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Summary

The semi-global stabilization of a class of cascade systems (e.g., partially linear com-
posite systems) is investigated via partial state feedback. The system comprises a
nonlinear subsystem with a cross-term and a linear subsystem in the Byrnes-Isidori
normal form. The cross-term that involves any two consecutive states of chains of
integrators is incorporated into the nonlinear subsystem. Based on the established
lemma for separate design, the semi-global stabilization problem for the entire com-
posite system is reduced to stabilizing its linear subsystem subject to non-peaking
constraints on the consecutive states. To address the later problem, a linear low-
and-high gain feedback law is developed in the backstepping manner, which can be
recognized as partial state feedback for the composite system as it uses only the states
of the linear subsystem.
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1 INTRODUCTION

In recent times, the focus on under-actuated systems (UASs) has grown significantly. Examples include systems like the under-
actuated flexible joint robot1, the reaction wheel pendulum2, the ball and beam system3, the four-DOF crane system4, the
translational oscillator with rotational actuator system5, the under-actuated autonomous underwater vehicle6,7. Some types of
UASs can be formulated by the following partially linear composite system8–10

⎧

⎪

⎨

⎪

⎩

𝜂̇ = 𝑓 (𝜂, 𝑥), 𝜂 ∈ ℝ𝑙

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚

𝑦 = 𝐶𝑥, 𝑦 ∈ ℝ𝑝,

(1)

where 𝑓 (⋅, ⋅)∶ ℝ𝑙 × ℝ𝑛 → ℝ𝑙 is a smooth function with 𝑓 (0, 0) = 0. It is well-known that the Byrnes-Isidori normal form11,12
for a class of affine nonlinear systems shares a similar structure.

There are lot of original stabilization approaches13–19 for system (1). Under the standard assumption that 𝜂̇ = 𝑓 (𝜂, 0) is
globally asymptotically stable (GAS), partial state feedback (using the states of the linear subsystem) is particularly noteworthy,
since it not only shows explicit and economical structure, but also acts as a preliminary approach for a class of observer-based
output feedback20–22. Our work mainly deals with global or semi-global stabilization using partial state feedback. It should
be noted that forcing the state 𝑥 to decay fast arbitrarily may not necessarily stabilize the 𝜂 subsystem even with 𝜂̇ = 𝑓 (𝜂, 0)
being GAS. This is because that the state 𝑥 incorporated in the 𝜂 subsystem may suffer from the peaking phenomenon23–25.
When it concerns partial state feedback, there is a trade-off between peaking states and the growth properties of the nonlinear
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subsystem23, and without additional growth conditions on 𝑓 , global or semi-global stabilization is difficult to achieve (see the
reference26). In general, there are two kinds of approaches for partial state feedback. One approach imposes restrictions on
the nonlinear subsystem while considering little for the linear part, such as input-to-state stability10 or some particular growth
conditions13,14. The other approach imposes restrictions on the linear part and tends towards a special structure of the nonlinear
subsystem, for example, only the output 𝑦 enters the 𝜂 subsystem instead of all states17,18.

For the latter kind approach, a cascade system10,11,27,28

⎧

⎪

⎨

⎪

⎩

𝜂̇ = 𝑓 (𝜂, 𝑦)
𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥,

(2)

with 𝜂̇ = 𝑓 (𝜂, 0) being GAS deserves much more attention. Partial state feedback for such a system (2) has been studied
heuristically with the development of relaxations on the model assumptions. Firstly, semi-global stabilization for the particular
system (2) with the subsystem (𝐴,𝐵, 𝐶) being chains of integrators and the top integrators of each chain being the output was
achieved by a class of high-gain feedback11. Clearly, the triple (𝐴,𝐵, 𝐶), namely, chains of integrators, was supposed to be
square invertible and have no invariant zeros. Then, a relaxed work for system (2), where the subsystem (𝐴,𝐵, 𝐶) are chains of
integrators too but it allows any integrator of each chain to be the output, was proposed in the reference27. Parallelly, for the same
cascade system of the work27, a linear low-and-high gain feedback law was developed for semi-global stabilization28. Besides,
with the linear subsystem being the chain of integrators, a weaker assumption that the subsystem (𝐴,𝐵, 𝐶) is stabilizable and
right invertible with its all invariant zeros lying in the closed left s-plane was manifested in the work18 to be sufficient for the
semi-global stabilization of such a cascade system (2). Moreover, the semi-global stabilization for the cascade system (2) with
the linear subsystem being the Byrnes-Isidori normal form was studied in the work17.

Since then, several works tend to system (1) with its 𝜂 subsystem containing cross-term. The SISO cascade system (removing
the growth condition)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜂̇ = 𝑓 (𝜂, 𝜑(𝜉𝑗0)𝜉𝑗0+1)
𝜉̇1 = 𝜉2
𝜉̇2 = 𝜉3

⋮

𝜉̇𝑟 = 𝑢,

was studied by Lin29, where 𝑢 ∈ ℝ, 𝜉𝑗0 , 𝜉𝑗0+1 are any two consecutive integrators, and 𝜑(𝜉𝑗0) is a locally Lipschitz function.
Semi-global stabilization for this system is accomplished by a low-and-high gain feedback. Along with this control scheme, a
general case that the linear part being a class of normal forms was further investigated in the work29. The special SISO system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜂̇ = (−1 + 𝜉𝑖𝜉𝑗)𝜂3

𝜉̇1 = 𝜉2
𝜉̇2 = 𝜉3
𝜉̇3 = 𝑢,

was studied by Sepulchre et al17, where 𝑢 ∈ ℝ and 𝜉𝑖, 𝜉𝑗 are any two integrators. In the case of |𝑖 − 𝑗| ≤ 1, this cascade can be
stabilized semi-globally, while in the case of |𝑖 − 𝑗| = 2, the semi-global stabilization problem deserves further discussions.

Our work preserves similar assumptions in the works17,18 and further considers a class of cascade systems with cross-term.
Since the square-down process is not our focus, we assume for simplicity that the linear part (𝐴,𝐵, 𝐶) is square, and has a
nonsingular decoupling matrix, which results in the Byrnes-Isidori normal form12,30. Then, after a simple input transformation
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(depending on the states of the linear part (𝐴,𝐵, 𝐶)), the cascade system (1) is formulated as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜂̇ = 𝑓 (𝜂, 𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1)𝜉𝑗𝑖+1)
𝜉̇0 = 𝐴0𝜉0 + 𝐵0𝑦
𝜉̇𝑖1 = 𝜉𝑖2
𝜉̇𝑖2 = 𝜉𝑖3

⋮

𝜉̇𝑖𝑟𝑖 = 𝑢𝑖
𝑦 = 𝜉1, 𝑖 = 1, 2, ..., 𝑚,

(3)

where 𝜂 ∈ ℝ𝑙, 𝜉0 ∈ ℝ𝑛−𝑟, 𝜉 ∈ ℝ𝑟, 𝑢𝑖 ∈ ℝ, 𝑦 ∈ ℝ𝑚, ∑𝑚
𝑖=1 𝑟𝑖 = 𝑟. Define 𝜉𝑗𝑖 = [ 𝜉1𝑗1 𝜉2𝑗2 ⋯ 𝜉𝑚𝑗𝑚 ]

T and 𝜉𝑗𝑖+1 =
[ 𝜉1𝑗1+1 𝜉2𝑗2+1 ⋯ 𝜉𝑚𝑗𝑚+1 ]

T, 𝑗𝑖 ∈ {𝑟1, 𝑟2, ..., 𝑟𝑖 − 1}, 𝑖 = 1, 2, ..., 𝑚 such that the cross-term 𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1)𝜉𝑗𝑖+1 is comprised of any
two consecutive integrators 𝜉𝑖𝑗𝑖 , 𝜉𝑖𝑗𝑖+1 in each chain. For a clear interpretation, define 𝜉𝑖 = [ 𝜉𝑖1 𝜉𝑖2 ⋯ 𝜉𝑖𝑟𝑖 ]

T, 𝑖 = 1, 2, ..., 𝑚,
𝜉𝑗 = [ 𝜉1𝑗 𝜉2𝑗 ⋯ 𝜉𝑚𝑗 ]T, 𝑗 = 1, 2, ..., 𝑟𝑖, and 𝜉 = [ (𝜉1)T (𝜉2)T ⋯ (𝜉𝑚)T ]T. Suppose that the cascade system (3) satisfies
Assumption 1. 𝑓 (⋅, ⋅)∶ ℝ𝑙 × ℝ𝑚 → ℝ𝑙 is a smooth function with 𝑓 (0, 0) = 0 and 𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1)∶ ℝ𝑚 × ℝ𝑚 → ℝ𝑚×𝑚 is a locally
Lipschitz function.
Assumption 2. The equilibrium 𝜂 = 0 of the nonlinear dynamic 𝜂̇ = 𝑓 (𝜂, 0) is GAS.
Assumption 3. The subsystem (𝐴0, 𝐵0) is asymptotically null controllable with bounded controls (ANCBC), that is, the pair
(𝐴0, 𝐵0) is stabilizable and all eigenvalues of 𝐴0 lie in the closed left half s-plane.
Remark 1. Assumption 1 is a common assumption in the nonlinear control literature27–29. Assumption 2 is the standard
assumption to guarantee the equilibrium 𝜂 = 0 of the 𝜂-subsystem. Assumption 3 is the standard assumption while using the
low-gain feedback31,34 or nested saturation design27. In addition, when it concerns the Byrnes-Isidori normal form of the linear
system (𝐴,𝐵, 𝐶), the invariant-zeros of (𝐴,𝐵, 𝐶) are equal to the eigenvalues of 𝐴0

12,30. Thus our Assumptions 1-3 are also
employed as part of assumptions in the reference18,29. Besides, Assumptions 1-3 are just the ones used in the work17 for the
cascade system (2) (without the nonlinear cross-term).

