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Abstract: Hawk tea (Litsea coreana var. sinensis), derived from the tender shoots or leaves, rich in
flavonoids that can promote healthcare for humans. The primary flavonoid are
kaempferol-3-O-B-D-glucoside, kaempferol-3-O-B-D-galactoside, quercetin-3-O-B-D-glucoside, and
quercetin-3-O-B-D-galactoside. Is there an association between leaf phenotype and flavonoid content?
And the mechanisms of flavonoid biosynthesis are not fully understood. In this study, 109 samples were
analyzed to determine the correlation and genetic variability in leaf phenotype and flavonoid content.
Furthermore, a transcriptome-wide association study identified candidate loci implicated in the
biosynthesis of four key flavonoids. The study revealed that genetic variability in leaf traits and
flavonoid concentrations is predominantly attributed to inter-population differences. Flavonoid
accumulation may correlate with tree diameter at breast height (DBH), indicative of age-related traits.
Transcriptome-wide association analysis identified 84 significant SNPs associated with flavonoid content,
with only 13 located within gene regions. The majority of these genes are implicated in metabolic
processes and secondary metabolite biosynthesis. Notably, structural genes within these regions are
directly involved in pathways known to regulate flavonoid metabolism, exerting a pivotal influence on
flavonoid biosynthesis. These results lay a solid theoretical groundwork for subsequent explorations into
the genetic determinants influencing flavonoid accumulation of hawk tea.

Keywords: Antioxidant compound; SNP; GWAS; structural genes
1. INTRODUCTION

Hawk tea (Litsea coreana var. sinensis), an ancient tea species endemic to China, has been
cultivated and consumed for millennia in the southwest region (Jia et al. 2017). The tea is primarily
derived from tender shoots and leaves, rich in flavonoids, amino acids, volatile oils, and other bioactive
compounds (Ye et al. 2012). Research has highlighted that hawk tea's predominant polyphenols are
flavonol glycosides, distinguishing it as a caffeine-free beverage (Liang et al. 2007). Flavonols, a subset

of flavonoids characterized by a hydroxyl flavone backbone, vary due to the phenolic hydroxyl groups'
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substitution patterns (Singh et al. 2013). Among the most prevalent flavonoids in vegetation, quercetin
and kaempferol stand out as hawk tea's principal flavonols, undergoing glycosylation predominantly at
the carbon ring's position 3 (Liu et al. 2020). In addition to their plant-based roles, flavonol glycosides
exhibit significant antioxidative activities and stability against light, heat, and oxygen, offering the
potential to scavenge free radicals (Fan et al. 2022), inhibit oxidase activity, and provide preventive
benefits against cardiovascular, cerebrovascular diseases, and cancer (Bondonno et al. 2019). Their
antioxidative properties are intricately linked to anti-aging, with flavonol glycosides playing a crucial
role in delaying aging processes, protecting against Alzheimer's disease, and boosting immunity (Yao et
al. 2004). In an era marked by growing chronic disease prevalence and a booming food industry, the
focus on food health and safety has intensified, spotlighting the development of green health foods and
natural additives (Carmela et al. 2022). Hawk tea's inherent health benefits and natural properties
underscore its promising future in the food sector.

Current research on hawk tea primarily concentrates on the isolation and characterization of its
flavonoid compounds (Yan et al. 2020) and its pharmacological properties (Jia et al. 2017). The
flavonoid content has emerged as a critical parameter for assessing the quality of hawk tea germplasm
resources. Investigations have revealed significant variability in leaf morphology across different
germplasm resources of the same species, serving as a potential criterion for germplasm identification
(Khan et al. 2018). This variability may also, to some extent, indicate differences in flavonoid content
among these resources (Song et al. 2022). Previous research has uncovered the composition of the main
flavonol components in hawk tea, predominantly consisting of kaempferol-3-O-B-D-glucoside
(K-3-0-B-D-glu), kaempferol-3-O-B-D-galactoside (K-3-O-p-D-gal), quercetin-3-O-B-D-galactoside
(Q-3-0-B-D-gal), and quercetin-3-O-f-D-glucoside (Q-3-O-B-D-glu) (Tan et al. 2022). Recent research
offers scant insights into whether leaf morphological traits in hawk tea germplasm resources serve as
indicators of flavonoid content. Additionally, diameter at breast height (DBH) has been proposed by Wu
et al. (2019) as a growth attribute for identifying superior hawk tea germplasm, particularly when

flavonoid content is the primary trait of interest.

Association analysis aims to identify quantitative trait loci through the linkage disequilibrium
between different alleles on chromosomes (Liao et al. 2021). A genome-wide association study (GWAS)
can serve as a method to investigate genes associated with quantitative traits (e.g., flavonols) in hawk tea.
GWAS employs a vast array of high-density single nucleotide polymorphisms (SNPs) throughout the
genome as molecular genetic markers for conducting genome-wide correlation analyses (Bhinder et al.
2022). This involves assessing the correlation significance between each variant locus and the target trait,
thereby identifying specific gene locus variations that influence the complex trait (Li et al. 2018).
However, the complete genome of hawk tea has not been published yet, and possessing a reference
genome is a fundamental prerequisite for GWAS analysis (Luo et al. 2019). The continuous
advancements in transcriptome sequencing technology coupled with decreasing sequencing costs have
facilitated the development of transcriptome-wide association analysis methods. These methods are
particularly suited for species whose genomes have not yet been sequenced (Maeda et al. 2019).
Utilizing transcriptome sequencing (mRNA-Seq) data to derive gene expression or structural variations
and their correlation with phenotypic variations was initially implemented in Brassica chinensis (Harper
et al. 2012). Compared to GWAS, transcriptome-wide association analysis can identify new candidate
genes that, upon functional validation, are capable of regulating target traits, thus demonstrating the
reliability of the results obtained through this method (Kim et al. 2011). Given that the full genome data
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for hawk tea remains unpublished, full-length transcriptome sequencing has become increasingly
significant for this species.

