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Summary

This paper focuses on the issue of adaptive event-triggered leader-follower consensus
for multi-agents systems with output constraints and dead-zone inputs. By introduc-
ing an advanced nonlinear mapping technique to obtain the unconstrained auxiliary
variables of constrained system states, a new systems model without output con-
straints is constructed. Unlike existing schemes, the proposed strategy can be used in
both constrained and unconstrained situations without requiring changes to the con-
trol structure. Moreover, a state estimator is constructed to observe the unavailable
states. To conserve communication resources, an event-triggered rule with a dynamic
threshold is designed to decrease superfluous information transmissions from the
controller to the actuator. It is proven that all signals in closed-loop systems are ulti-
mately bounded and the system output does not violate the given constraint range.
At last, a numerical simulation example is provided to confirm the correctness and
efficiency of the proposed method.
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1 INTRODUCTION

In recent years, multi-agent systems (MASs) have become a hot topic in the control field due to their wide applications in
practical engineering, such as manufacturing1, robotics2, unmanned aerial vehicles3,4,5, formation control of spacecraft6, sen-
sor networks7,8, etc. Compared with single control systems, the multi-agent systems, which are composed of a finite number
of agents with perception, reasoning and decision-making capabilities, can perform large-scale complex tasks by designing a
suitable control protocol based on mutual communications between the agents, and it has outstanding characteristics, including
high reliability, resource sharing, good real-time performance, strong flexibility, and so on. For the multi-agent systems, a fun-
damental problem is how to design an appropriate control strategy such that each agent continuously adjusts its own behaviours
in light of information from a leader and its neighbour agents, and make the state of all agents eventually reach a identical
value or agreement, which is called as the consensus problem. Moreover, the consensus issue commonly can be classified into
leader-following consensus problem9 and leaderless consensus problem10. In11, a leader-following consensus tracking issue
was addressed for linear multi-agent systems with external disturbances. Considering a fact that most real systems contain non-
linearities, a distributed consensus scheme for nonlinear multi-agent systems was reported in12. It should be noticed that control
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signals are transmitted by using a periodic sampling way in the above consensus algorithms, which probably results in the exces-
sive consumption of both communication and computation resources of the network. In addition, some significant information
may be missed when communication resources are limited.

To deal with the above-mentioned problems, event-triggered control strategies have been reported in13,14,15, which is distinct
from the time-triggered control strategy. Specifically, control signals under the latter one are updated at the end or beginning
of each time interval (time-triggered control has the same trigger interval), whereas control signals of the former are updated
only when the deviation between the desired states and the current states violates a predefined threshold. In13, the superiority
of event-triggered control strategy was verified, where the triggered condition was set as a fixed threshold value. Note that
this event-triggered control strategy is not suitable for some practical cases especially when the present state deviates from the
expected state in a short time interval. In16, an improved event-triggered control strategy with dynamic triggered condition was
reported, which can adjust dynamically the time to update controller and enhance system performances. Nevertheless, the above
event-triggered control strategies are developed with the assumption that the closed-loop systems have input-to-state stability
with respect to the measurement errors, and to ensure this assumption is difficult. By designing simultaneously triggering events
and adaptive controllers, the authors in17 proposed an event-triggered fuzzy adaptive control strategy for nonlinear systems,
which successfully avoided such an assumption. Following the work17, several fruitful and crucial results were developed for
multi-agents systems18,19,20,21,22,23, which can well balance communication resources and system performances. For example,
in21, an adaptive event-triggered dynamic surface consensus control strategy was reported for uncertain multi-agents systems
with unknown external disturbances, and good tracking abilities was gained. In22, the filtering errors in21 were eliminated by
constructing a compensation signal.

On the other hand, due to the requirements of safety regulations and physical restrictions, the output constraints problem is
often encountered in real engineering, and poses a challenge to the design of controllers. A widely used approach to solving the
output constraints problem is the barrier Lyapunov function (BLF) strategy24,25,26,27,28,29, which creates a scalar function and
transforms the output constraints into error constraints. In fact, there exist two restrictions in the above-mentioned BLF-based
schemes: (I) These BLF-based schemes depend on the the feasibility conditions of virtual controllers, namely, such schemes
need to find a set of optimal parameters such that virtual controllers are maintained within predefined constraints areas, which
increases design difficulties. Besides, such optimal parameters may not exist when the predefined constraints areas are small.
(II) These schemes can only deal with constrained systems and cannot be directly applied to unconstrained ones. A specific
example is a robot sometimes working in a free (unconstrained) area and sometimes working in a narrow (constrained) realm,
requiring that both constrained and unconstrained cases need to be handled under a unified framework. To remove the feasibility
conditions, in30,31, two different types of mapping techniques were developed. By applying such techniques, the unconstrained
systems models of the original constrained systems are constructed, which reduced the design difficulties. However, the above
methods are still subject the restriction (II). Recently, some improved mapping techniques were developed in32,33, and the
proposed strategy can be applied to both constrained and unconstrained control systems without changing the control structure,
where the unconstrained case is considered as a constraint function tends to infinity. Although these methods are not limited by
restrictions (I) and (II), they are not applicable to multi-agent systems, due to the existence of interactions between agents and
between agents and leaders, which inspires this study.

Inspired by the above discussions, this paper investigates an adaptive event-triggered leader-following consensus control issue
for nonlinear multi-agent systems with unmeasured states and output constraints under undirected communication networks.
Firstly, a fuzzy state observer is constructed to estimate the unmeasurable state. Then, based on this observer, the nonlinear
mapping technique, the command filtering technique and the event-triggered mechanism are combined into the backstepping
design process such that the proposed control scheme is able to ensure that the system output remains within the given constraint
interval. Compared with the existing methods, the main contributions of this paper are concluded as follows:

(1) An adaptive event-triggered output-feedback consensus control scheme for nonlinear multi-agent systems is proposed,
which can handle both cases with and without output constraints under a unified framework and guarantee the system to be
eventually stable. Besides, an event-triggered mechanism with time-varying thresholds is introduced to balance communication
resources and system performances, and the assumption that the closed-loop systems have input-to-state stability with respect
to measurement errors is removed.