We now state the main problem:
Problem 1. Let Assumptions 1-3 be met. Find partial state feedback 𝑢𝑖 = 𝑢𝑖(𝜉0, 𝜉), 𝑖 = 1, 2, ..., 𝑚 such that the cascade system
(3) is semi-globally asymptotically stabilized, that is, given an arbitrary compact set 𝛺 ⊂ ℝ𝑙+𝑛 centered at the origin, the
closed-loop system is locally asymptotically stable (LAS) with the region of attraction containing 𝛺.

We acknowledge that our work is motivated by the pioneer works17,31. The motivation and main contribution are outlined as
follows.
Motivation: 1) Applicability: Numerous UASs such as the systems1–5 can be formulated by our concerned system (3) by choos-
ing an appropriate 𝑦. 2) Theoretical value: Our concerned system (3) is originated from the partially linear composite system
(1). Although system (1) has been studied since the 80s3,23,27–29, accomplishing global or semi-global partial state feedback
control for such a system (1) under weaker model assumptions remains a challenge. 3) Practical value: Our approach requires
fewer measurement sensors compared to the full state feedback and is more friendly to users as it exclusively requires the states
of the linear subsystem and does not care about the exact form of the nonlinear 𝜂-subsystem.
Contribution: Our approach requires fewer assumptions on the nonlinear 𝜂 subsystem, particularly avoiding global growth
conditions or the input-to-state stability condition. Specifically, the concerned cross-term 𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1)𝜉𝑗𝑖+1 involves any two
consecutive integrators in each chain and allows 𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1) to be a function of 𝜉𝑖𝑗𝑖 , 𝜉𝑖𝑗𝑖+1, which is not discussed in the works18,29.
Moreover, the cascade system (3) consists of the concerned cross-term and Byrnes-Isidori normal form, which is not discussed
in the work17.

This paper is structured into five sections. Section 2 introduces the peaking phenomenon, the analysis tool, and the design
tool. Section 3 conducts the problem transformation. Section 4 presents the composite controller for the cascade system. Section
5 provides an illustrative example. Section 6 presents a brief concluding remark.
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2 PRELIMINARIES

2.1 Peaking phenomenon
We begin with two definitions about non-peaking signals in high-gain feedback and low-gain feedback. Consider the parame-
terized state feedback

𝑢 = 𝐹 (𝑘)𝑥, 𝑘 ∈ [1,∞) ,
for the pair (𝐴,𝐵), which results in the closed-loop system

𝑥̇ = (𝐴 + 𝐵𝐹 (𝑘))𝑥, ℎ(𝑘, 𝑡) = 𝐻(𝑘)𝑥.

Based on Definition 4.30 in the reference17, we have the following definition.
Definition 1. The signal ℎ(𝑘, 𝑡) is said to be high-gain non-peaking if there exists a constant 𝑘0 ∈ [1,∞) such that

sup
𝑡>0

‖ℎ(𝑘, 𝑡)‖ ≤ 𝛾 ‖𝑥(0)‖ e−𝑘𝜎𝑡 + 𝜖, ∀𝑘 ∈ [𝑘0,∞),

where 𝛾, 𝜎, 𝜖 are positive constants independent of 𝑘.
Similarly, we investigate the low-gain non-peaking phenomenon based on the work32. Consider the parameterized state

feedback for the linear system (𝐴,𝐵),
𝑢 = 𝐹 (𝜀)𝑥, 𝜀 ∈ (0, 1],

such that the closed-loop system
𝑥̇ = (𝐴 + 𝐵𝐹 (𝜀))𝑥, ℎ(𝜀, 𝑡) = 𝐻(𝜀)𝑥.

Definition 2. The signal ℎ(𝜀, 𝑡) is said to be low-gain non-peaking if there exists a constant 𝜀0 ∈ (0, 1] such that
sup
𝑡>0

‖ℎ(𝜀, 𝑡)‖ ≤ 𝛾𝜀 ‖𝑥(0)‖ + 𝜀, ∀𝜀 ∈ (0, 𝜀0],

where 𝛾 is a positive constant independent of 𝜀.

2.2 Analysis tool
We now recall the definitions about class  function 𝛼(⋅) and class  function 𝛽(⋅, ⋅) form the well-known work33.
Definition 3. A continuous function 𝛼(⋅)∶ [0, 𝑎) → [0,∞) is said to belong to class  if it is strictly increasing and 𝛼(0) = 0,
where 𝑎 is a nonnegative constant. A continuous function 𝛽(⋅, ⋅)∶ [0, 𝑎) × [0,∞) → [0,∞) is said to belong to class  if, for
each fixed 𝑡, the mapping 𝛽(𝑠, 𝑡) belongs to class  with respect to 𝑠 and, for each fixed 𝑡, the mapping 𝛽(𝑠, 𝑡) is decreasing with
respect to 𝑡 and lim𝑡→∞ 𝛽(𝑠, 𝑡) = 0, where 𝑎, 𝑠, 𝑡 are nonnegative constants.

Motivated by Theorem 4.41 in the work17, we then introduce a basic analysis tool in our work.
Theorem 1. Consider the nonlinear system

𝜂̇ = 𝑓 (𝜂, 𝑢), (4)
where 𝜂 ∈ ℝ𝑙, 𝑢 ∈ ℝ𝑚 and 𝑓 is a smooth function with 𝑓 (0, 0) = 0. Suppose that

• the equilibrium 𝜂 = 0 of the unforced dynamic 𝜂̇ = 𝑓 (𝜂, 0) is GAS;
• 𝑢 = 𝑢(𝑘, 𝑡) satisfies

‖𝑢(𝑘, 𝑡)‖ ≤ 𝛾e−𝑘𝑡 + 𝜖, ∀𝑘 ∈ [𝑘0,∞), ∀𝑡 ∈ [0,∞) , (5)
lim
𝑡→∞

‖𝑢(𝑘, 𝑡)‖ = 0, (6)
where 𝑘0 ∈ [1,∞), and 𝛾, 𝜖 are positive constants independent of 𝑘.

Then the nonlinear system (4) is semi-globally asymptotically stabilized by such a control input 𝑢 = 𝑢(𝑘, 𝑡), that is, given an
arbitrary compact set 𝛺η ⊂ ℝ𝑙 centered at the origin, there exists a constant 𝑘∗ ∈ [𝑘0,∞) such that, for any 𝑘 ∈ [𝑘∗,∞), the
nonlinear system (4) is LAS with the region of attraction containing 𝛺η.
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Proof. Without loss of generality, we can set 𝜖 = 1. By applying a decomposition for 𝑓 (𝜂, 𝑢) on any convex set, we have
𝜂̇ = 𝑓 (𝜂, 0) + 𝑔(𝜂, 𝑢)𝑢, (7)

where 𝑔(𝜂, 𝑢) is a smooth function. Consider an auxiliary subsystem
𝜒̇ = −𝑘𝜒 + 2𝑘, 𝜒0 = 𝜒(0) = 𝛾 + 2, (8)

whose solution is given by
𝜒(𝑡) =

(

𝜒0 − 2
)

e−𝑘𝑡 + 2 = 𝛾e−𝑘𝑡 + 2. (9)
It follows from (5) that

‖𝑢(𝑘, 𝑡)‖ < 𝜒(𝑡) ≤ 𝜒0, ∀𝑡 ≥ 0. (10)
Since 𝜂̇ = 𝑓 (𝜂, 0) is GAS, there exists a radially unbounded Lyapunov function 𝑊 (𝜂) (see Theorem 4.16 in the reference33)

such that
𝜕𝑊 (𝜂)
𝜕𝜂

𝑓 (𝜂, 0) ≤ −𝛼(‖𝜂‖), ∀𝜂 ∈ ℝ𝑙, (11)
where 𝛼(⋅) is a class  function defined on [0,∞). Moreover, for any positive constant 𝑐, the level set {𝜂∶ 𝑊 (𝜂) ≤ 𝑐} is a
compact set. Define a positive definite function 𝑉 (𝜂, 𝜒) = 𝑊 (𝜂) + 𝜒2 and a compact level set

𝛬 =
{

(𝜂, 𝜒) ∶ 𝑉 (𝜂, 𝜒) ≤ 𝑐 + 𝜒2
0
}

,

where 𝑐 ≥ 1 is a constant chosen such that 𝛺η × {𝜒 ∶ 𝜒 = 𝜒(0)} ⊂ 𝛬. Besides, the level surface of 𝛬 is defined as
𝜕𝛬 =

{

(𝜂, 𝜒) ∶ 𝑉 (𝜂, 𝜒) = 𝑐 + 𝜒2
0
}

.