The relationship between the flavonoid content and its leaf phenotypic traits, as well as the genetic
foundation of its biosynthesis, remains uncharted territory necessitating further research and thorough
investigation. Therefore, in this study, the genetic and phenotypic differentiation coefficients of leaf
character, DBH, and flavonoid content of one leaf and two buds in 109 samples of hawk tea from five
regions were calculated, and conducted correlation analysis. Furthermore, transcriptome sequencing was
conducted on 109 samples, utilizing second and third-generation sequencing technologies. Subsequently,
transcriptome-wide association analysis was conducted, leveraging data on flavonoid content and a
high-quality SNP dataset. The aim of the study was to investigate whether the variation in leaf character,
DBH, and flavonoid content in hawk tea primarily originates between or within populations, identify
variables highly associated with flavonoid content, and ascertain SNPs with high correlations to
flavonoid biosynthesis in hawk tea. This study is anticipated to offer theoretical insights for advancing
research on the natural variation and associated genetic structure of hawk tea. Additionally, it could
provide direction for future endeavors in breeding and transgenic research aimed at enhancing the

flavonoid content in hawk tea.

2. MATERIAL AND METHODS
2.1 Leaf character, DBH, and flavonoid content determination and analysis

Hawk tea is classified as a diploid organism (Ha et al. 2022). In May 2021, samples of the same
species were collected from five sites in Kaiyang County (KY), Xishui County (XS), Meitan County
(MT), Daozhen County (DZ), and Zheng'an County (ZA) in Guizhou Province, China (Fig. 1). The five
sites feature a subtropical humid monsoon climate, characterized by distinct local microclimates and
significant vertical climate variations. The average annual temperature ranges from 13.19 to 15.59 °C,
with annual precipitation between 1, 080 and 1, 255 mm (Yuan et al, 2023). Hawk tea was
systematically investigated and sampled at the designated site, with adult plants being specifically
targeted for sampling. To mitigate the impact of kinship relations, a minimum distance of 30 meters was
maintained between each sampled individual. One hundred and nine samples were collected totally,
including twenty-one samples from DZ County, they were primarily found in open areas near the river
and on the hillside, with limited seedling regeneration, the slope ranged from 7 to 18 degrees, facing
southeast. Twenty-two samples from XS County, they were primarily distributed in evergreen
broadleaved forests surrounding cultivated land and on nearby slopes, seedling regeneration is observed
under the forest canopy, with slopes ranging from 10 to 15 degrees and facing southwest. Nineteen
samples from ZA County, they were primarily found in secondary evergreen broad-leaved forests or
bamboo forests with high canopy density, adult individuals are few and mostly located in open areas, the
slope ranges from 3 to 8 degrees and faces southwest. Twenty samples from KY County, they were
primarily found in mountain orchards near villages, characterized by a low canopy and slopes ranging
from 8 to 15 degrees, facing southwest. And twenty-seven samples from MT County, they were primarily
distributed in open mountains near cultivated land and around the reservoir, no seedling regeneration was

observed, the slopes range from 8 to 16 degrees and face south.
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Fig. 1. A map showing the natural distribution and the location of study areas in Guizhou province, SW
China. (KY: Kaiyang County, XS: Xishui County, MT: Meitan County, DZ: Daozhen County, ZA:
Zheng'an County)

The DBH of each tree was recorded, and mature leaf samples free from pests and diseases were
individually collected from the cardinal directions-southeast and northwest. Following labeling, the
samples were secured in ziplock bags, stored at 4°C in a portable refrigerator, and transported to the
laboratory on the same day for assessment of leaf phenotypic indicators. In addition, one leaf and two
buds were collected to wrapped carefully in tin foil, labeled, immediately frozen in liquid nitrogen, and
stored in a -80°C refrigerator for further analysis.

Leaf length (LL), leaf width (LW), leaf area (LA), leaf thickness (LT), and leaf perimeter (LP) were
quantified using a portable leaf area meter (AM350, ADC, UK), and the leaf shape index (LS) (leaf
length/leaf width) was calculated. Leaf petiole length (LPL) was measured with an electronic digital
caliper to an accuracy of 0.01 mm, and the relative chlorophyll content (SPAD) was noted using a
chlorophyll meter (SPAD-502). The fresh weight of the leaves was determined using an electronic
balance accurate to 0.01g. Leaves were then dried at 80°C for 48 hours until reaching a constant weight,
at which point the dry weight was measured. The leaf dry matter content (LDMC) and specific leaf area
(SLA) were calculated, representing the ratio of dry weight to fresh weight and the ratio of leaf area to
dry weight, respectively.

The contents of flavonoid from one and two buds, including K-3-O-B-D-gal, K-3-O-3-D-glu,
Q-3-O-B-D-gal, and Q-3-O-B-D-glu, were determined and extracted using high-performance liquid
chromatography (HPLC) following the methodology outlined by Liang et al. (2005).

2.2 Data analysis

Phenotypic data underwent descriptive statistical analysis utilizing R software, version 3.6. Variance
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analysis for all traits was conducted employing a linear model, articulated as: Xjj=p+Pi+Ciji)teijk, where
X represents phenotypic individual observations, p represents the population average, and P; represents
effect at place 1 (i=1, 2, 3, 4, 5), Cji; represents the effect of the j clone in the i origin (j=1,2,..., 20), &k

represents residual.

The effects within and between origin clones, excluding the overall mean, were treated as random
variables. ANOVA analysis was conducted using PROC GLM in SAS software (SAS Institute, Inc.,
SAS/STAT software, v8) to investigate differences both between and within the origin clones. The
variance components, namely oy (between the origins), o¢py: (Within the origins), and o (residual), were
estimated based on the previously mentioned linear model. The coefficient of variation (CV) was
calculated using the following formula: CV=8,/u, where 6, represents the standard deviation of the
phenotype, and p represents the mean value of the phenotype. The genetic correlation matrix and
phenotypic correlation matrix between the two traits were calculated, and significance tests were

conducted using the asreml software package.
2.3 RNA-seq

RNA extraction was conducted from one leaf and two buds of each hawk tea clone sample utilizing
the RNA rapid extraction kit (Beijing, China). For quality control, each sample purity of OD260/280
between 2.0-2.2 and RIN value of >8.0. Subsequently, equal amounts of total RNA from each sample
were pooled, and the task of conducting transcriptome sequencing was entrusted to Hangzhou Kaitai
Biotechnology Co., LTD. In this process, the utmost accuracy in our transcriptome sequencing results
was ensured by utilizing high-quality transcript assembly, which combined second-generation

transcriptome sequencing with third-generation full-length transcriptome sequencing.

