-Stage Plasmodium chabaudi AS Infection. J Infect Dis 2002; 186: 1321–1329.
80 Kunjachan S, Jose S, Thomas CA, Joseph E, Kiessling F, Lammers T. Physicochemical and biological aspects of macrophage‐mediated drug targeting in anti‐microbial therapy. Fundam Clin Pharmacol 2012; 26: 63–71.
81 Shalmiev G, Krugliak M, Turrini F, Ginsburg H. Antimalarial drugs inhibit the phagocytosis of erythrocytes infected with Plasmodium falciparum. Trans R Soc Trop Med Hyg 1996; 90: 558–562.
82 Steel RWJ, Sack BK, Tsuji M, Navarro MJL, Betz W, Fishbaugher ME et al. An Opsonic Phagocytosis Assay for Plasmodium falciparum Sporozoites. Clinical and Vaccine Immunology 2017; 24. doi:10.1128/CVI.00445-16.
83 Gowda DC. TLR-mediated cell signaling by malaria GPIs. Trends Parasitol 2007; 23: 596–604.
84 Eriksson EM, Sampaio NG, Schofield L. Toll-Like Receptors and Malaria – Sensing and Susceptibility. J Trop Dis 2013; 2: 126.
85 Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS et al. Characterization of heme as activator of toll-like receptor 4. Journal of Biological Chemistry 2007; 282: 20221–20229.
86 Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 2008; 456: 989–992.
87 Swanson JA. Signaling for Phagocytosis. In: Phagocyte-Pathogen Interactions. ASM Press: Washington, DC, USA, 2014, pp 193-P2.
88 Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW et al. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog 2010; 6. doi:10.1371/JOURNAL.PPAT.1000968.
89 Sakoguchi A, Saito F, Hirayasu K, Shida K, Matsuoka S, Itagaki S et al. Plasmodium falciparum RIFIN is a novel ligand for inhibitory immune receptor LILRB2. Biochem Biophys Res Commun 2021; 548: 167–173.