The boundedness of 𝜂(𝑡) will be shown by a contradiction. Suppose that there exists a finite time 𝑡c such that the trajectory
(𝜂(𝑡), 𝜒(𝑡)) with (𝜂(0), 𝜒(0)) ∈ 𝛺η × {𝜒 ∶ 𝜒 = 𝜒(0)} arrives at the boundary of 𝛬 (namely, 𝜕𝛬) in the time 𝑡c and leave it
thereafter, that is,

(𝜂(𝑡c), 𝜒(𝑡c)) ∈ 𝜕𝛬 ⇒ 𝑉̇ (𝜂(𝑡c), 𝜒(𝑡c)) > 0. (12)
Along with (10) and 𝜒0 being independent of 𝑘, there exists a positive constant 𝛾1 independent of 𝑘 such that

‖

‖

‖

‖

𝜕𝑊 (𝜂)
𝜕𝜂

𝑔(𝜂, 𝑢)
‖

‖

‖

‖

≤ 𝛾1, ∀ (𝜂, 𝜒) ∈ 𝜕𝛬. (13)
The time derivative of 𝑉 (𝜂, 𝜒) along the trajectories of system (7) and system (8) is given by

𝑉̇ (𝜂, 𝜒) =
𝜕𝑊 (𝜂)
𝜕𝜂

𝑓 (𝜂, 0) +
𝜕𝑊 (𝜂)
𝜕𝜂

𝑔(𝜂, 𝑢)𝑢 + 2𝜒𝜒̇

≤ −𝛼(‖𝜂‖) + 𝛾1 ‖𝑢‖ − 2𝑘𝜒2 + 2𝑘𝜒
< −𝛼(‖𝜂‖) − 2𝑘𝜒2 +

(

2𝑘 + 𝛾1
)

𝜒, ∀ (𝜂, 𝜒) ∈ 𝜕𝛬, (14)
where (10), (11), and (13) are used. In view of (9), we have 𝜒(𝑡) = 𝛾e−𝑘𝑡 + 2 > 2. Thus there exists a sufficiently large constant
𝑘1 ∈ [1,∞) such that, for all 𝑘 ∈ [𝑘1,∞),

−2𝑘𝜒2 +
(

2𝑘 + 𝛾1
)

𝜒 = −
(

2𝑘𝜒 − 2𝑘 − 𝛾1
)

𝜒 ≤ 0. (15)
Then substituting (15) into (14) yields, for all 𝑘 ∈ [𝑘1,∞),

𝑉̇ (𝜂, 𝜒) < −𝛼(‖𝜂‖) ≤ 0, ∀ (𝜂, 𝜒) ∈ 𝜕𝛬,

which contradicts (12). As a result, the trajectory (𝜂(𝑡), 𝜒(𝑡)) with its initial condition (𝜂(0), 𝜒(0)) ∈ 𝛺η×{𝜒 ∶ 𝜒 = 𝜒(0)} cannot
leave the compact set 𝛬. This further implies a positively invariant compact set 𝛬η (containing 𝛺η) for the trajectory 𝜂(𝑡), that
is, for all 𝑘 ∈ [𝑘1,∞),

𝜂(0) ∈ 𝛬η ⇒ 𝜂(𝑡) ∈ 𝛬η, ∀𝑡 ≥ 0. (16)
We next show the convergence when the trajectory 𝜂(𝑡). The time derivative of 𝑊 (𝜂) along the trajectory of system (7) is

𝑊̇ (𝜂) =
𝜕𝑊 (𝜂)
𝜕𝜂

𝑓 (𝜂, 0) +
𝜕𝑊 (𝜂)
𝜕𝜂

𝑔(𝜂, 𝑢)𝑢.

Along with (10), there exists a positive constant 𝛾2 independent of 𝑘 such that
‖

‖

‖

‖

𝜕𝑊 (𝜂)
𝜕𝜂

𝑔(𝜂, 𝑢)
‖

‖

‖

‖

≤ 𝛾2, ∀𝜂 ∈ 𝛬η,
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substituting of which with (16) and (11) into 𝑊̇ (𝜂) yields
𝜂(0) ∈ 𝛬η ⇒ 𝑊̇ (𝜂) ≤ −𝛼(‖𝜂‖) + 𝛾2 ‖𝑢‖

= − (1 − 𝜃) 𝛼(‖𝜂‖) − 𝜃𝛼(‖𝜂‖) + 𝛾2 ‖𝑢‖ , (17)
where 𝜃 ∈ (0, 1) is a constant. It follows from

−𝜃𝛼(‖𝜂‖) + 𝛾2 ‖𝑢‖ ≤ 0, ∀ ‖𝜂‖ ≥ 𝛼−1 (𝛾2 ‖𝑢‖ ∕𝜃
)

,

that 𝑊̇ (𝜂) in (17) can be continued as, for all 𝑘 ∈ [𝑘1,∞),

𝜂(0) ∈ 𝛬η ⇒ 𝑊̇ (𝜂) ≤ − (1 − 𝜃) 𝛼(‖𝜂‖), ∀ ‖𝜂‖ ≥ 𝛼−1 (𝛾2 ‖𝑢‖ ∕𝜃
)

.

By Theorem 4.18 in the work33, there exists a class  function 𝛽(⋅, ⋅) and a class  function 𝜅(⋅) such that, for all 𝑘 ∈ [𝑘1,∞),

𝜂(0) ∈ 𝛬η ⇒ ‖𝜂(𝑡)‖ ≤ 𝛽(‖𝜂(0)‖ , 𝑡) + 𝜅
(

sup
0≤𝑡≤𝜏

‖𝑢(𝑡)‖
)

,

where 𝜏 is a positive constant. It follows from Exercise 4.58 in the work33 that, for any 𝑘 ∈ [𝑘∗,∞), lim𝑡→∞ ‖𝜂(𝑡)‖ = 0 as long as
lim𝑡→∞ ‖𝑢(𝑘, 𝑡)‖ = 0 (namely, (5)). Choose 𝑘∗ = max{𝑘0, 𝑘1}. It then follows from (5) and 𝛺η ⊂ 𝛬η that, for any 𝑘 ∈ [𝑘∗,∞),
the equilibrium 𝜂 = 0 of the system (4) is LAS with the region of attraction containing 𝛺η.
Remark 2. It is well-known that a bounded (even vanishing) input 𝑢may drive the trajectory of system (4) to infinity (see Exercise
9.13 in33) when 𝜂̇ = 𝑓 (𝜂, 0) is limited to be GAS. This underscores the importance of Theorem 1, which identifies a class of
inputs capable of semi-globally stabilizing such a nonlinear system (4). Consider the cascade system (2) or its more general case

⎧

⎪

⎨

⎪

⎩

𝜂̇ = 𝑓 (𝜂, 𝑦)
𝑥̇ = 𝛶 (𝜂, 𝑥, 𝑢)
𝑦 = 𝛱(𝑥),

(18)

where the nonlinear dynamic 𝜂̇ = 𝑓 (𝜂, 0) is GAS (namely, Assumption 2 is fulfilled). If the subsystem 𝑥̇ = 𝛶 (𝜂, 𝑥, 𝑢) is
globally (or semi-globally) stabilized by the input 𝑢(𝜂, 𝑥, 𝑘) and its output 𝑦 satisfies (5)-(6), then such a cascade system (18) is
semi-globally stabilized. This implies a separate design for semi-global stabilization of cascade systems. In addition, consider
the situation involving observer-based output feedback, for instance, 𝜂 denotes the plant state and 𝑥 represents the observer
error (or observer estimate). If the observer-error subsystem (i.e., 𝑥-subsystem) has been proven to be GAS with its observer-
error-associated term 𝑦 satisfying (5)-(6), the stability analysis shall be completed by Theorem 1 directly. Therefore, for the
observer-based output feedback, Theorem 1 may serve as an analogy to the separation principle for linear systems.

2.3 Design tool
Since low-gain feedback serves as one of our design tools, we should introduce some properties of low-gain feedback. Consider
the single input linear system 𝑥̇ = 𝛷𝑥 + 𝐵c𝑢, where 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ, and

𝛷 =

⎡

⎢

⎢

⎢

⎢

⎣

1
⋱

1
∗ ∗ ⋯ ∗

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵c =

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦

, (19)

with ∗s being constants. Clearly, 𝛷 is a companion matrix whose characteristic polynomial is determined by its last row. Let
𝛷0 = 𝛷 if the last row of 𝛷 is zero.