The raw image data generated from the second-generation high-throughput sequencing instrument,
[llumina NovaSeq 6,000, were subjected to base calling to convert them into sequence data, resulting in
the acquisition of raw reads. It is important to note that these raw reads may potentially contain adapters
or low-quality base reads, which have the potential to adversely affect subsequent analyses. Therefore, it
is imperative to perform data filtering to ensure the integrity of the information analysis process. In the
context of quality control sequencing, the quality of the bases plays a critical role in achieving high
sequencing accuracy (Li et al. 2004). Q20 serves as a primary criterion for assessing data quality. An
attainment of Q20 greater than 85% signifies that over 85% of the bases exhibit a sequencing accuracy
rate of 99% (Baid et al. 2023). To achieve this, the data is disconnected from the sequencing platform,
and a multi-step data filtering process is subsequently executed, as detailed below:

a. Reads with joint contamination greater than Sbp were excluded from the dataset. In the case of
double-ended sequencing, both ends of the reads were discarded if one end exhibited splicing

contamination.

b. Reads with a quality score (Q) below 15, encompassing more than 30% of their length, were
eliminated. In the context of double-ended sequencing, if one end contained low-quality reads, both ends

were removed.

c. Reads that contained more than 5% of the base 'N' were filtered out. In the case of double-ended
sequencing, if one end contained more than 5% 'N' bases, that specific end was excluded from the

analysis.
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Three generations of sequencing data were acquired utilizing Oxford Nanopore Technologies (ONT)
sequencers. ONT sequencing boasts extended read lengths and high throughput, making it particularly
advantageous in genome assembly, transcriptome assembly, epigenetic modification studies, and various
other research domains (Zhang et al. 2023). The data filtering process was executed as follows: initial
data assessment and statistics were performed using NanoPlot, followed by joint processing using
Porechop. Subsequently, mass filtration was conducted with Nanofilt. Finally, NanoPlot was employed
once more for comprehensive data statistics and evaluation of the resulting clean data. The merge
assembly approach was employed to consolidate multiple samples into an initial transcriptome set. In
cases where the sample size exceeded 20 samples, a random selection method was adopted, grouping
them into sets of three, ensuring the inclusion of a total of 15 samples in the subsequent assembly
process. The integration of NGS data and ONT data was accomplished using the default parameters of
rnaspades v3.15.2, with the resulting transcripts fasta file serving as the foundation for subsequent
analyses. To gauge the quality of assembly, reads were aligned to the assembled transcripts fasta using
bowtie2 v2.4.2 to calculate the mapping rate, where a higher mapping rate is generally indicative of
superior assembly integrity (Hyten et al. 2010). Assessment of transcript assembly integrity was carried
out using BUSCO v5.0.0.

2.4 SNP calling

STAR2.3 was employed for the comparison, and GATK4 was utilized for SNP calling. With
Litsea cubeba as the reference, read mapping was conducted using STAR, information was appended to
the BAM files using "Add or Replace Read Groups," and repeated reads were annotated using "Mark
Duplicates." The BAM files were subsequently subjected to validation using "Validate SamFile," while
splice reads underwent processing through "Split NCigar Reads." SNP calling was executed with
"Haplotype Caller," and VCF merging was accomplished with "MergeVcfs." Variation filtration was
applied using "Variant Filtration," and variants were extracted using "Select Variants," retaining only
those reads that passed the filtration criteria. Mutation statistics were generated with Vcftools, and data

visualization was performed using R packages.

Data conversion was carried out with vef2phy to ensure that 90% of individuals possessed base
information at the same site. Evolutionary trees were constructed using 1QTrees, and for phylogenetic
tree visualization, ggtree was employed. Subsequently, data conversion was conducted using plink,
followed by PCA analysis utilizing Smartpca, and the results were visualized through ggplot2. Structural
analysis was performed using admixture, with K values ranging from 2 to 5 chosen for display.
Furthermore, Gmap was utilized to forecast the mapping of three generations of transcriptome sequences

(CDS) onto the reference genome, determining their structural positions.
2.5 Transcriptome association analysis

Plink was employed for data transformation, and the association between SNP sites and flavonols
was analyzed using a general linear model (GLM). The filtering criterion was set to -Log10(p)>6.0. LD
Block Show and Show LD SVG were utilized to construct LD blocks within the GWAS locus. The top
10 most significant loci were selected for each trait. The regions of interest extended 100kb base pairs
upstream and downstream of each significant association site, resulting in the analysis of a total of 200kb

base pair regions.
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3. RESULTS
3.1 Genetic variation in DBH, leaf traits, and flavonoid content in hawk tea.

The results of variance analysis (Table 1) indicate that, except for DBH, the origin significantly
influenced leaf traits and flavonoid content (P<0.001). The origin's impact accounted for 0.01% to 57.83%
of the total variation in leaf traits and 0.57% to 31.69% of the total variation in flavonoid content. Among
leaf traits, the clonal population in the KY area exhibited the highest values for LW, LA, LP, SPAD, and
SLA, which were 4.57, 35.35, 31.51, 48.22, and 66.16, respectively (Table 2).

Table 1. Variance analysis and genetic parameter estimation of leaf traits, DBH, and flavonoid content

Traits Mean+SD CVv op’ Ge(p) o
DBH 10.93+1.83 31.64 13.07 62.44 61.75
LL 11.51+1.29 15.55 41.59%** 1.61 2.99
LW 3.53+0.68 19.26 8.70%** 0.32 0.45
LPL 1.15+0.27 23.48 0.40%** 0.06 0.07
LT 0.26+0.89 342.31 0.14%%* 0.00 0.01
LA 25.11+3.38 29.39 57.73%** 12.17 54.97
LP 25.59+0.83 18.87 48.52%** 6.73 23.49
SPAD 45.80+1.18 11.31 57.83%** 21.31 24.75
LDMC 0.52+0.04 7.69 0.01%*%** 0.00 0.00
LS 3.34+0.65 19.46 3.89%** 0.27 0.35
SLA 48.7+£1.97 10.20 33.32%** 65.51 223.94
1 0.64+0.45 70.31 1.40%** 0.15 0.18
2 2.39+1.75 73.22 23.3]%** 2.20 2.56
3 0.48+0.30 62.50 0.57*%* 0.07 0.08
4 8.88+0.20 69.82 31.69%** 25.71 28.93

DBH: Diameter at breast height (cm); LL: Leaf length (cm); LW: Leaf width (cm); LA: Leaf area
(cm?); LT: Leaf thickness (cm); LP: Leaf perimeter (cm); LS: Leaf shape index; LPL: Leaf petiole length
(cm); SPAD: The relative chlorophyll content; LDMC: Leaf dry matter content; SLA: Specific leaf area;
1: K-3-0-B-D-gal (mg/g dry weight); 2: K-3-O-B-D-glu (mg/g dry weight); 3: Q-3-O-p-D-gal (mg/g dry
weight); 4: Q-3-O-B-D-glu (mg/g dry weight); CV: coefficient of variation; c,>: variation between the
origin; ce(p): variation within the origin; .?: residual.