(2) Different from existing methods in literature28,29,30,31 for dealing with state constraints, an improved nonlinear mapping
method is used to solve the output constraint problem, which allows the designed controllers to be applied in both the cases
without altering the control structures and the feasibility conditions of virtual controllers are eliminated in this work.
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The remainder of this essay is organized as follows. In Section 2, the MASs system is described in detail, and the problem
under study is formulated. The state estimator, the adaptive event-based triggered consensus controller and the stability analysis
are given in Section 3. In Section 4 gives a Numerical simulation example. The important results are summarized in Section 5.

2 PROBLEM STATEMENT AND PRELIMINARIES

2.1 Undirected Graph Theory and Notations
To address the distributed consensus problems and model the interaction networks between agents and between agents and
leaders, a graph theory is used in this article similar to the work? . To facilitate, some symbols and basic graph theorems are
repeated here.

The undirected graph that contains one leader and N followers is set as 𝐺 = (𝑉 ,𝐸,Δ), where 𝑉 =
{

𝑉1, 𝑉2, ..., 𝑉𝑛
}

expresses
the nonempty set of nodes (agents), 𝐸 ⊆ V × V stands for an edge set of 𝐺, Δ =

[

𝑎𝑖,𝑗
]

∈ 𝑅𝑛×𝑛 represents a weighted adjacency
matrix. Because 𝐺 is an undirected graph, the edge

(

𝑉𝑖, 𝑉𝑗
)

∈ 𝐸 is equivalent to
(

𝑉𝑗 , 𝑉𝑖
)

∈ 𝐸. The aggregation of neighbors of
nodes 𝑖 can be denoted as 𝑁𝑖 =

{

𝑉𝑗|(𝑉𝑗 , 𝑉𝑖) ∈ 𝐸, 𝑖 ≠ 𝑗
}

. Each element of the matrix Δ can be specified as 𝑎𝑖,𝑗 = 0 or 𝑎𝑖,𝑗 = 1,
if 𝑎𝑖,𝑗 = 1, which mean that the information can be transferred from node 𝑖 to node 𝑗, otherwise 𝑎𝑖,𝑗 = 0. Obviously, it easily can
be get that 𝑎𝑖,𝑗 = 𝑎𝑗,𝑖 = 1 or 𝑎𝑖,𝑗 = 𝑎𝑗,𝑖 = 0 for undirected graph. By setting the degree matrix as𝐷 = 𝑑𝑖𝑎𝑔

{

𝑑1, 𝑑2, ...𝑑𝑛
}

∈ 𝑅𝑛×𝑛

and letting its each elements as 𝑑𝑖 =
𝑛
∑

𝑗=1
𝑎𝑖,𝑗 , then the graph Laplacian matrix can be defined as 𝐿 = 𝐷 − 𝐴. Moreover, the

pinning matrix is configured as 𝐵 = 𝑑𝑖𝑎𝑔
{

𝜇1, 𝜇2, ..., 𝜇𝑛
}

. The node 𝑖 (follower) can communicate with the leader when 𝜇𝑖 = 1,
if can not, then 𝜇𝑖 = 0.

2.2 System Descriptions
Consider the MASs including a leader and 𝑀 agents (followers), and each follower is described as

⎧

⎪

⎨

⎪

⎩

𝑥̇𝑖,𝑝 = 𝑥𝑖,𝑝+1 + 𝜙𝑖,𝑝(𝑥𝑖,𝑝) + 𝑑𝑖,𝑝
𝑥̇𝑖,𝑛 = 𝑚𝑖(𝑢𝑖) + 𝜙𝑖,𝑛(𝑥𝑖,𝑛) + 𝑑𝑖,𝑛
𝑦𝑖 = 𝑥𝑖,1, 𝑝 = 1, 2,… , 𝑛 − 1,

(1)

where 𝑖 = {1, 2, ...,𝑀} denotes the i-th agent and 𝑀 is the sum of the used agents, 𝑥𝑖,𝑛 =
[

𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑛
]𝑇 ∈ 𝑅𝑛 and system

states 𝑥𝑖,𝑝 is unavailable, and 𝑦𝑖 ∈ 𝑅 stands for the system output of the i-th agent. 𝜙𝑖,𝑝(∙) ∶ 𝑅𝑝 → 𝑅 represents the unknown and
smooth function, and 𝑑𝑖,𝑝 ∈ 𝑅 expresses the unknown exogenous disturbance. The control input 𝑢𝑖 is subjected to the nonlinear
asymmetric dead-zone 𝑚𝑖(𝑢𝑖). Following work34, the relation between 𝑚𝑖(𝑢𝑖) and 𝑢𝑖 is described as

𝑚𝑖(𝑢𝑖) =

⎧

⎪

⎨

⎪

⎩

𝜌𝑖,𝑟(𝑢𝑖 − ℎ𝑖,𝑟) if 𝑢𝑖 ≥ ℎ𝑖,𝑟
0 if −ℎ𝑖,𝑙 < 𝑢𝑖 < ℎ𝑖,𝑟
𝜌𝑖,𝑙(𝑢𝑖 + ℎ𝑖,𝑙) if 𝑢𝑖 ≤ −ℎ𝑖,𝑙