For the chain form system (𝛷0, 𝐵c), we recall a result from Lemma 2.2.1 in the reference31.
Lemma 1. 31 Consider the pair (𝛷0, 𝐵c). Design the low-gain feedback as 𝑢 = 𝐹 (𝜀)𝑥, where 𝐹 (𝜀) = [ 𝜀𝑛𝑏1 𝜀𝑛−1𝑏2 ⋯ 𝜀𝑏𝑛 ] and
𝑏𝑖, 𝑖 = 1, 2, ..., 𝑛 are chosen such that the polynomial 𝑝(𝑠) = 𝑠𝑛 + 𝑏𝑛𝑠𝑛−1 +⋯+ 𝑏2𝑠+ 𝑏1 is Hurwitz. Then, for any 𝜀 ∈ (0, 1], the
closed-loop system 𝑥̇ = (𝛷0 + 𝐵c𝐹 )𝑥 is GES and

‖𝐹 (𝜀)‖ ≤ 𝛽1𝜀, (20)
‖

‖

‖

e(𝐴+𝐵𝐹 (𝜀))𝑡‖
‖

‖

≤
𝛽2
𝜀𝑛−1

e−𝜀𝜎𝑡, ∀𝑡 ≥ 0, (21)
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‖

‖

‖

𝐹 (𝜀)e(𝐴+𝐵𝐹 (𝜀))𝑡‖
‖

‖

≤ 𝛽3𝜀e−𝜀𝜎𝑡, ∀𝑡 ≥ 0, (22)
where 𝛽1, 𝛽2, 𝛽3, 𝜎 are positive constants independent of 𝜀.
Proof. As the concerned pair (𝛷0, 𝐵c) is a particular case of the controllable form in Lemma 2.2.1 of the reference31, we can
perform this proof in another simple way. Consider the coordinate change 𝑥̄ = 𝑇𝑥, 𝑇 = diag(𝜀𝑛−1, 𝜀𝑛−2,… , 1) for the closed-
loop system. Then, we have ̇̄𝑥 = 𝜀𝛷𝑏𝑥̄, where 𝛷𝑏 is the companion matrix whose last row consists of the coefficients of the
Hurwitz polynomial 𝑝(𝑠). It follows that

𝑥(𝑡) = 𝑇 −1e𝛷𝑏𝜀𝑡𝑇𝑥(0). (23)
As𝛷𝑏 is Hurwitz, we have ‖e𝛷𝑏𝑡

‖ ≤ 𝛽2e−𝜎𝑡, where 𝛽2 and 𝜎 are positive constants independent of 𝜀. Substituting ‖𝑇 −1
‖ ≤ 1∕𝜀𝑛−1

and ‖𝑇 ‖ ≤ 1 into (23) yields
‖𝑥(𝑡)‖ ≤ 𝛽2

‖

‖

‖

𝑇 −1‖
‖

‖

‖𝑥(0)‖ e−𝜀𝜎𝑡 ≤ 1
𝜀𝑛−1

𝛽2 ‖𝑥(0)‖ e−𝜀𝜎𝑡,

which further implies (21). Notice that 𝐹 (𝜀)𝑇 −1 = [ 𝜀𝑏1 𝜀𝑏2 ⋯ 𝜀𝑏𝑛 ] and ‖𝑇 ‖ ≤ 1. Thus, there exists a positive constant 𝛽3
independent of 𝜀 such that

‖𝐹 (𝜀)𝑥‖ ≤ ‖

‖

‖

𝐹 (𝜀)𝑇 −1‖
‖

‖

‖𝑇 ‖ ‖‖
‖

e𝛷𝑏𝜀𝑡𝑥(0)‖‖
‖

≤ 𝛽3𝜀 ‖𝑥(0)‖ e−𝜀𝜎𝑡,
which further implies (22). The proof is finished by noting that (20) holds trivially.
Remark 3. Similar to the work32, it follows from Lemma 1 that each integrator 𝑥𝑖, 𝑖 = 1, 2, ..., 𝑛 of the closed-loop system peaks
slowly with growth rate 1∕𝜀𝑛−𝑖, that is, sup𝑡>0 |𝑥𝑖| ≤ 1

𝜀𝑛−𝑖
𝛽2‖𝑥(0)‖e−𝜀𝜎𝑡, 𝑖 = 1, 2, ..., 𝑛.

For the ANCBC pair (𝐴,𝐵), a low-gain feedback law 𝑢 = 𝐹 (𝜀)𝑥 can be designed as34

𝐹 (𝜀) = 𝛬1𝑇
−1, (24)

with
𝛬1 = diag(𝐹1(𝜀(𝑝2+1)(𝑝3+1)⋯(𝑝𝑞+1)),… , 𝐹𝑞−1(𝜀(𝑝𝑞+1)), 𝐹𝑞(𝜀)),

where 𝐹𝑖(⋅), 𝑖 = 1, 2, ..., 𝑞 are gain matrices determined by Lemma 2.2.1 in the reference31. The transformation matrix 𝑇 and
positive constants 𝑝𝑖, 𝑖 = 1, 2, ..., 𝑞 are determined naturally during searching for the triangular structure of 𝐴.
Lemma 2. 34 Consider the ANCBC pair (𝐴,𝐵). Under the low-gain feedback (24), there exists a constant 𝜀0 ∈ (0, 1] such that,
for any 𝜀 ∈ (0, 𝜀0], the closed-loop system 𝑥̇ = (𝐴 + 𝐵𝐹 (𝜀))𝑥 is GES and

‖𝐹 (𝜀)‖ ≤ 𝛽1𝜀, (25)
‖

‖

‖

e(𝐴+𝐵𝐹 (𝜀))𝑡‖
‖

‖

≤
𝛽2
𝜀𝜈−1

e−𝜀𝜌𝑡, ∀𝑡 ≥ 0, (26)
‖

‖

‖

𝐹 (𝜀)e(𝐴+𝐵𝐹 (𝜀))𝑡‖
‖

‖

≤ 𝛽3𝜀e−𝜀
𝜌𝑡, ∀𝑡 ≥ 0, (27)

where 𝜈 = 𝑝1
∏𝑞

𝑖=2(𝑝𝑖 + 1), 𝜌 =
∏𝑞

𝑖=2(𝑝𝑖 + 1) and 𝛽1, 𝛽2, 𝛽3 are positive constants independent of 𝜀.

3 PROBLEM TRANSFORMATION

Now consider the parameterized state feedback controller
𝑢𝑖 = 𝑢𝑖(𝑘, 𝜉0, 𝜉), 𝑖 = 1, 2, ..., 𝑚,

for the system (3), where 𝑘 ∈ [1,∞) is a parameter to be determined. The closed-loop system is
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜂̇ = 𝑓 (𝜂, 𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1)𝜉𝑗𝑖+1)
𝜉̇0 = 𝐴0𝜉0 + 𝐵0𝜉1
𝜉̇𝑖1 = 𝜉𝑖2
𝜉̇𝑖2 = 𝜉𝑖3

⋮

𝜉̇𝑖𝑟𝑖 = 𝑢𝑖(𝑘, 𝜉0, 𝜉), 𝑖 = 1, 2, ..., 𝑚.
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Lemma 3. Suppose that there exists a constant 𝑘0 ∈ [1,∞) such that
‖

‖

‖

𝜉𝑗𝑖(𝑘, 𝑡)
‖

‖

‖

≤ 𝜅1, ∀𝑘 ∈ [𝑘0,∞), ∀𝑡 ∈ [0,∞) , (28)
‖

‖

‖

𝜉𝑗𝑖+1(𝑘, 𝑡)
‖

‖

‖

≤ 𝜅2e−𝑘𝑡 + 𝜖, ∀𝑘 ∈ [𝑘0,∞), ∀𝑡 ∈ [0,∞) , (29)
lim
𝑡→∞

‖

‖

‖

𝜉𝑗𝑖+1(𝑘, 𝑡)
‖

‖

‖

= 0,

are satisfied for 𝑖 = 1, 2, ..., 𝑚, where 𝜅1, 𝜅2, 𝜖 are positive constants independent of 𝑘. Then the cross-term 𝜇(𝑘, 𝑡) ≜
𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1)𝜉𝑗𝑖+1 also satisfies

‖𝜇(𝑘, 𝑡)‖ ≤ 𝜅0e−𝑘𝑡 + 𝜖, ∀𝑘 ∈ [𝑘0,∞), ∀𝑡 ∈ [0,∞) ,
lim
𝑡→∞

‖𝜇(𝑘, 𝑡)‖ = 0,

where 𝜅0 is a positive constant independent of 𝑘.
Proof. Since the states 𝜉𝑗𝑖(𝑘, 𝑡) and 𝜉𝑗𝑖+1(𝑘, 𝑡) are bounded for any 𝑘 ∈ [𝑘0,∞) and 𝜑(⋅, ⋅) is continuous, we know that
𝜑(𝜉𝑗𝑖 , 𝜉𝑗𝑖+1) is bounded. As 𝜉𝑗𝑖+1(𝑘, 𝑡) satisfies (29) and lim𝑡→∞ 𝜉𝑗𝑖+1(𝑘, 𝑡) = 0, we clearly have that 𝜇(𝑘, 𝑡) also satisfies (29) and
lim𝑡→∞ 𝜇(𝑘, 𝑡) = 0. The proof is finished.

Let conditions in Lemma 3 be met. It then follows from Theorem 1 that the 𝜂-subsystem under Assumption 2 can be semi-
globally asymptotically stabilized by the cross-term 𝜇(𝑘, 𝑡). Thus the possible stability degradation caused by the 𝜂 subsystem
can be ignored in this case. Since the conditions in Lemma 3 only involve an individual 𝜉 subsystem, it is sufficient to consider
the following problem for Problem 1.
Problem 2. Let Assumptions 1-3 be met. Find state feedback 𝑢𝑖 = 𝑢𝑖(𝑘, 𝜉), 𝑖 = 1, 2, ..., 𝑚 and a constant 𝑘0 ∈ [1,∞) such that,
for any 𝑘 ∈ [𝑘0,∞), the linear part of the cascade system (3) is globally exponentially stabilized and the conditions (28)-(29)
are satisfied.