*: p<0.05, **: p<0.01, ***: p<0.001.

Conversely, the LL, LW, LPL, LA, LP, and SPAD of clonal populations in the ZA area were the
smallest, measuring 10.25, 2.79, 0.94, 17.52, 21.05, and 41.29, respectively. The maximum LL observed
in the clonal population was 13.57 in the XS area (Table 2).

Table 2. Average leaf traits, DBH, and flavonoids in 5 areas

Dz KY MT ZA XS
DBH 11.03+1.71 10.66+1.03 13.05+1.42 9.68+1.87 10.25+0.98
LL 10.65+1.35¢ 12.48+1.23b 10.61+1.02¢ 10.25+1.42¢ 13.57£1.28a
LwW 3.21+0.37¢ 4.57+0.39a 3.50+0.38b 2.79+0.29d 3.59+0.27b
LPL 1.13+0.20b 1.20+0.33ab 1.33£0.25a 0.94+0.18¢ 1.15+0.23ab
LT 0.21£0.04b 0.22+0.03b 0.24+0.03b 0.41+0.08a 0.21+0.03b
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LA 20.84+2.98¢ 35.35+2.91a 22.07£2.52¢ 17.52+2.84d 29.76+1.66b
LP 23.00+2.76¢ 31.514+2.78a 22.98+1.68c 21.05+2.70c 29.40+2.87b
SPAD 46.84+1.52a 48.22+2.80a 47.69+0.36a 41.29+5.45b 44.94+3.60a
LDMC 0.54+0.03a 0.54+0.02a 0.50+0.04bc 0.52+0.04b 0.49+0.03¢
LS 3.37+0.63b 2.75+0.33¢ 3.08+0.51b 3.72+0.66a 3.79+0.39a
SLA 38.95+1.42d 66.16+0.70a 44.15+091c 33.53+0.39¢ 60.87+0.34b
1 0.21£0.11b 0.66+0.27a 0.91+0.47a 0.62+0.34a 0.79+0.57a
2 0.70+0.39¢ 2.54+0.87ab 3.16+1.43ab 2.12+1.14b 3.44+2.60a
3 0.18+0.06b 0.53+0.16a 0.58+0.33a 0.49+0.34a 0.60+0.32a
4 2.36+1.18c 9.61£3.06b 9.82+2.38b 8.77+2.15b 13.81+£1.89a

DBH: Diameter at breast height (cm); LL: Leaf length (cm); LW: Leaf width (cm); LA: Leaf area
(cm?); LT: Leaf thickness (cm); LP: Leaf perimeter (cm); LS: Leaf shape index; LPL: Leaf petiole length
(cm); SPAD: The relative chlorophyll content; LDMC: Leaf dry matter content; SLA: Specific leaf area;
1: K-3-0-B-D-gal (mg/g dry weight); 2: K-3-O-B-D-glu (mg/g dry weight); 3: Q-3-O-B-D-gal (mg/g dry
weight); 4: Q-3-O-B-D-glu (mg/g dry weight).

Values with different superscripts in the same column significantly differ at the 0.05 level.

Regarding flavonoid content, Q-3-O-B-D-glu, K-3-O-B-D-gal, and K-3-O-B-D-glu exhibited the
highest values in clonal populations from the XS area, measuring 3.44, 0.60, and 13.81, respectively.
Conversely, the contents of these four flavonoids in the clonal population from the DZ area were the

smallest, measuring 0.21, 0.70, 0.18, and 2.36, respectively.

For DBH, the clonal variation between and within origins did not reach a significant level (p > 0.05).
In contrast, for leaf traits and flavonoid content, the primary source of genetic variation stemmed from
the variation between populations.

3.2 Correlations among DBH, leaf traits, and four types of flavonoids.

The phenotypic and genetic correlations among DBH, leaf traits, and the four flavonoids are
presented in Table 3. The results indicated that the phenotypic and genetic correlation coefficients
between K-3-O-B-D-glu, DBH, and leaf traits were not statistically significant, with coefficients ranging
from 0.2064 to 0.4086.
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Table 3. Genetic correlation (upper triangle) and phenotypic correlation (lower triangle) among DBH, leaf traits, and four flavonoids