(2)

where ℎ𝑖,𝑙 > 0 and ℎ,𝑖𝑟 > 0 express the breakpoints, and 𝜌𝑖,𝑟 > 0 and 𝜌𝑖,𝑙 > 0 are respectively left and right slope characteristics
meeting 𝜌𝑖,𝑟 ≠ 𝜌𝑖,𝑙. To facilitate analysis, the dead-zone model can be rewritten as

𝑚𝑖(𝑢𝑖) = 𝜌𝑖(𝑡)𝑢𝑖(𝑡) +𝐻𝑖(𝑡) (3)

where

𝜌𝑖(𝑡) =
{

𝜌𝑖,𝑙 𝑢𝑖 ≤ 0
𝜌𝑖,𝑟 𝑢𝑖 > 0

(4)

and

𝐻𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

−𝜌𝑖,𝑟ℎ𝑖,𝑟 𝑢𝑖 ≥ ℎ𝑖,𝑟
−𝜌𝑖(𝑡)𝑢𝑖(𝑡) − ℎ𝑖,𝑙 < 𝑢𝑖 < ℎ𝑖,𝑟
𝜌𝑖,𝑙ℎ𝑖,𝑙 𝑢𝑖 ≤ −ℎ𝑖,𝑙

(5)
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Note that, there exits a constant 𝐻 𝑖 satisfying 𝐻𝑖(𝑡) ≤ 𝐻 𝑖, and 𝐻 𝑖 = 𝑚𝑎𝑥
{

𝜌𝑖,𝑙ℎ𝑖,𝑙, 𝜌𝑖,𝑟ℎ𝑖,𝑟
}

. Define 𝜌𝑖 = 𝑚𝑎𝑥
{

𝜌𝑖,𝑟, 𝜌𝑖,𝑙
}

and
𝜌
𝑖
= 𝑚𝑖𝑛

{

𝜌𝑖,𝑟, 𝜌𝑖,𝑙
}

. Also, from work34, we can find that

𝜌𝑖(𝑡)
𝜌
𝑖

= 1 + 𝑟𝑖(𝑡) (6)

where 𝑟𝑖(𝑡) is a positive piecewise function satisfying 𝑟𝑖(𝑡) ≤ 𝜌𝑖
𝜌
𝑖

− 1. Combining (3) and (6), the dead-zone model can be
reformulated as

𝑚𝑖(𝑢𝑖) = 𝜌
𝑖
(1 + 𝑟𝑖(𝑡))𝑢𝑖(𝑡) +𝐻𝑖(𝑡). (7)

In addition, the system state 𝑥𝑖,1 is limited to a certain zone, which is depicted as follows:

Ω𝑥𝑖,1 =
{

𝑥𝑖,1(𝑡) ∈ 𝑅 ∶ −𝐿𝑖,1(𝑡) < 𝑥𝑖,1(𝑡) < 𝐿𝑖,2(𝑡)
}

, ∀𝑡 > 0; (8)

where𝐿𝑖,1(𝑡) and𝐿𝑖,2(𝑡) are known functions, and represent the upper and lower boundaries of the system state 𝑥𝑖,1, respectively.
The initial condition of the system state 𝑥𝑖,1 meets the condition −𝐿𝑖,1(0) < 𝑥𝑖,1(0) < 𝐿𝑖,2(0).

The main objective of this paper is to design an adaptive consensus control strategy that can uniformly handle both the
situations with and without output constraints, which not only ensures that the system outputs are maintained within the limiting
intervals during the operation of system, but also balances control performances and communication resources of system. For
this, the following theorems and assumptions are essential.

Assumption 1. 𝑀 agents are connected and their communications protocol is fixed. Besides, in whole controlled systems, at

least one follower is able to communicate with the reference signal 𝑦𝑑(𝑡), i.e,
𝑀
∑

𝑖=1
𝜇𝑖 > 0

Assumption 2. The expected trajectory function 𝑦𝑑 and its derivative functions 𝑦̇𝑑 , 𝑦̈𝑑 are bounded and available. Besides, 𝑦𝑑
meets |

|

𝑦𝑑|| < min{|
|

𝐿𝑖,1|| , ||𝐿𝑖,2||} . Without loss of generality, there is a constant meeting Ω𝑑 = {(𝑦𝑑 , 𝑦̇𝑑 , 𝑦̈𝑑) ∶ 𝑦𝑑+ 𝑦̇𝑑+ 𝑦̈𝑑 ≤ 𝑌𝑐}.

Assumption 3. For the restriction functions for each agent, there exist constants 𝐿𝑖,1 > 0, 𝐿𝑖,2 > 0 to meet |
|

𝐿𝑖,1(𝑡)|| ≤ 𝐿𝑖,1 and
|

|

𝐿𝑖,2(𝑡)|| ≤ 𝐿𝑖,2, respectively.

Assumption 4. If the unknown function 𝜙𝑖,𝑝 (∙) meets the global Lipschitz condition, then, for ∀𝑥𝑖,𝑝 ∈ 𝑅𝑝 and ∀𝑥̂𝑖,𝑝 ∈ 𝑅𝑝, one
can find a constant 𝐻𝑖,𝑝 satisfying the following inequality

|

|

|

𝜙𝑖,𝑝(𝑥𝑖,𝑝) − 𝜙̂𝑖,𝑝(𝑥̂𝑖,𝑝)
|

|

|

≤ 𝐻𝑖,𝑝
‖

‖

‖

𝑥𝑖,𝑝 − 𝑥̂𝑖,𝑝
‖

‖

‖

, 𝑝 = 1, 2, ..., 𝑛 (9)

where ‖∙‖ stands for the two-norm of a vector, and 𝑥̂𝑖,𝑝 = [𝑥̂𝑖,1, 𝑥̂𝑖,2, ..., 𝑥̂𝑖,𝑝]𝑇 ∈ 𝑅𝑝 denotes the estimation of vector 𝑥𝑖,𝑝 =
[𝑥𝑖,1, 𝑥𝑖,2, ..., 𝑥𝑖,𝑝]𝑇 ∈ 𝑅𝑝.