It can be observed from Problem 2 that the stabilization problem for the entire cascade system (3) is reduced to the stabilization
problem for the linear part subject to high-gain non-peaking constraint (29) on 𝜉𝑗𝑖+1 and uniformly bounded (with respect to 𝑘)
constraint (28) on 𝜉𝑗𝑖 . As we shall see, Problem 2 can be addressed by a backstepping scheme.

4 PARTIAL STATE FEEDBACK STABILIZATION

4.1 SISO case
In the SISO case, the nonlinear cascade system (3) can be rewritten as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜂̇ = 𝑓 (𝜂, 𝜑(𝜉𝑗0 , 𝜉𝑗0+1)𝜉𝑗0+1)
𝜉̇0 = 𝐴0𝜉0 + 𝐵0𝜉1
𝜉̇1 = 𝜉2
𝜉̇2 = 𝜉3

⋮

𝜉̇𝑟 = 𝑢,

(30)

where 𝑗0 ∈ {1, 2, ..., 𝑟 − 1}. We now start the backstepping design.
Step 1: This step will be accomplished by the linear low-gain feedback approach in Lemma 2. Design the low-gain feedback

𝛼1 = 𝐹1(𝜀1)𝜉0
as the virtual control input to the ANCBC pair (𝐴0, 𝐵0), where 𝐹1(𝜀1) is an appropriate gain matrix in the form of (24), with the
low-gain parameter 𝜀1 to be determined. Then, by denoting 𝜉𝑗 = 𝜉𝑗 − 𝛼(𝑗−1)

1 , 𝑗 = 1, 2, ..., 𝑟, the linear part of the SISO cascade
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system (30) can be formulated as
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜉̇0 =
(

𝐴0 + 𝐵0𝐹1
)

𝜉0 + 𝐵0𝜉1
̇̄𝜉1 = 𝜉2
̇̄𝜉2 = 𝜉3

⋮
̇̄𝜉𝑟 = 𝑢 + 𝛼(𝑟)

1 .

(31)

Step 2: This step will be accomplished via another linear low-gain feedback in Lemma 1. Divide the chain of integrators
into two parts, one part is ̇̄𝜉𝑗 = 𝜉𝑗+1, 𝑗 = 1, 2, ..., 𝑗0, and another is ̇̄𝜉𝑗0+𝑗 = 𝜉𝑗0+𝑗+1, 𝑗 = 1, 2, ..., 𝑗0. Besides, define 𝑤 =
[𝑤1 𝑤2 ⋯ 𝑤𝑗0 ]

T, 𝑤𝑗 = 𝜉𝑗 , 𝑗 = 1, 2, ..., 𝑗0 and 𝑟 = 𝑟 − 𝑗0. Then, the cascade system (31) becomes
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜉̇0 =
(

𝐴0 + 𝐵0𝐹1
)

𝜉0 + 𝐵0𝑤1

𝑤̇ = 𝛷0𝑤 + 𝐵c𝜉𝑗0+1
̇̄𝜉𝑗0+1 = 𝜉𝑗0+2
̇̄𝜉𝑗0+2 = 𝜉𝑗0+3
⋮

̇̄𝜉𝑟 = 𝑢 + 𝛼(𝑟)
1 ,

(32)

where 𝛷0 ∈ ℝ𝑗0×𝑗0 and 𝐵c ∈ ℝ𝑗0×1 are in the form of (19). Notice that the 𝑤 subsystem in system (32) is a chain of integrators.
Then we can design a low-gain feedback

𝛼2 = 𝐹2(𝜀2)𝑤
as the visual control, where𝐹2(𝜀2) is the gain matrix in Lemma 1, with the low-gain parameter 𝜀2 to be determined. Subsequently,
by defining 𝑒𝑗 = 𝜉𝑗0+𝑗 − 𝛼(𝑗−1)

2 , 𝑗 = 1, 2, ...,𝑟, the cascade system (32) becomes
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜉̇0 =
(

𝐴0 + 𝐵0𝐹1
)

𝜉0 + 𝐵0𝑤1

𝑤̇ =
(

𝛷0 + 𝐵c𝐹2
)

𝑤 + 𝐵c𝑒1
𝑒̇1 = 𝑒2
𝑒̇2 = 𝑒3

⋮

𝑒̇𝑟 = 𝑢 − 𝛼(𝑟)
1 − 𝛼(𝑟)

2 .

(33)

Step 3: Finally, the entire composite feedback law can be designed as
𝑢 = 𝛼(𝑟)

1 + 𝛼(𝑟)
2 + 𝑣, (34)

𝑣 = −
𝑟

∑

𝑗=1
𝑘𝑟−𝑗+1𝑐𝑗𝑒𝑗 ,

where 𝑘 is the high-gain to be determined and 𝑐𝑗 , 𝑗 = 1, 2, ..., 𝑟, are chosen such that 𝑝c(𝑠) = 𝑠𝑟 + 𝑐𝑟𝑠𝑟−1 + ⋯ + 𝑐2𝑠 + 𝑐1 is
Hurwitz. Let 𝑒𝑗 = 𝑒𝑗∕𝑘𝑗−1, 𝑗 = 1, 2, ..., 𝑟. Then, the cascade system (33) can be formulated as

⎧

⎪

⎨

⎪

⎩

𝜉̇0 =
(

𝐴0 + 𝐵0𝐹1
)

𝜉0 + 𝐵0𝑤1

𝑤̇ =
(

𝛷0 + 𝐵c𝐹2
)

𝑤 + 𝐵c𝑒1
̇̄𝑒 = 𝑘𝛷c𝑒,

(35)

where 𝛷c ∈ ℝ𝑟×𝑟 is a companion matrix whose last row consists of the coefficients of the polynomial 𝑝c(𝑠).
A selection criterion for the controller parameters 𝜀1, 𝜀2, 𝑘 is stated in the following lemma.

Lemma 4. Let Assumption 3 be satisfied and set 𝜀2 = 1∕𝑘 and 𝜀1 = 𝜀𝑗0+12 . Then, there exists a constant 𝑘0 ∈ [1,∞) such that,
for any 𝑘 ∈ [𝑘0,∞), the linear part of the cascade system (30) is globally exponentially stabilized by the linear state feedback
law (34) and the states 𝜉𝑗0 and 𝜉𝑗0+1 satisfy (28)-(29) respectively.
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Proof. Notice that 𝛷c, 𝛷0 + 𝐵c𝐹2, and 𝐴0 + 𝐵0𝐹1 are Hurwitz. Then, it remains to show that (28)-(29) holds. Firstly, in view
of 𝜉𝑗 = 𝜉𝑗 − 𝛼(𝑗−1)

1 , 𝑗 = 1, 2,… , 𝑟, we have the fact that, for all 𝜀1 ∈ (0, 1],
‖

‖

𝜉(0)‖
‖

≤ 𝛾1, (36)
where 𝛾1 is a positive constant independent of 𝑘. With coordinate changes in Step 2 and Step 3, there exist two positive constants
𝛾2 and 𝛾3 independent of 𝑘 such that, for all 𝑘 ∈ [1,∞),

‖𝑤(0)‖ ≤ 𝛾2 ‖‖𝜉(0)‖‖ , ‖𝑒(0)‖ ≤ 𝛾3 ‖‖𝜉(0)‖‖ .

In the sequence, the fact that 𝜉𝑗0+1 is high-gain non-peaking will be verified. It follows from the third equation of (35) that 𝑒1
= 𝐶ce𝑘𝛷c𝑡𝑒(0) with 𝐶c = [ 1 01×(𝑟−1) ], which further implies that, for all 𝑘 ∈ [1,∞),

|

|

𝑒1(𝑡)|| ≤ 𝛾3 ‖‖𝜉(0)‖‖ e
−𝑘𝜎c𝑡, (37)

where 𝜎c is determined by the eigenvalues of 𝛷c. It follows from the second equation of (35) that
𝑤(𝑡) = e(𝛷0+𝐵c𝐹2)𝑡𝑤(0) + ∫

𝑡

0
e(𝛷0+𝐵c𝐹2)(𝑡−𝜏)𝐵c𝑒1(𝜏)d𝜏. (38)

Substituting (22) associated with 𝐹2(𝜀2), (37) and (38) into 𝛼2 = 𝐹2(𝜀2)𝑤 yields
|

|

𝛼2(𝑡)|| ≤ 𝛽3𝛾2𝜀2 ‖‖𝜉(0)‖‖ e
−𝜀2𝜎𝑡 + 𝛽3𝛾3𝜀2 ‖‖𝜉(0)‖‖ e

−𝜀2𝜎𝑡
∫

𝑡

0
e−(𝑘𝜎c−𝜀2𝜎)𝜏d𝜏

≤ 𝛽3𝛾2𝜀2 ‖‖𝜉(0)‖‖ e
−𝜀2𝜎𝑡 +

𝛽3𝛾3𝜀2 ‖‖𝜉(0)‖‖
𝑘𝜎c − 𝜀2𝜎

e−𝜀2𝜎𝑡
(

−e−(𝑘𝜎c−𝜀2𝜎)𝑡 + 1
)

≤ 𝛽3𝛾2𝜀2 ‖‖𝜉(0)‖‖ e
−𝜀2𝜎𝑡 +

𝛽3𝛾3𝜀2 ‖‖𝜉(0)‖‖
𝑘𝜎c − 𝜀2𝜎

e−𝜀2𝜎𝑡.