DBH LL Lw LPL LT LA LP SPAD LDMC LS SLA 1 2 3 4
DBH 1 0.1230 1.8832%%%  54.8223%**  853.1259***  0.0014 0.0055  0.0076 18903.3056***  3.1337***  (.0002 11.0104%** 0.1745* 37.9788***  0.0036
LL 0.7481*** ] 0.0762 2.3373%** 34.0007%*%* 0.0000 0.0001 0.0004 887.0409%** 0.1194 0.0000 0.50050***  0.0076 1.7298%** 0.0002
LW 0.6058***  0.5105%** 1] 0.7693%** 10.8626*** 0.0000 0.0000  0.0001 278.1474%** 0.0261 0.0000 0.1603 0.0025 0.5546%** 0.0001
LPL 0.5417*%*  0.7112%**  0.8442%** ] 8.7696%*** 0.0000 0.0001 0.0001 202.7070%** 0.0337 0.0000 0.1113 0.0013 0.3957%** 0.0000
LT 0.2461%** 0.1585 0.2921***  0.1928* 1 0.0000 0.0000  0.0000 36.5254%%* 0.0061 0.0000 0.0214 0.0003 0.0729 0.0000
LA 0.1759* 0.0256 0.0546 0.0201 0.2038%** 1 0.0002  0.0011 2971.2349%%* 0.4635%** 0.0000 1.6884%** 0.0259 5.8420%** 0.0005
LP 0.2030%** 0.0762 0.2120%* 0.1207 0.1941* 0.1151 1 0.0008 2025.2952%%* 0.3358*** 0.0000 1.1516%** 0.0177 3.9258%%* 0.0004
SPAD 0.0098 0.1532 0.0440 0.0879 0.2387** 0.4069***  0.0835 1 3783.7029%** 0.5233*** 0.0000 2.1893%x* 0.0350 7.4346%** 0.0007
LDMC  0.3086***  0.1894* 0.2406** 0.1550 0.8505%*x* 0.0591 0.0736  0.1198 1 0.0043 0.0000 0.0150 0.0002 0.0517 0.0000
LS 0.2194%** 0.1444 0.2389** 0.1521 0.9586%*** 0.2447%* 0.0535  0.2498%** 0.88700%** 1 0.0000 0.2186** 0.0035 0.7544%%* 0.0001
SLA 0.0625 0.1115 0.0242 0.0012 0.4208%*** 0.0943 0.1051 0.4139%**  (.4523%** 0.4338*** ] 3.5279%** 0.0533 12.3344**% 0.0000
1 0.1999** 0.1661 0.2472%* 0.2337%* 0.2789%*x* 0.0225 0.0576  0.0673 0.3132%** 0.2760%**  0.2383%* 1 0.0008 0.2895%%* 0.0000
2 0.0893 0.1134 0.1709* 0.1231 0.8207*** 0.6548%**  0.1057  0.3804***  (.6624*** 0.8660%**  0.3857**%*  0.2576** 1 1.6567%** 0.0001
3 0.3318***  0.1697* 0.2763***  0.1730* 0.7374%xx* 0.4304*** 0.0450  0.0243 0.8623%*** 0.7318%**  (.3992%**  (,3228%** 0.3594%x ] 0.0000
4 0.0023 0.0006 0.0010 0.0004 0.0471 0.0544 0.0808  0.0269 0.0267 0.0367 0.1286 0.1324 0.0094 0.0933 1

DBH: Diameter at breast height (cm); LL: Leaf length (cm); LW: Leaf width (cm); LA: Leaf area (cm2); LT: Leaf thickness (cm); LP: Leaf perimeter (cm); LS:
Leaf shape index; LPL: Leaf petiole length (cm); SPAD: The relative chlorophyll content; LDMC: Leaf dry matter content; SLA: Specific leaf area; 1:

K-3-O-B-D-gal (mg/g dry weight); 2: K-3-O-B-D-glu (mg/g dry weight); 3: Q-3-O-p-D-gal (mg/g dry weight); 4: Q-3-O-B-D-glu (mg/g dry weight).
*: p<0.05, **: p<0.01, ***: p<0.001.



267
268
269
270
271

272
273
274
275
276

277

278
279
280
281
282
283

284

285
286

287
288
289
290

291

On the other hand, Q-3-O-B-D-gal and K-3-O-B-D-gal exhibited significant positive correlations
with LL, LA, LP, SPAD, LS, and SLA. Additionally, K-3-O-B-D-gal was positively correlated with LW,
and LPL showed a significant positive correlation. Furthermore, Q-3-O-B-D-gal, Q-3-O-B-D-glu, and
K-3-O-B-D-gal displayed significant positive correlations with DBH, suggesting that DBH can serve as
an indirect selection indicator for hawk tea flavonoids.

Regarding the correlations between the four flavonoid contents, Q-3-O-3-D-gal and Q-3-O-B-D-glu
(p<0.01), Q-3-O-B-D-gal and K-3-O-B-D-gal, Q-3-O-B-D-glu and K-3-O-B-D-gal (p<0.001) exhibited
statistically significant phenotypic correlations (Table 3). Additionally, significant genetic correlations
were observed between Q-3-O-f-D-gal and K-3-O-B-D-gal, as well as between Q-3-O-B-D-glu and
K-3-0-B-D-gal (p <0.001).

3.3 Second and third-generation sequencing and SNP statistics

Based on the Clean Data statistics for each hawk tea sample, the data utilization rate falls within the
range of 93.15% to 98.81%. The distribution of GC content ranges from 46.37% to 49.36%. Furthermore,
more than 94% of the bases exhibit a Q30 quality score (Fig. 2A). These observations collectively
indicate that the sequencing data possesses high quality and is suitable for sequence fragment assembly
and subsequent analysis. The raw reads have been deposited in NCBI and are accessible under
BioProject PRINA992466.
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& 70 & 70 -
g 60 2 60 -
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94 95 0 70 75
Q30 rate Mapping rate

Fig. 2. Statistics of sequencing results. (A) The distribution of Q30 rates. (B) The distribution of

alignment rates.

Following the assembly and splicing process, a total of 349,993 transcripts were obtained,
comprising 449,816,814 bases. The average transcript length was 1,285bp, with an N50 length of
2,494bp. Notably, transcripts falling within the 200-500bp range constituted a relatively substantial
portion, accounting for 43.35% of the total transcripts (Table 4).

Table 4. Statistical distribution of transcription length sequence

Unigene length Total Number
200-500bp 151731(43.35%)
500-1000bp 63231(18.06%)
1000-2000bp 61033(17.42%)
2000-3000bp 33484(9.56%)
>3000bp 39791(11.37%)

10
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Total Number 349993

Total Length 449816814
N50 Length 2494
Mean Length 1285

With the exception of KY13, all other samples exhibited mapping values exceeding 94%, and the
transcript integrity was notably high at 96.3%, as assessed by BUSCO software. In general, assembled
results typically fall within the range of 70% to 98% and are deemed suitable for subsequent analysis
(Kishi et al. 2022).

The valid data obtained were compared with the Litsea cubeba genome, yielding an average
alignment rate of 85.37%, falling within a confidence interval of 72.53% to 88.59% (Fig. 2B).
Subsequently, SNP calling was conducted using GATK, resulting in each sample containing more than
600,000 SNPs (Fig. 3). Notably, the Phred values for the majority of these sites exceeded 1,000. Fig. 3
illustrates the distribution of these SNPs across chromosomes, revealing that, apart from chromosome 12,
each of the other chromosomes harbored more than 10,000 SNPs.