Lemma 1 (35). Suppose that 𝑔(𝜒) denotes a smooth function defined on a compact set Ω. Then it can be approached by a fuzzy
logic system, which is expressed as

sup
𝜒∈Ω

|

|

|

𝑔(𝜒) − 𝜃𝑇𝜑(𝜒)||
|

≤ 𝛽 (10)

where 𝛽 denotes the approximation errors and it is a constant. Meanwhile, 𝜃 =
[

𝜃1, 𝜃2, ..., 𝜃𝑙
]𝑇 is the weighted vector and

𝜑(𝜒) =
[

𝑠1(𝜒), 𝑠2(𝜒), ...., 𝑠𝑙(𝜒)
]𝑇 ∕

𝑙
∑

𝑖=1
𝑠𝑖(𝜒) is the basis function vector, in which 𝑙 represents the amount of fuzzy rules and

𝑠𝑖(𝜒) expresses the Gaussian function. In general, the Gaussian function can be selected as 𝑠𝑖(𝜒) = exp(−(𝜒−𝜔𝑖)
𝑇 (𝜒−𝜔𝑖)

𝓁2
𝑖

), where

𝓁𝑖 is the breadth of the Gaussian function and 𝜔𝑖 =
[

𝜔𝑖,1, 𝜔𝑖,2, ..., 𝜔𝑖,𝑙
]𝑇 indicates the center vector.

Lemma 2 (33). If 𝑏 > 0 and 𝓁 ∈ 𝑅, then ones have
{

0 ≤ |𝓁| − 𝓁tanh(𝓁
𝑏
) ≤ 0.2785𝑏

0 ≤ 𝓁tanh(𝓁
𝑏
)

(11)
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2.3 Nonlinear Mapping Technique
To handle both the situations with and without output constraints uniformly in a comprehensive control framework, a new
nonlinear mapping approach provided in work33 is introduced as follows:

𝜉𝑖,1 =
𝐿𝑖,1𝑥𝑖,1

2(𝐿𝑖,1 + 𝑥𝑖,1)
+

𝐿𝑖,2𝑥𝑖,1
2(𝐿𝑖,2 − 𝑥𝑖,1)

. (12)

The discussions on function 𝜉𝑖,1 can be divided into the following two situations:
Situation 1 : Based on Assumption 3, if the system state 𝑥𝑖,1 meet 𝑥𝑖,1(0) ∈ Ω𝑥𝑖,1 , then we can deduce that 𝜉𝑖,1 → ±∞ when

𝑥𝑖,1 → −𝐿𝑖,1(𝑡) or 𝑥𝑖,1 → 𝐿𝑖,2(𝑡). In such case, the system output has not overstep its restriction intervals for all time.
Situation 2 : According to L’Hospital’s rule, if 𝐿𝑖,1(𝑡) = 𝐿𝑖,2(𝑡) → ∞, there existing

lim
𝐿𝑖,1=𝐿𝑖,2→∞

𝜉𝑖,1 =
𝐿𝑖,1𝑥𝑖,1

2(𝐿𝑖,1 + 𝑥𝑖,1)
+

𝐿𝑖,2𝑥𝑖,1
2(𝐿𝑖,2 − 𝑥𝑖,1)

= 𝑥𝑖,1, (13)

which mean that the auxiliary variable 𝜉𝑖,1 become the system state 𝑥𝑖,1 and the state 𝑥𝑖,1 is unconstrained.

Remark 1. The current control schemes dealing with output constraints in literatures31 relies on the boundedness of 𝐿𝑖,1(𝑡) and
𝐿𝑖,2(𝑡). If there existing 𝑡𝑐 such that 𝐿𝑖,1(𝑡𝑐) = 𝐿𝑖,2(𝑡𝑐) → ∞, then the above control schemes would fail, namely, these schemes
are only suitable for the constrained case. Nevertheless, the mapping approach provided in work33 allows 𝐿𝑖,1(𝑡) and 𝐿𝑖,2(𝑡) to
be unbounded, which can meet both the Situation 1 and 2 and thus the reported scheme in work33 can be applied to the systems
with and without output constraints while the control frame is not needed to be modified.

3 MAIN RESULTS

In this chapter, an adaptive consensus control strategy would be developed, which can be applied to the systems with and without
output constraints under a unified control framework. Firstly, considering the system state to be unavailable, a state observer
is designed. Then, by using a nonlinear mapping approach to construct auxiliary variables, the influence of output constraints
on the controller design is completely eliminated. In order to conserve communication resources, an event-triggered technique
with a relative threshold is designed to reduce the superfluous information transmissions. Finally, the related stability analysis
is given.