For all 𝑘 ∈ [
√

2𝜎∕𝜎c,∞), we have 𝑘𝜎c − 𝜀2𝜎 ≥ 𝑘𝜎c∕2 and thus
|

|

𝛼2(𝑡)|| ≤ 𝛽3𝛾2𝜀2 ‖‖𝜉(0)‖‖ e
−𝜀2𝜎𝑡 +

2𝛽3𝛾3𝜀2
𝑘𝜎c

‖

‖

𝜉(0)‖
‖

e−𝜀2𝜎𝑡. (39)
Since the focus is the existence of 𝑘 to guarantee that (39) holds, we can denote 𝜎 = 𝜎c = 1 without loss of generality. It then
follows from 𝑘 − 𝜀2 ≥ 𝑘∕2, ∀𝑘 ∈ [

√

2,∞) that, for all 𝑘 ∈ [
√

2,∞),
|

|

𝛼2(𝑡)|| ≤ 𝛽3𝛾2𝜀2 ‖‖𝜉(0)‖‖ e
−𝜀2𝑡 +

2𝛽3𝛾3𝜀2
𝑘

‖

‖

𝜉(0)‖
‖

e−𝜀2𝑡 = 𝛾4𝜀2 ‖‖𝜉(0)‖‖ e
−𝜀2𝑡, (40)

with 𝛾4 = 𝛽3𝛾2 +
√

2𝛽3𝛾3. Substituting (37) and (40) into 𝜉𝑗0+1 = 𝑒1 + 𝛼2 yields, for all 𝑘 ∈ [
√

2,∞),
|

|

|

𝜉𝑗0+1(𝑡)
|

|

|

≤ 𝛾3 ‖‖𝜉(0)‖‖ e
−𝑘𝑡 +

𝛾4
𝑘
‖

‖

𝜉(0)‖
‖

e−𝑡∕𝑘, (41)
which implies that the state 𝜉𝑗0+1 is high-gain non-peaking over 𝑘 ∈ [

√

2,∞), namely,
|

|

|

𝜉𝑗0+1(𝑡)
|

|

|

≤ 𝛾5 ‖‖𝜉(0)‖‖
(

e−𝑘𝑡 + 1
𝑘

)

, (42)
where 𝛾5 = 𝛾3 + 𝛾4.

Subsequently, we show that the state 𝑤𝑗0 (also denoted as 𝜉𝑗0) is uniformly bounded with respect to 𝜀2. Notice from (33) that
𝑤̇𝑗0 = 𝜉𝑗0+1 . Along with (41) and 𝑘 = 1∕𝜀2, integrating 𝑤̇𝑗0(𝑡) = 𝜉𝑗0+1(𝑡) yields

|

|

|

𝑤𝑗0(𝑡)
|

|

|

≤ |

|

|

𝑤𝑗0(0)
|

|

|

+ ∫

𝑡

0

|

|

|

𝜉𝑗0+1(𝜏)
|

|

|

d𝜏

≤ |

|

|

𝑤𝑗0(0)
|

|

|

+ ‖

‖

𝜉(0)‖
‖∫

𝑡

0

(

𝛾3e−𝑘𝜏 +
𝛾4
𝑘
e−𝜏∕𝑘

)

d𝜏

≤ |

|

|

𝑤𝑗0(0)
|

|

|

+ 𝛾3𝜀2 ‖‖𝜉(0)‖‖ + 𝛾4 ‖‖𝜉(0)‖‖ , (43)
where 𝑤𝑗0(0) is the initial value independent of 𝜀2. Parallel to the procedure of (38)-(40), substituting (21) associated with 𝐹2(𝜀2)
and (37) into (38), we have, for all 𝜀2 ∈ (0,

√

2∕2],
‖𝑤(𝑡)‖ ≤

𝛾4
𝜀𝑗0−12

‖

‖

𝜉(0)‖
‖

e−𝜀2𝑡, (44)
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which together with (43) implies that, for all 𝜀2 ∈ (0,
√

2∕2],
|

|

|

𝑤𝑗0(𝑡)
|

|

|

≤ 𝛾4 ‖‖𝜉(0)‖‖ e
−𝜀2𝑡. (45)

Then, in view of Remark 3, we have, for all 𝜀2 ∈ (0,
√

2∕2],
|

|

|

𝑤𝑗(𝑡)
|

|

|

≤
𝛾4

𝜀𝑗0−𝑗2

‖

‖

𝜉(0)‖
‖

e−𝜀2𝑡, 𝑗 = 1, 2,… , 𝑗0. (46)

We now show the low-gain non-peaking property of 𝛼(𝑗)
1 , 𝑗 = 1, 2,… , 𝑗0. It follows from (35) that the 𝑗th order derivative of

𝛼1 = 𝐹1(𝜀1)𝜉0 is
𝛼(𝑗)
1 (𝑡) = 𝐹1

(

𝐴0 + 𝐵0𝐹1
)𝑗 𝜉0(𝑡) +

𝑗
∑

𝑙=1
𝐹1

(

𝐴0 + 𝐵0𝐹1
)𝑗−𝑙 𝐵0𝑤𝑙(𝑡). (47)

Define
Δ1(𝑡) = 𝐹1(𝐴0 + 𝐵0𝐹1)𝑗𝜉0(𝑡), Δ2(𝑡) =

∑𝑗

𝑙=1
𝐹1(𝐴0 + 𝐵0𝐹1)𝑗−𝑙𝐵0𝑤𝑙(𝑡).

Solving 𝜉0(𝑡) from (35) yields
𝜉0(𝑡) = e(𝐴0+𝐵0𝐹1)𝑡𝜉0(0) + ∫

𝑡

0
e(𝐴0+𝐵0𝐹1)(𝑡−𝜏)𝐵0𝑤1(𝜏)d𝜏. (48)

Substituting |𝑤1(𝑡)| in (46) and (48) into Δ1(𝑡) yields, for all 𝜀2 ∈ (0,
√

2∕2],
|

|

Δ1(𝑡)|| ≤
𝛾4

𝜀𝑗0−12

‖

‖

𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖∫

𝑡

0

‖

‖

‖

𝐹1
(

𝐴0 + 𝐵0𝐹1
)𝑗 e(𝐴0+𝐵0𝐹1)(𝑡−𝜏)‖

‖

‖

e−𝜀2𝜏d𝜏

+ ‖

‖

‖

𝐹1
(

𝐴0 + 𝐵0𝐹1
)𝑗 e(𝐴0+𝐵0𝐹1)𝑡‖

‖

‖

‖

‖

𝜉0(0)‖‖ . (49)
By using

(

𝐴0 + 𝐵0𝐹1
)

e(𝐴0+𝐵0𝐹1)𝑡 = e(𝐴0+𝐵0𝐹1)𝑡 (𝐴0 + 𝐵0𝐹1
)

,
and (27) associated with 𝐹1(𝜀1), we have

‖

‖

‖

𝐹1
(

𝐴0 + 𝐵0𝐹1
)𝑗 e(𝐴0+𝐵0𝐹1)𝑡‖

‖

‖

≤ 𝛾6𝛽3𝜀1e−𝜀
𝜌
1𝑡, (50)

where 𝛾6 = sup𝜀1∈(0,1]{‖(𝐴0 + 𝐵0𝐹1(𝜀1))𝑗‖, 𝑗 = 1, 2,… , 𝑗0} is independent of 𝜀1 by checking (25) associated with 𝐹1(𝜀1).
Substituting (50) into (49) yields, for all 𝜀2 ∈ (0,

√

2∕2],
|

|

Δ1(𝑡)|| ≤ 𝛾4𝛾6𝛽3 ‖‖𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖

e−𝜀
𝜌
1𝑡

𝜀1
𝜀𝑗0−12

∫

𝑡

0
e−(𝜀2−𝜀

𝜌
1)𝜏d𝜏 + 𝛾6𝛽3𝜀1 ‖‖𝜉0(0)‖‖ e

−𝜀𝜌1𝑡. (51)

Notice that
𝜀1

𝜀𝑗0−12
∫

𝑡

0
e−(𝜀2−𝜀

𝜌
1)𝜏d𝜏 =

−𝜀1
𝜀𝑗0−12

(

𝜀2 − 𝜀𝜌1
)

(

e−(𝜀2−𝜀
𝜌
1)𝑡 − 1

)

≤
𝜀1

𝜀𝑗0−12

(

𝜀2 − 𝜀𝜌1
)

≤
𝜀2

1 − 𝜀𝑗02
,

where 𝜌 ≥ 1 in Lemma 2 and 𝜀1 = 𝜀𝑗0+12 are used in the last inequality. Then, (51) can be continued as, for all 𝜀2 ∈ (0,
√

2∕2],
|

|

Δ1(𝑡)|| ≤ 𝛾4𝛾6𝛽3 ‖‖𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖

𝜀2
1 − 𝜀𝑗02

e−𝜀
𝜌
1𝑡 + 𝛾6𝛽3𝜀1 ‖‖𝜉0(0)‖‖ e

−𝜀𝜌1𝑡

≤ 𝛾4𝛾6𝛽3 ‖‖𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖

𝜀2

1 −
(
√

2∕2
)𝑗0

e−𝜀
𝜌
1𝑡 + 𝛾6𝛽3𝜀1 ‖‖𝜉0(0)‖‖ e

−𝜀𝜌1𝑡. (52)

Let us focus on Δ2(𝑡). Substituting |𝑤1(𝑡)| in (46) and (50) into Δ2(𝑡) yields, for all 𝜀2 ∈ (0,
√

2∕2],
|

|

Δ2(𝑡)|| ≤
𝑗𝛾4
𝜀𝑗0−12

‖

‖

𝐹1(𝜀1)‖‖
‖

‖

‖

(

𝐴0 + 𝐵0𝐹1
)𝑗
‖

‖

‖

‖

‖

𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖

e−𝜀2𝑡.