0Mb 18Mb 36Mb 54Mb 72Mb 90Mb 108Mb 126Mb 144Mb 161Mb
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Fig. 3. Distribution of SNP density across chromosomes. (Different colored regions indicate varying SNP
counts across chromosomes)

3.4 Genetic evolutionary analysis

Based on the phylogenetic tree constructed using the neighbor-joining clustering method, which
was based on genetic distance, the results (Fig. 4) revealed the division of 109 hawk tea clones from 5

11
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Fig. 4. Phylogenetic tree of hawk tea populations constructed based on genetic distance. (Red represent
DZ area, blue represent KY area, orange represent MT area, green represent XS area, purple represent ZA

area.)

different regions into 5 distinct subgroups. The first subgroup primarily consisted of clones from DZ, XS,
and ZA, while the second subgroup was predominantly composed of clones from XS. Clones from the ZA
provenance dominated the third subgroup, whereas the fourth subgroup was mainly comprised of clones
from KY. The fifth subgroup predominantly consisted of clones from MT and KY.

Further insights into the clustering patterns of all samples were obtained through PCA analysis of
the transformed data (Fig. 5). This analysis categorized the samples into 5 distinct groups, with DZ, KY,
MT, and XS forming 4 separate categories, while ZA clustered together with DZ and XS. To delve into
the population structure of the studied materials, Admixture software was employed (Fig. 6). The results
indicated that when K=5, the 109 hawk tea clones were classified into five subgroups, with the lowest

cross-verification error rate observed at this value.

12
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323 Fig. 5. Principal component analysis of hawk tea. (Red represent DZ area, blue represent KY area, orange
324 represent MT area, green represent XS area, purple represent ZA area.)

325

326  Fig. 6. Results of the Bayesian clustering analysis conducted using STRUCTURE. (Highlighting the
327  clustering patterns of genetic components across 2-5 groupings.)

328 The population was stratified into 5 subgroups through the application of admixture software, the
329 neighbor-joining clustering method based on genetic distance, and principal component analysis. It can
330 be inferred that the clustering outcomes obtained from these three methods exhibited analogous trends,

331 thereby indicating a relatively high level of reliability in the clustering results.

332 3.5 Transcriptome-wide association analysis of flavonoids

333 The primary content of the four flavonoids in the tender shoots of hawk tea has been determined,
334 and significant variations in flavonoid content among different cultivation regions and clones of hawk tea
335 have been observed (Table 1). In practical applications, the selection of superior traits within the hawk
336 tea species is a matter of great urgency. Therefore, the exploration of genetic loci linked to these crucial

13



337
338
339

340
341
342
343
344
345
346
347
348

349
350
351

traits is deemed of substantial importance. Consequently, the inaugural transcriptome-wide association
analysis in hawk tea has been undertaken in this study, with the objective of identifying significant SNPs
associated with the four flavonoids.

After filters were applied based on criteria such as marker missing rate, sample missing rate, and
minor allele frequency (MAF), a total of 235 high-quality SNPs associated with flavonoids were
identified, of which 84 demonstrated statistical significance. Among these SNPs, 66 (78.57%) were
found to be situated in intergenic regions. Further breakdown reveals that 10 werelocated in upstream
regions, 23 in introns, 9 in downstream regions, 15 represented missense variants, and 9 were
synonymous variants. Moreover, functional annotations were available for 44 of these SNPs (Table S1).
In hawk tea's tender shoots, significant SNPs associated with the four flavonoids were identified, with
totals of 11, 7, 30, and 36 for each respective flavonoid. It is important to mention that only a limited

number of SNPs were localized within gene regions (Table 5).

Given the unavailability of the hawk tea genome, our investigation was constrained to genes
exhibiting significant SNPs. A total of 44 protein-coding genes presenting p-values below 0.0001 were
discerned (Table S1). Three genes, associated with K-3-O-p-D-gal content, were categorized into three

14



352  Table 5. Summary of the significant SNPs by associated analysis

Significant SNPs in Associated SNP -loglO P
Traits Chromosome Annotation KEGG pathways KO
SNPs genic region genes position valuae
Cytochrome P450
CMO022944.1 121937053  7.1918 CYP86BI; fatty acid omega-hydroxylase K09590
CYP4/CYP19/CYP26 subfamilies
K-3-0-B-D-Gal 11 8 3 CMO022946.1 13199858 6.0132 Selenium-binding protein SELENBP1; methanethiol oxidase K17285
UDP-glucuronosyl and UGT74B1; N-hydroxythioamide
CM022952.1 25558941 6.7258 K11820
UDP-glucosyl transferase S-beta-glucosyltransferase
Cytochrome P450
K-3-O-B-D-Glu 7 4 1 CMO022944.1 121937053  6.1803 CYP86BI; fatty acid omega-hydroxylase K09590
CYP4/CYP19/CYP26 subfamilies
CMO022945.1 39681060 7.0556 Predicted importin 9 IPO9, RANBPY; importin-9 K20224
Serine/threonine protein PPP2RS5; serine/threonine-protein phosphatase
CM022945.1 28136888 6.3667 K11584
phosphatase 2A, regulatory subunit 2A regulatory subunit B'
Q-3-O-B-D-Gal 30 12 3
DLAT, aceF, pdhC; pyruvate dehydrogenase E2
CM022947.1 7598503 6.3111 Dihydrolipoamide acetyltransferase ~ component (dihydrolipoyllysine-residue K00627
acetyltransferase)
Scaffold/matrix specific factor
CM022953.1 47477583 7.1035 hnRNP-U/SAF-A, contains SPRY DLD,1pd,pdhD; dihydrolipoy! dehydrogenase K00382
domain
CMO022947.1 2558160 7.0773 - ppc; phosphoenolpyruvate carboxylase KO01595
K-3-O-B-D-Glu 36 20 6 Sterol O-acyltransferase/
CM022946.1 12277330 6.8386 P4HA; prolyl4-hydroxylase K00472
Diacylglycerol O-acyltransferase
CM022947.1 7529974 6.7878 - DGATT1; diacylglycerol O-acyltransferase 1 K11155
CM022950.1 79888055 6.0975 Mitogen-activated protein kinase LEUI; 3-isopropylmalate dehydratase K01702
CMO022944.1 12714282 6.0191 - HPR2-3; glyoxylate/hydroxypyruvate reductase ~ K15919

353
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distinct functional classes: the cytochrome P450 subfamilies CYP4/CYP19/CYP26, selenoproteins, and
uridine diphosphate glucose transferases (Fig. 7). Regarding K-3-O-B-D-glu, a solitary gene from the
cytochrome P450 subfamilies CYP4/CYP19/CYP26 was identified. In contrast, Q-3-O-B-D-gal content
was linked to five genes, inclusive of those coding for dihydroceramide transferases. Moreover, six genes
correlated with K-3-O-B-D-glu content were also pinpointed (Table 5).
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Fig. 7. Association screening for the SNP locus grounded on kaempferol-3-O-p-D-galactoside content. (A)
Location of SNP locus 1219377053 on the chromosome CMO022944.1. (B) Location of SNP locus
13199858 on the chromosome CM022946.1.