3.1 Design of State Estimator
In this subsection, a fuzzy state estimator (FSE) would be designed to observe the unmeasured system states by utilizing the
system output and FLSs, which frees the developed control scheme from the restriction that the system states must be measurable.
The details are as follows:

In the first place, following the works36, rewrite each agent model (1) as
⎧

⎪

⎨

⎪

⎩

𝑥̇𝑖,𝑝 = 𝑥𝑖,𝑝+1 + Δ𝜙𝑖,𝑝 + 𝜙𝑖,𝑝(𝑥̂𝑖,𝑝) + 𝛽𝑖,𝑝 + 𝑑𝑖,𝑝
𝑥̇𝑖,𝑛 = 𝑚(𝑢𝑖) + Δ𝜙𝑖,𝑛 + 𝜙𝑖,𝑛(𝑥̂𝑖,𝑛) + 𝛽𝑖,𝑛 + 𝑑𝑖,𝑛,
𝑦𝑖 = 𝑥𝑖,1

(14)

where Δ𝜙𝑖,𝑝 = 𝜙𝑖,𝑝(𝑥𝑖,𝑝) − 𝜙𝑖,𝑝(𝑥̂𝑖,𝑝), and 𝑥̂𝑖,𝑝 is the estimation of 𝑥𝑖,𝑝.
According to Lemma 1, using the FLSs as an approximator to approach the smooth function 𝜙𝑖,𝑝(𝑥̂𝑖,𝑝), one has

𝜙̂𝑖,𝑝(𝑥̂𝑖,𝑝|𝜃𝑖,𝑝) = 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝). (15)

Design the optimal parameter vectors 𝜃∗𝑖,𝑝 as

𝜃∗𝑖,𝑝 = argmin
𝜃𝑖,𝑝∈Ω𝑖,𝑝

[ sup
𝑥̂𝑖,𝑝∈Ξ𝑖,𝑝

|𝜙̂𝑖,𝑝(𝑥̂𝑖,𝑝|𝜃𝑖,𝑝) − 𝜙𝑖,𝑝(𝑥̂𝑖,𝑝)|]. (16)

where Ω𝑖,𝑝 and Ξ𝑖𝑝 are the bounded compact regions of 𝜃𝑖,𝑝 and 𝑥̂𝑖,𝑝, respectively. Define the approximation error of FLSs to
approach the function 𝜙𝑖,𝑝(𝑥̂𝑖,𝑝) as

𝛽𝑖,𝑝 = 𝜙𝑖,𝑝(𝑥̂𝑖,𝑝) − 𝜙̂𝑖,𝑝(𝑥̂𝑖,𝑝|𝜃
∗
𝑖,𝑝), |𝛽𝑖,𝑝| ≤ 𝛽∗𝑖,𝑝, (17)
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where 𝛽∗𝑖,𝑝 > 0 is a constant.
Then, the state observer can be built as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇̂𝑥𝑖,1 = 𝑥̂𝑖,2 + 𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) + 𝑙𝑖,1(𝑦𝑖 − 𝑥̂𝑖,1)
̇̂𝑥𝑖,𝑝 = 𝑥̂𝑖,𝑝+1 + 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝) + 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1)
̇̂𝑥𝑖,𝑛 = 𝑚(𝑢𝑖) + 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) + 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1),
𝑦̂𝑖 = 𝑥̂𝑖,1

(18)

where 𝑙𝑖,𝑝 > 0 is a constant.

By constructing the matrix 𝐴 =
⎡

⎢

⎢

⎣

−𝑙𝑖,1
𝐼𝑛−1

−𝑙𝑖,𝑛 0

⎤

⎥

⎥

⎦

and the vectors 𝐹𝑖 =
[

𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1), 𝜃
𝑇
𝑖,2𝜑𝑖,𝑝(𝑥̂𝑖,2), ..., 𝜃

𝑇
𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)

]𝑇 , 𝐿𝑖 =

[

𝑙𝑖,1, 𝑙𝑖,2, ..., 𝑙𝑖,𝑛
]𝑇 , 𝐵𝑖 =

[

0, 0, ...., 1
]𝑇 , 𝐶𝑖 =

[

1, 0, ..., 0
]𝑇 and 𝑥̂𝑖 =

[

𝑥̂𝑖,1, 𝑥̂𝑖,2, ..., 𝑥̂𝑖,𝑛
]𝑇 , one has

{ ̇̂𝑥𝑖 = 𝐴𝑖𝑥̂𝑖 +𝐾𝑖𝑦𝑖 + 𝐹𝑖 + 𝑏𝑖𝑚(𝑢𝑖)
𝑦̂𝑖 = 𝐶𝑇

𝑖 𝑥̂𝑖.
(19)

Note that, the selection about the parameter 𝑙𝑖,𝑝 should make the matrix 𝐴𝑖 to be a Hurwitz. Consequently, for an arbitrarily
given matrix 𝑄𝑇

𝑖 = 𝑄𝑖 > 0, there exists a matrix 𝑃 𝑇
𝑖 = 𝑃𝑖 > 0 to satisfy the equation 𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴𝑖 = −2𝑄𝑖.

By defining the observation errors as 𝑥̃𝑖 = 𝑥𝑖 − 𝑥̂𝑖 =
[

𝑥̃𝑖,1, 𝑥̃𝑖,2, ...., 𝑥̃𝑖,𝑛
]𝑇 , one has

̇̃𝑥𝑖 = 𝐴𝑖𝑥̃𝑖 + 𝜀𝑖 + Δ𝑓𝑖 + 𝐹𝑖 + 𝑑𝑖 (20)

where the vectors 𝛽𝑖 =
[

𝛽𝑖,1, 𝛽𝑖,2, ..., 𝛽𝑖,𝑛
]𝑇 , Δ𝜙𝑖 =

[

Δ𝜙𝑖,1,Δ𝜙𝑖,2, ....,Δ𝜙𝑖,𝑛
]𝑇 , 𝐹𝑖 =

[

𝜃𝑇𝑖,1𝜑𝑖,1(𝑥𝑖,1), 𝜃
𝑇
𝑖,2𝜑𝑖,2(𝑥̂𝑖,2), ..., 𝜃

𝑇
𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)

]𝑇

and 𝑑𝑖 =
[

𝑑𝑖,1, 𝑑𝑖,2, ..., 𝑑𝑖,𝑛
]𝑇 , and the variable 𝜃𝑖,𝑝 = 𝜃∗𝑖,𝑝 − 𝜃𝑖,𝑝.