By using ‖𝐹1(𝜀1)‖ ≤ 𝛽1𝜀1 in Lemma 2, 𝜀1 = 𝜀𝑗0+12 and 𝛾6 = sup𝜀1∈(0,1]{‖(𝐴0 + 𝐵0𝐹1(𝜀1))𝑗‖, 𝑗 = 1, 2,… , 𝑗0}, we have, for all
𝜀2 ∈ (0,

√

2∕2],
|

|

Δ2(𝑡)|| ≤ 𝑗𝛾6𝛽1𝛾4𝜀
2
2
‖

‖

𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖

e−𝜀2𝑡. (53)
Until now, we can investigate 𝛼(𝑗)

1 (𝑡). Substituting (52) and (53) into (47) yields, for all 𝜀2 ∈ (0,
√

2∕2],
|

|

|

𝛼(𝑗)
1 (𝑡)||

|

≤ |

|

Δ1(𝑡)|| + |

|

Δ2(𝑡)||
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≤ 𝛾4𝛾6𝛽3 ‖‖𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖

𝜀2

1 −
(
√

2∕2
)𝑗0

e−𝜀
𝜌
1𝑡 + 𝛾6𝛽3𝜀1 ‖‖𝜉0(0)‖‖ e

−𝜀𝜌1𝑡 + 𝑗𝛾6𝛽1𝛾4𝜀2 ‖‖𝐵0
‖

‖

‖

‖

𝜉(0)‖
‖

e−𝜀2𝑡

= 𝛾7𝜀2 ‖‖𝜉(0)‖‖ e
−𝜀𝜌1𝑡, 𝑗 = 1, 2,… , 𝑗0, (54)

with 𝛾7 being a positive constant independent of 𝜀2 and 𝜀1.
Finally, substituting (36), (42), (45) and (54) into 𝜉𝑗0 = 𝑤𝑗0 + 𝛼(𝑗0−1)

1 and 𝜉𝑗0+1 = 𝜉𝑗0+1 + 𝛼(𝑗0)
1 respectively, we have, for all

𝑘 ∈ [
√

2,∞),
|

|

|

𝜉𝑗0(𝑡)
|

|

|

≤ 𝛾4 ‖‖𝜉(0)‖‖ + 𝛾7𝜀2 ‖‖𝜉(0)‖‖ ≤
(

𝛾4 + 𝛾7
)

𝛾1,

|

|

|

𝜉𝑗0+1(𝑡)
|

|

|

≤
(

𝛾5 + 𝛾7
)

‖

‖

𝜉(0)‖
‖

(

e−𝑘𝑡 + 1
𝑘

)

≤
(

𝛾5 + 𝛾7
)

𝛾1
(

e−𝑘𝑡 + 1
)

,

which, together with 𝛾1, 𝛾4, 𝛾5, 𝛾7 being independent of 𝑘, implies that 𝜉𝑗0 and 𝜉𝑗0+1 satisfy (28)-(29). This proof is completed.
With Lemma 4, we can state the following result for the cascade system (30).

Theorem 2. Let Assumptions 1-3 be met. Given an arbitrary compact set 𝛺 ⊂ ℝ𝑙+𝑛 centered at the origin, there exists a constant
𝑘∗ ∈

[

𝑘0,∞
) such that, for any 𝑘 ∈ [𝑘∗,∞), the cascade system (30) under the partial state feedback (34) is LAS with the

region of attraction containing 𝛺.
Proof. This proof is finished by using Lemma 4, Lemma 3, and Theorem 1 in turn.

4.2 MIMO case
For the MIMO case, it shares the same backstepping scheme as the SISO case.

Step 1: This step will be accomplished via linear low-gain feedback in Lemma 2. Design the low-gain feedback
𝛼1 = 𝐹1(𝜀1)𝜉0

to the ANCBC pair (𝐴0, 𝐵0), where 𝐹1(𝜀1) is the gain matrix in the form of (24) with the low-gain parameter 𝜀1 to be determined.
By defining 𝜉1 = 𝜉1 − 𝛼1, 𝜉𝑖𝑗 = 𝜉𝑖𝑗 − (𝛼𝑖

1)
(𝑗−1), 𝜉1 = [ 𝜉11 𝜉21 ⋯ 𝜉𝑚1 ]T, 𝛼1 = [ 𝛼𝑖

1 𝛼2
1 ⋯ 𝛼𝑚

1 ]T, 𝑗 = 1, 2, ..., 𝑟𝑖, 𝑖 = 1, 2, ..., 𝑚, the
linear part of the cascade system (3) can be formulated as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜉̇0 =
(

𝐴0 + 𝐵0𝐹1
)

𝜉0 + 𝐵0𝜉1
̇̄𝜉𝑖1 = 𝜉𝑖2
̇̄𝜉𝑖2 = 𝜉𝑖3
⋮

̇̄𝜉𝑖𝑟 = 𝑢𝑖 +
(

𝛼𝑖
1

)(𝑟𝑖) , 𝑖 = 1, 2, ..., 𝑚.

(55)

Step 2: This step will be accomplished via a set of linear low-gain feedback in Lemma 1. We take the 𝑖th chain of integrators
as an example. Divide the chain of integrators into two parts, one part is ̇̄𝜉𝑖𝑗 = 𝜉𝑖𝑗+1, 𝑗 = 1, 2, ..., 𝑗𝑖, and another is ̇̄𝜉𝑖𝑗𝑖+𝑗 = 𝜉𝑖𝑗𝑖+𝑗+1,
𝑗 = 1, 2, ..., 𝑗𝑖. Besides, define 𝑤1 = 𝜉1, 𝑤𝑖

𝑗 = 𝜉𝑖𝑗 , 𝑤𝑖 = [𝑤𝑖
1 𝑤𝑖

2 ⋯ 𝑤𝑖
𝑗𝑖
]T, 𝑗 = 1, 2, ..., 𝑗𝑖, 𝑖 = 1, 2, ..., 𝑚 and 𝑟𝑖 = 𝑟𝑖 − 𝑗𝑖,

𝑖 = 1, 2, ..., 𝑚. Design the low-gain feedback
𝛼𝑖
2 = 𝐹 𝑖

2(𝜀2)𝑤
𝑖, 𝑖 = 1, 2, ..., 𝑚

as the visual control to the 𝑤𝑖 subsystem, where 𝐹 𝑖
2(𝜀2) is the gain matrix in Lemma 1, with the low-gain parameter 𝜀2 to be

determined. By defining 𝑒𝑖𝑗 = 𝜉𝑖𝑗𝑖+𝑗 − (𝛼𝑖
2)

(𝑗−1), 𝑗 = 1, 2, ...,𝑟𝑖, 𝑖 = 1, 2, ..., 𝑚, the cascade system (55) becomes
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜉̇0 =
(

𝐴0 + 𝐵0𝐹1
)

𝜉0 + 𝐵0𝑤1

𝑤̇𝑖 =
(

𝛷0 + 𝐵𝑖
c
)

𝑤 + 𝐵𝑖
c𝑒

𝑖
1

𝑒̇𝑖1 = 𝑒̇𝑖2
𝑒̇𝑖2 = 𝑒̇𝑖3

⋮

𝑒̇𝑖𝑟𝑖 = 𝑢𝑖 −
(

𝛼𝑖
1

)(𝑟𝑖) −
(

𝛼𝑖
2

)(𝑟𝑖) , 𝑖 = 1, 2, ..., 𝑚,

(56)
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where 𝛷𝑖
0 ∈ ℝ𝑗𝑖×𝑗𝑖 and 𝐵𝑖

c ∈ ℝ𝑗𝑖×1, 𝑖 = 1, 2, ..., 𝑚 share the same structures as (19).
Step 3: Finally, the entire composite feedback law can be designed as