The examination of p-value distributions from GLM association analyses for flavonol traits,
K-3-O-B-D-gal, K-3-O-B-D-glu, Q-3-O-B-D-gal, and Q-3-O-B-D-glu (Fig. 8), results showed that certain
phenotypes are subject to the effects of population stratification and genetic relatedness. Manhattan plots
illustrating the p-values from the association analyses for these four flavonoid traits are presented in Fig.

9.
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369  Fig. 8. QQ map of P-value distribution of SNP associated with flavonol-related traits of hawk tea.

370 Within the SNP sites linked to K-3-O-B-D-gal, 34 were identified, with 11 showing significant
371 associations (Fig. 9A). The polymorphism of SNPs primarily arises from transition (C-T, G-A) and
372 transversion (C-A, C-G, G-T, A-T) mutations. Among these sites, transitions constitute 55.88% and
373 transversions make up 44.12% (Table S1). For K-3-O-B-D-glu, 22 SNP sites were found, 7 of which
374 were significantly associated (Fig. 9B). In this context, transitions represent 27.27%, whereas
375 transversions account for 72.73% (Table S1). Regarding Q-3-O-B-D-gal, 104 SNP sites were identified,
376 with 36 being significantly associated (Fig. 9C). Here, transition mutations comprise 86.54%, and
377 transversion mutations 13.46% (Table S1). Lastly, for Q-3-O-B-D-glu, 75 SNP sites were noted, with 30
378 showing significant associations (Fig. 9D). Among these, transition mutation sites are 69.33%, and
379 transversion mutation sites are 30.67% (Table S1)
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Fig. 9. Manhattan plot of transcriptome-wide association analysis for flavonoid-related traits in hawk tea.
The Bonferroni-adjusted suggestive and significant thresholds are illustrated by black and gray dotted

horizontal lines (—loglO[p] values of 8 and 6, respectively.) The X-axis displays the chromosome
numbers.

4. DISCUSSION
4.1 Genetic variation of DBH, leaf traits, and flavonoid content of Hawk tea

Guizhou Province, situated in southwest China, is distinguished by its extensive distribution of
carbonate rocks and karst landforms (Zhang et al. 2022). This region stands out globally due to its
intricate geographical features that cultivate a variety of microclimates, potentially leading to variations
in plant characteristics and the concentration of active compounds (Xiong et al. 2023). Our research
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revealed that the differences in DBH across and within Guizhou regions were not statistically significant,
suggesting uniform growth patterns for hawk tea across the province. The diversity in leaf traits and
flavonoid content primarily stemmed from the distinct habitats, highlighting that hawk tea's growth and
development exhibit variation in response to the unique microclimatic conditions prevalent in Guizhou.
This observation aligns with the findings of Hsiung et al. (2017), who noted that minor geoclimatic shifts
can induce morphological and anatomical adaptations in leaves, facilitating plant survival and
establishment in novel environments. This has profound implications for our understanding of plant
survival, adaptation, and evolution. Factors such as temperature, sunlight intensity, and rainfall not only
serve as fundamental prerequisites for plant growth but also significantly influence the composition of
plant active components (Yu et al. 2015). Consequently, variations in the microclimate of different areas
may also reflect in the regional differences in flavonoid content.

4.2 Correlation between DBH, leaf traits, and four kinds of flavonoids

The correlation coefficient serves as a crucial statistical tool for quantifying the relationship
between two variables (Baak et al. 2020). In our analysis, significant positive correlations were observed
between both Q-3-O-B-D-gal and K-3-O-B-D-gal with LL, LA, LP, SPAD values, LS, and SLA.
Moreover, K-3-O-B-D-gal also showed a significant positive correlation with LW and LPL. Given that
the flavonol content influences the taste of hawk tea, our findings suggest that leaves with superior
quality are more desirable for processing hawk tea. The significant positive correlation of Q-3-O-B-D-gal,
Q-3-0-B-D-glu, and K-3-O-B-D-gal with DBH implies that DBH could serve as an indirect selection
criterion for hawk tea content, hinting at a link between flavonol accumulation and tree age (Wang et al.
2022). The interrelations among the four flavonol contents indicate that their accumulation in hawk tea is
contingent upon the planting environment and genetic factors. The genetic background determines the
capacity of plants to adapt to environmental conditions. Differences in metabolite production have been
observed between samples of the same species grown under varying environmental conditions. Specific
environmental factors have been identified as major sources of variation in intraspecies metabolism. For
instance, abiotic factors such as soil nutrients and water availability can induce significant differences in
the amount of compounds accumulated by plants in different regions (Liang et al. 2005). Plant traits
emerge from the prolonged interplay between genetic attributes and environmental conditions (Florez et
al. 2009). Optimal temperatures and altitudes can foster enhanced flavonol growth (Marotti et al. 2020).
The presence of genetic traits within and among plant populations could facilitate a quicker adaptation to
environmental shifts, allowing plants to survive, adapt, and evolve in new settings and consequently

produce various flavonol classes (Agostini-Costa 2022).
4.3 Second and third-generation sequencing data and SNP statistics

Both second and third-generation transcriptome sequencing techniques were utilized. By employing
the "three + two" model, the third-generation full-length transcriptome data was refined with the help of
parameter-free assembly data from the second generation, leading to the acquisition of high-quality
transcripts. The proportion of Q30 bases exceeded 94% (Fig. 2A), underscoring the high quality of the
sequencing data. Moreover, the mapping rates for the sequencing samples were predominantly above
94% (with the exception of KY'13), signifying excellent data fidelity. The completeness of the transcripts,
as assessed by BUSCO, reached an impressive 96.3%. The data generated were then aligned with the
genome of Litsea cubeba, a species closely related, achieving an average mapping rate of 85.37% and
identifying over 600,000 SNPs per sample (Fig. 3). In conclusion, the "three + two" model implemented
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has proven to be an effective strategy for generating high-quality transcripts for further analysis in this
study.