Construct the Lyapunov function as

𝑉0 =
𝑁
∑

𝑖=1
𝑉𝑖,0 =

𝑁
∑

𝑖=1

1
2
𝑥̃𝑇𝑖 𝑃 𝑥̃𝑖 (21)

By differentiating 𝑉0, we can gain

𝑉̇𝑖,0 = 1
2
̇̃𝑥𝑖
𝑇𝑃 𝑥̃𝑖 +

1
2
𝑥̃𝑇𝑃 ̇̃𝑥𝑖

= − ̇̃𝑥𝑇𝑖 𝑄𝑖𝑥̃𝑖 + 𝑥̃
𝑇
𝑖 𝑃𝑖(𝜀𝑖 + Δ𝜙𝑖 + 𝐹𝑖 + 𝑑𝑖)

(22)

By applying the Young’s inequality and Assumption 4, we can achieve

𝑥̃𝑇𝑖 𝑃𝑖Δ𝜙𝑖 ≤
1
2
‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
+ 1

2
‖

‖

𝑃𝑖‖‖
2
‖

‖

Δ𝜙𝑖‖‖
2

≤ 1
2
‖

‖

𝑃𝑖‖‖
2(

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝
‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
) + 1

2
‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2 (23)

𝑥̃𝑇𝑖 𝑃𝑖𝜀𝑖 + 𝑥̃
𝑇𝑃𝑖𝑑𝑖 ≤

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

+ 1
2
‖

‖

𝑃𝑖‖‖
2
‖

‖

𝜀∗𝑖 ‖‖
2 + 1

2
‖

‖

𝑃𝑖‖‖
2
‖

‖

𝑑∗𝑖 ‖‖
2 (24)

𝑥̃𝑇𝑖 𝑃𝑖𝐹𝑖 ≤
1
2
‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
‖

‖

𝑃𝑖‖‖
2 + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝 (25)

where 𝛽∗𝑖 =
[

𝛽∗𝑖,1, 𝛽
∗
𝑖,2, ...., 𝛽

∗
𝑖,𝑛

]𝑇 and 𝑑∗𝑖 =
[

𝑑∗𝑖,1, 𝑑
∗
𝑖,2, ..., 𝑑

∗
𝑖,𝑛

]𝑇 . Meanwhile, According to definition of 𝜑𝑖,𝑝, it is true that 0 <
𝜑𝑇𝑖,𝑝𝜑𝑖,𝑝 ≤ 1.

Substituting (23)-(25) into (22), we have

𝑉̇𝑖,0 ≤ −𝑥̃𝑇𝑖 𝑄𝑖𝑥̃𝑖 + ( 3
2
+ 1

2
‖

‖

𝑃𝑖‖‖
2 + 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝)

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝

(26)
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In view of (21) and (26), we can obtain

𝑉̇0 ≤
𝑁
∑

𝑖=1
{−𝑥̃𝑇𝑖 𝑄𝑖𝑥̃𝑖 + ( 3

2
+ 1

2
‖

‖

𝑃𝑖‖‖
2 + 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝)

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝}

≤
𝑁
∑

𝑖=1
{−[𝜆min(𝑄𝑖) −

3
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝}

(27)

where −𝑥̃𝑇𝑖 𝑄𝑖𝑥̃𝑖 ≤ −𝜆min(𝑄𝑖)
‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
.

3.2 Controller Design
In this part, an adaptive controller would be constructed by using the backstepping techniques and the fuzzy state estimator.
To handle the output constraints, a nonlinear mapping approach is introduced. Meanwhile, an event-triggered mechanism with
dynamic threshold is utilized to conserve communication resources.

Before designing the controller, an auxiliary variable 𝜉𝑖,1 described in (11) would be employed. By differentiating 𝜉𝑖,1, we have

𝜉̇𝑖,1 = 𝜂𝑖,1𝑥̇𝑖,1 + 𝜂𝑖,2 (28)

where 𝜂𝑖,1 =
𝐿2

𝑖,1

2(𝐿𝑖,1+𝑥𝑖,1)2
+ 𝐿2

𝑖,2

2(𝐿𝑖,2−𝑥𝑖,1)2
and 𝜂𝑖,2 =

𝐿̇𝑖,1𝑥2 𝑖,1
2(𝐿𝑖,1+𝑥𝑖,1)

2 +
−𝐿̇𝑖,2𝑥2 𝑖,1

2(𝐿𝑖,2−𝑥𝑖,1)
2 .

In addition, the reference signal is required to perform same nonlinear mapping, which is shown as follows

𝑦𝑟 =
𝐿𝑖,1𝑦𝑑

2(𝐿𝑖,1 + 𝑦𝑑)
+

𝐿𝑖,2𝑦𝑑
2(𝐿𝑖,2 − 𝑦𝑑)

(29)

Differentiate 𝑦𝑟, one has
𝑦̇𝑟 = 𝜂𝑖,𝑑1𝑦̇𝑑 + 𝜂𝑖,𝑑2 (30)

where 𝜂𝑖,𝑑1 =
𝐿2

𝑖,1

2(𝐿𝑖,1+𝑦𝑑 )
2 +

𝐿2
𝑖,2

2(𝐿𝑖,2−𝑦𝑑 )
2 and 𝜂𝑖,𝑑2 =

𝐿̇𝑖,1𝑦2𝑑
2(𝐿𝑖,1+𝑦𝑑 )

2 +
−𝐿̇𝑖,2𝑦2𝑑

2(𝐿𝑖,2−𝑦𝑑 )
2 .