𝑢𝑖 =
(

𝛼𝑖
1

)(𝑟𝑖) +
(

𝛼𝑖
2

)(𝑟𝑖) + 𝑣𝑖, 𝑖 = 1, 2, ..., 𝑚, (57)

𝑣𝑖 = −
𝑟𝑖
∑

𝑗=1
𝑘𝑟𝑖−𝑗+1𝑐𝑖𝑗𝑒

𝑖
𝑗 , 𝑖 = 1, 2, ..., 𝑚,

where 𝑘 is the high-gain to be determined, and 𝑐𝑖𝑗 , 𝑗 = 1, 2, ..., 𝑟𝑖, 𝑖 = 1, 2, ..., 𝑚 are chosen such that 𝑝𝑖c(𝑠) = 𝑠𝑟𝑖 + 𝑐𝑖𝑟𝑖𝑠
𝑟𝑖−1 +⋯+

𝑐𝑖2𝑠 + 𝑐𝑖1 are Hurwitz. Let 𝑒𝑖𝑗 = 𝑒𝑖𝑗∕𝑘
𝑗−1, 𝑗 = 1, 2, ..., 𝑟𝑖, 𝑖 = 1, 2, ..., 𝑚 and denote 𝑒𝑖 = [ 𝑒𝑖1 𝑒𝑖2 ⋯ 𝑒𝑖𝑟𝑖 ]

T, 𝑖 = 1, 2, ..., 𝑚. Then the
closed-loop system of the linear part of (3) can be eventually formulated as

⎧

⎪

⎨

⎪

⎩

𝜉̇0 =
(

𝐴0 + 𝐵0𝐹1
)

𝜉0 + 𝐵0𝑤1

𝑤̇𝑖 =
(

𝛷𝑖
0 + 𝐵𝑖

c𝐹
𝑖
2

)

𝑤𝑖 + 𝐵𝑖
c𝑒

𝑖
1

̇̄𝑒𝑖 = 𝑘𝛷𝑖
𝑐𝑒

𝑖, 𝑖 = 1, 2, ..., 𝑚,
(58)

where 𝛷𝑖
𝑐 ∈ ℝ𝑟𝑖×𝑟𝑖 , 𝑖 = 1, 2, ..., 𝑚 are the companion matrices whose last rows consist of the coefficients of the Hurwitz

polynomial 𝑝𝑖c(𝑠). Parallel to the SISO case, we have the following lemma.
Lemma 5. Let Assumption 3 be satisfied and set 𝜀2 = 1∕𝑘 and 𝜀1 = 𝜀𝑗c+12 , 𝑗c = max{𝑗1, 𝑗2, ..., 𝑗𝑚}, 𝑗𝑖 ∈ {𝑟1, 𝑟2, ..., 𝑟𝑖 − 1}, 𝑖 =
1, 2, ..., 𝑚. Then there exists a constant 𝑘0 ∈ [1,∞) such that, for any 𝑘 ∈ [𝑘0,∞), the linear part of the cascade system (3) is
globally exponentially stabilized by the linear state feedback law (57) and the states 𝜉𝑗0 and 𝜉𝑗0+1 satisfy (28)-(29) respectively.
Proof. This proof is performed in a decoupled way. Following the same line of the proof to Theorem 2, we choose 𝑗c =
max{𝑗1, 𝑗2, ..., 𝑗𝑚} to guarantee that each state 𝑤𝑖

1, 𝑖 = 1, 2, ..., 𝑚 is bounded in the form of (46), and the other procedures deserve
a similar operation as in the proof to Theorem 2.

With the development of Lemma 5, we can state a solution to Problem 1 as follows.
Theorem 3. Let Assumptions 1-3 be met. Given an arbitrary compact set 𝛺 ⊂ ℝ𝑙+𝑛 centered at the origin, there exists a constant
𝑘∗ ∈

[

𝑘0,∞
) such that, for any 𝑘 ∈ [𝑘∗,∞), the cascade system (3) under the partial state feedback (57) is LAS with the region

of attraction containing 𝛺.
Proof. This proof is finished by using Lemma 5, Lemma 3, and Theorem 1 in turn.

5 AN ILLUSTRATIVE EXAMPLE

Consider the following cascade systems

𝛴1 ∶

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜂̇ = −0.5(1 + 𝜉2𝜉3)𝜂3

𝑧̇1 = 𝑧2
𝑧̇2 = −𝑧1 + 𝜉1
𝜉̇1 = 𝜉2
𝜉̇2 = 𝜉3
𝜉̇3 = 𝑢,

𝛴2 ∶

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜂̇ = −0.5(1 + 𝜉2𝜉3 + 𝜉23)𝜂
3

𝑧̇1 = 𝑧2
𝑧̇2 = −𝑧1 + 𝜉1
𝜉̇1 = 𝜉2
𝜉̇2 = 𝜉3
𝜉̇3 = 𝑢.

It can be observed that the 𝜂 subsystems in 𝛴1 and 𝛴2 are consistent with the cascade system (3) and the 𝜂 subsystem in 𝛴2
includes a nonlinear cross-term (𝜉2 + 𝜉3)𝜉3, which seems not treated in the work29. A particular example of 𝛴1 is

⎧

⎪

⎨

⎪

⎩

𝜂̇ = −0.5(1 + 𝜉3)𝜂3

𝜉̇2 = 𝜉3
𝜉̇3 = 𝑢.

Although the dynamic 𝜂̇ = −0.5𝜂3 is GAS, this cascade system cannot be globally stabilized or not always be semi-globally
stabilized by the linear high gain-feedback 𝑢(𝜉2, 𝜉3)27. This is also the case for the systems 𝛴1 and 𝛴2. Besides of this fact, with
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𝜉3 being the output, the invariant-zeros of the linear part are j, −j, 0, 0 and the mode 0 is unstable. Thus, semi-global stabilization
for the cascade systems 𝛴1 and 𝛴2 using partial state feedback 𝑢(𝑧, 𝜉) is not trivial as it seems.

By using Theorem 2, we can construct a partial state feedback law to 𝛴1 and 𝛴2 as
𝑢 =

...
𝛼 1 + 𝛼̇2 + 𝑣,...

𝛼 1 = −𝜀21
(

𝜉2 − 𝑧2
)

− 2𝜀1
(

𝜉3 − 𝜉1
)

,

𝛼̇2 = −
𝑏1
𝜀22

[

𝜉2 + 𝜀21𝑧2 + 2𝜀1
(

𝜉1 − 𝑧1
)]

−
𝑏2
𝜀2

[

𝜉3 + 𝜀21
(

𝜉1 − 𝑧1
)

+ 2𝜀1
(

𝜉2 − 𝑧2
)]

,

𝑣 = −𝑘𝑐
[

𝜉3 + 𝜀21
(

𝜉1 − 𝑧1
)

+ 2𝜀1
(

𝜉2 − 𝑧2
)]

− 𝑘𝑐
𝑏1
𝜀22

[

𝜉1 + 𝜀21𝑧1 + 2𝜀1𝑧2 + 𝜉2 + 𝜀21𝑧2 + 2𝜀1
(

𝜉1 − 𝑧1
)]

.

Choose 𝑏1 = 1, 𝑏2 = 2, 𝑐 = 1, 𝑘 = 3, 𝜀2 = 1∕𝑘, 𝜀1 = 1∕𝑘3 and set the initial conditions as 𝜂(0) = −1, 𝑧1(0) = −2, 𝑧2(0) =
2, 𝜉1(0) = 1, 𝜉2(0) = −2, 𝜉3(0) = 2. Since both 𝛴1 and 𝛴2 share the same linear part, the simulation results of the linear part,
as show in Figure 1, are the same. It can also be observed from Figure 1 that, for both 𝛴1 and 𝛴2, the convergence of 𝜂(𝑡) is
achieved, which reveals that the semi-global stabilization has been accomplished via such a partial state feedback. As observed
in the above two simulations, regardless of the specific form of the 𝜂-subsystem 𝜂̇ = 𝑓 (𝜂, 𝜑(𝜉𝑗0 , 𝜉𝑗0+1)𝜉𝑗0+1), our partial state
feedback 𝑢(𝑧, 𝜉) works effectively for any practical initial conditions. This result demonstrates the practical value and advantage
of our separate design.
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Figure 1 State responses of the closed-loop systems.

6 CONCLUSIONS

The semi-global stabilization problem of a class of cascade systems (e.g., partially linear composite systems) is solved by partial
state feedback. This system comprises a nonlinear subsystem with a cross-term and a linear subsystem in the Byrnes-Isidori
normal form. The cross-term that involves any two consecutive states of chains of integrators is incorporated into the nonlinear
subsystem. Our work considers little assumptions on the nonlinear subsystem. By taking into account the peaking phenomenon, a
lemma that identifies the types of inputs capable of semi-globally stabilizing the affine nonlinear system, with its unforced system
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being GAS, is established, which is crucial for preparing separate designs. Then the semi-global stabilization of the cascade
system is reduced to stabilizing its linear subsystem subject to non-peaking constraints on the consecutive states. Subsequently,
a class of linear low-and-high gain feedback is developed for the remaining problem, thereby ensuring that the objective states
do not exhibit peaking behavior. For the whole cascade system, this low-and-high gain feedback is partial state feedback using
only the states of the linear subsystem.
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