4.4 Analysis of population genetic structure of hawk tea

The determinants of association analysis outcomes are primarily governed by factors such as the
quantity of SNPs, the diversity and scale of population materials, and the choice of statistical techniques
(Kim et al. 2022). A notable challenge in association analysis is the potential for population structure to
spuriously link target traits with unrelated genes, elevating the rate of false positives (Iwata et al. 2007).
The efficacy of association analysis is maximized in populations with simple structures, where the
likelihood of erroneous links is minimized (Kaler et al. 2020). Conversely, intricate population structures
amplify linkage disequilibrium across the population, increasing the incidence of false associations
between traits and gene polymorphisms (Iwata et al. 2007). Implementing population structure analyses
can mitigate the rate of false associations, with strategies such as structural association analysis, principal
component analysis, genomic control, and multidimensional scaling addressing the impact of population
structure on association studies (Hu and Ziv 2008). Three methodologies were employed to examine the
genetic structure of hawk tea populations. The initial approach involved constructing a cluster model
from multi-locus genotype data, applying a mixed population model to depict genetic structure,
calculating the K value to represent allelic variation frequency types, and determining the potential
subpopulation count using the K value. The second approach constructed phylogenetic trees from allele
frequency data by evaluating genetic distances among individuals within the population. The third
approach utilized allele frequencies for genotype virtual variable transformation and PCA analysis to
map individual-level spatial sequencing relationships, facilitating the investigation of genetic structure
and differentiation at the population level. The outcomes from these three methodologies were consistent,
classifying 109 clones into five subgroups, thereby enabling their correlation with quantitative traits.

4.5 Association analysis of flavonols

The combined analysis of expression profiles, metabolic profiles, and transcriptome association
studies stands as a crucial approach for investigating quantitative traits within complex metabolic
systems (Robinson et al. 2007). In the case of hawk tea, flavonols represent the primary constituents.
Nonetheless, the intricate nature and extensive labor required for qualitative and quantitative assessments
have limited research into the SNP sites associated with anabolic metabolism and its genetic
underpinnings. Metabolic data, transcriptome expression profiles, and high-density variant findings
derived from "three + two" mode sequencing were leveraged in conducting a quantitative analysis of
four flavonols in 109 hawk tea samples from various regions. Through transcriptome association analysis,
SNPs linked to the biosynthesis of four flavonol glycosides were identified within the hawk tea
transcriptome. This discovery lays the groundwork for future efforts to pinpoint genes related to hawk
tea.

Initially, a population consisting of 109 individual trees from five regions in Guizhou, China, was
constructed for the study. Through deep sequencing, each sample exhibited over 600,000 SNPs (Fig. 3),
indicating high genetic diversity within this group. Transcriptome association analysis revealed a set of
candidate genes related to the content of four types of flavonols. Based on the correction for multiple
testing and setting the p-value threshold at p < 0.0001, 13 SNPs were identified as significant for
functional annotation (Table 3). Functional annotation showed that these genes mainly belong to

categories such as metabolic pathways, biosynthesis of secondary metabolites, and transport of

20



475
476
477
478
479
480
481
482

483
484
485
486
487
488

489
490
491
492
493

494

495
496
497
498
499
500
501
502
503
504
505
506
507

508

509
510
511
512
513
514
515

secondary metabolites. Notably, among the candidate genes associated with K-3-O-B-D-gal, one was
annotated as UGT74Bl1. Jiang (2018) et al. found that UGT genes might be related to the biosynthesis of
K-3-O-B-D-gal and K-3-O-B-D-glu, while Zhang (2021) et al. found that Q-3-O-B-D-glu has a certain
inhibitory effect on recombinant UGTIA subtypes in vitro. Moreover, as indicated by the data presented
in Table 5, the structural genes (cytochrome P450 enzyme, selenium-binding protein, glycoside
glycosyltransferase, phosphoenolpyruvate carboxylase, diacylglycerol acyltransferase) were found to be
directly engaged in established pathways governing flavonoid metabolism, thus holding pivotal
significance in flavonol biosynthesis.

A natural population comprising 109 samples characterized by a limited diversity of samples from
various regions and possessing a relatively complex structure, impacted the outcomes of the association
analysis, generally yielding a low association signal. Nonetheless, the considerable sequencing depth and
comprehensive transcriptome coverage achieved in this study, coupled with the high density and
reliability of the identified loci within the transcriptome, safeguarded the accuracy of the association

signals.

Although candidate genes associated with flavonol content were not further analysis and
verification in this study, it represents the inaugural effort to perform an association analysis of hawk tea
at the transcriptome level. This pioneering research holds significant implications for advancing our
understanding of the genes and genetic mechanisms underlying the important secondary metabolites in
hawk tea.

5. CONCLUSIONS

To summarize, results reveal no significant regional variation in DBH in hawk tea across Guizhou,
highlighting that the diversity in leaf traits and flavonol levels primarily originates from habitat
differences. Flavonol content emerged as a crucial determinant of hawk tea taste, exhibiting a notable
correlation with tree age. Leaves of superior quality, distinguished by their flavonol levels, proved optimal
for hawk tea production. Integrating second and third generation transcriptome sequencing technologies
enhances the generation of high-quality transcripts, proving to be an efficacious strategy. Through
transcriptome association analysis, thirteen significant SNPs were identified to link to flavonol content,
situated within gene regions. Notably, structural genes (including cytochrome P450 enzyme,
selenium-binding  protein, glycoside  glycosyltransferase,  phosphoenolpyruvate  carboxylase,
diacylglycerol acyltransferase) were pointed as integral components of known pathways directly
regulating flavonoid metabolism and playing pivotal roles in flavonol biosynthesis. The findings lay a
robust theoretical groundwork for the subsequent implementation of effective selection and breeding
strategies in hawk tea.
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