Based on 𝜉𝑖,1 and 𝑦𝑟, the detailed process of design is given here.
Step 1: Firstly, the following coordinate transformations are introduced

𝑠𝑖,1 =
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗(𝜉𝑖,1 − 𝜉𝑗,1) + 𝜇𝑖(𝜉𝑖,1 − 𝑦𝑟), (31)

𝑠𝑖,𝑝 = 𝑥̂𝑖,𝑝 − ℏ𝑖,𝑝, (32)
where ℏ𝑖,𝑝 will be explained later.

Calculating the derivative of 𝑠𝑖,1 gives

𝑠̇𝑖,1 =
(
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗 + 𝜇𝑖
)

𝜉̇𝑖,1 −
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗 𝜉̇𝑗,1 − 𝜇𝑖𝑦̇𝑟

= (𝑏𝑖 + 𝜇𝑖)
[

𝑥̃𝑖,2 + 𝜂𝑖,1
(

ℏ𝑖,2 + 𝛼𝑖,2 − 𝛼𝑖,2 + 𝑠𝑖,2

+𝜃𝑇𝑖,1𝜑𝑖,1
(

𝑥̂𝑖,1
)

+ 𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) + 𝜀𝑖,1 + 𝑑𝑖,1
)

+ 𝜂𝑖,2
]

−
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
[

𝜂𝑗,1
(

𝑥̂𝑗,2 + 𝑥̃𝑗,2 + 𝜀𝑗,1 + 𝑑𝑗,1

+𝜃𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1) + 𝜃
𝑇
𝑗,1𝜑𝑗,1(𝑥̂𝑗,1)

)

+ 𝜂𝑗,2
]

− 𝜇𝑖𝑦̇𝑟

(33)

where 𝑏𝑖 =
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗 , 𝜃∗𝑖,1 = 𝜃𝑖,1 − 𝜃𝑖,1 and 𝜃∗𝑗,1 = 𝜃𝑗,1 − 𝜃𝑗,1. In addition, 𝛼𝑖,2 is virtual controller, and ℏ𝑖,2 is an auxiliary variable

of first-order filter as follows:
𝜕𝑖,2ℏ̇𝑖,2 + ℏ𝑖,2 = 𝛼𝑖,2,

ℏ𝑖,2(0) = 𝛼𝑖,2(0)
(34)
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where 𝜕𝑖,2 is a constant, and the output and input signals of the filter are ℏ𝑖,2 and 𝛼𝑖,2, respectively. To eliminate the filtering
errors generated by filter, a compensation signal is constructed as follows:

𝑞̇𝑖,1 = −𝑔𝑖,1𝑞𝑖,1 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑞𝑖,2 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)(ℏ𝑖,2 − 𝛼𝑖,2) − 𝑟𝑖,1 tanh(𝑞𝑖,1) (35)

where 𝑟𝑖,1 and 𝑔𝑖,1 are positive constants.
Constructing the compensation tracking errors as 𝑣𝑖,1 = 𝑠𝑖,1 − 𝑞𝑖,1 and differentiating it, we have

𝑣̇𝑖,1 = (𝑏𝑖 + 𝜇𝑖)
[

𝜂𝑖,1
(

𝑠𝑖,2 + 𝑥̃𝑖,2 + ℏ𝑖,2 + 𝛼𝑖,2 − 𝛼𝑖,2 + 𝜀𝑖,1 + 𝑑𝑖,1

+𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1)
)

+ 𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) + 𝜂𝑖,2
]

−
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
[

𝜂𝑗,1
(

𝑥̂𝑗,2 + 𝑥̃𝑗,2

+𝜀𝑗,1 + 𝑑𝑗,1 + 𝜃𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1) + 𝜃
𝑇
𝑗,1𝜑𝑗,1(𝑥̂𝑗,1)

)

+ 𝜂𝑗,2
]

− 𝜇𝑖𝑦̇𝑟 −
[

−𝑔𝑖,1𝑞𝑖,1

+𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑞𝑖,2 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)(ℏ𝑖,2 − 𝛼𝑖,2) − 𝑟𝑖,1 tanh(𝑞𝑖,1)
]

= (𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1
[

𝑥̃𝑖,2 + 𝛼𝑖,2 + 𝑑𝑖,1 + 𝜀𝑖,1 +
𝜂𝑖,2
𝜂𝑖,1

+ 𝜃𝑇𝑖,1𝜑𝑖,1
(

𝑥̂𝑖,1
)

+ 𝜃𝑇𝑖,1𝜑𝑖,1
(

𝑥̂𝑖,1)
]

−
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗𝜂𝑗,1
[

𝑥̂𝑗,2 + 𝑥̃𝑗,2 + 𝑑𝑗,1 + 𝜀𝑗,1 +
𝜂𝑗,2
𝜂𝑗,1

+ 𝜃𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1)

+𝜃𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1)
]

− 𝜇𝑖𝑦̇𝑟 + 𝑔𝑖,1𝑞𝑖,1 + 𝑟𝑖,1 tanh(𝑞𝑖,1) + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑣𝑖,2

(36)

Determine the Lyapunov-function as

𝑉1 = 𝑉0 +
1
2
[
𝑁
∑

𝑖=1
(𝑣2𝑖,1 +

1
𝜆𝑖,1

𝜃𝑇𝑖,1𝜃𝑖,1 +
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
𝛽𝑗,1

𝜃𝑇𝑗,1𝜃𝑗,1)] (37)

With the help of (36), the differential function of 𝑉1 can be expressed as

𝑉̇1 = 𝑉̇0 +
𝑁
∑

𝑖=1
𝑣𝑖,1{(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1

[

𝛼𝑖,2 + 𝑥̃𝑖,2 + 𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1)

+𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) + 𝜀𝑖,1 + 𝑑𝑖,1 +
𝜂𝑖,2
𝜂𝑖,1

]

−
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗𝜂𝑗,1
[

𝑥̂𝑗,2

+𝑥̃𝑗,2 + 𝜀𝑗,1 + 𝑑𝑗,1 +
𝜂𝑗,2
𝜂𝑗,1

+ 𝜃𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1) + 𝜃
𝑇
𝑗,1𝜑𝑗,1(𝑥̂𝑗,1)

]

−𝜇𝑖𝑦̇𝑟 + 𝑔𝑖,1𝑞𝑖,1 + 𝑟𝑖,1 tanh(𝑞𝑖,1) + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑣𝑖,2}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,1
𝜃𝑇𝑖,1𝜃̇𝑖,1 −

𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
𝛽𝑗,1
𝜃𝑇𝑗,1𝜃̇𝑗,1

(38)

By applying the Young’s inequality, the following inequalities are gained

(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1(𝑥̃𝑖,2 + 𝑥̃𝑗,2) ≤ [(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1]
2 + 1

2
(𝑥̃2𝑖,2 + 𝑥̃

2
𝑗,2) (39)

(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1(𝜀𝑖,1 + 𝜀𝑗,1) ≤ [(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1]
2 + 1

2
(‖
‖

𝜀𝑖,1‖‖
2 + ‖

‖

‖

𝜀𝑗,1
‖

‖

‖

2
) (40)

(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1(𝑑𝑖,1 + 𝑑𝑗,1) ≤
1
2
(‖
‖

𝑑𝑖,1‖‖
2 + ‖

‖

‖

𝑑𝑗,1
‖

‖

‖

2
) + [(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1]

2 (41)

(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1𝑟𝑖,1 tanh(𝑞𝑖,1) ≤
1
2
[(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1]

2 + 1
2
𝑟2𝑖,1 (42)
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Substituting (39)-(42) into (38), we can get

𝑉̇1 ≤ 𝑉̇0 +
𝑁
∑

𝑖=1
𝑣𝑖,1

{

(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1
[

𝛼𝑖,2 + 𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) + 𝜃
𝑇
𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) +

𝜂𝑖,2
𝜂𝑖,1

]

−
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗𝜂𝑗,1
[

𝑥̂𝑗,2 + 𝜃∗𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1) +
𝜂𝑗,2
𝜂𝑗,1

]

− 𝜇𝑖𝑦̇𝑟 + 𝑔𝑖,1𝑞𝑖,1 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑣𝑖,2
}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,1
𝜃𝑇𝑖,1𝜃̇𝑖,1 −

𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
𝛽𝑗,1
𝜃𝑇𝑗,1𝜃̇𝑗,1 +

𝑁
∑

𝑖=1

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1𝑣2𝑖,1

+
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
+ ‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

1
2
𝑟2𝑖,1

≤ 𝑉̇0 +
𝑁
∑

𝑖=1
𝑣𝑖,1

{

(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1
[

𝛼𝑖,2 + 𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) +
𝜂𝑖,2
𝜂𝑖,1

]

−
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗𝜂𝑗,1[𝑥̂𝑗,2 + 𝜃𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1) +
𝜂𝑗,2
𝜂𝑗,1

] − 𝜇𝑖𝑦̇𝑟 + 𝑔𝑖,1𝑞𝑖,1 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑣𝑖,2
}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,1
𝜃𝑇𝑖,1

(

𝜃̇𝑖,1 − 𝜆𝑖,1(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1𝜑𝑖,1(𝑥̂𝑖,1)
)

−
𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
𝛽𝑗,1
𝜃𝑇𝑗,1

(

𝜃̇𝑗,1 − 𝛽𝑗,1𝜂𝑗,1𝑣𝑖,1𝜑𝑗,1(𝑥̂𝑗,1)
)

+
𝑁
∑

𝑖=1

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1𝑣2𝑖,1 +
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
+ ‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

1
2
𝑟2𝑖,1

(43)

where 𝑑∗∗,1 =
[

𝑑∗1,1, 𝑑
∗
2,1, ...., 𝑑

∗
𝑁,1

]𝑇 and 𝜀∗∗,1 =
[

𝜀∗1,1, 𝜀
∗
2,1, ...., 𝜀

∗
𝑁,1

]𝑇 .
If the virtual controller is built as

𝛼𝑖,2 = − 1
(𝑏𝑖+𝜇𝑖)𝜂𝑖,1

𝑔𝑖,1𝑠𝑖,1 − 𝜃𝑇𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) −
𝜂𝑖,2
𝜂𝑖,1

+ 1
(𝑏𝑖+𝜇𝑖)𝜂𝑖,1

𝜇𝑖𝑦̇𝑟

+ 1
(𝑏𝑖+𝜇𝑖)𝜂𝑖,1

(
∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗𝜂𝑗,1
[

𝜃𝑇𝑗,1𝜑𝑗,1(𝑥̂𝑗,1) +
𝜂𝑗,2
𝜂𝑗,1

+ 𝑥̂𝑗,2
]) (44)

then, 𝑉̇1 can become as

𝑉̇1 ≤ 𝑉̇0 +
𝑁
∑

𝑖=1
𝑣𝑖,1

{

−𝑔𝑖,1𝑣𝑖,1 +
7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1𝑣𝑖,1 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑣𝑖,2
}

+
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
+ ‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

1
2
𝑟2𝑖,1

−
𝑁
∑

𝑖=1

1
𝜆𝑖,1
𝜃𝑇𝑖,1(𝜃̇𝑖,1 − 𝜆𝑖,1(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1𝜑𝑖,1(𝑥̂𝑖,1))

−
𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
𝛽𝑗,1
𝜃𝑇𝑗,1(𝜃̇𝑗,1 − 𝛽𝑗,1𝜂𝑗,1𝑣𝑖,1𝜑𝑗,1(𝑥̂𝑗,1))

(45)

Constructing the following adaptive laws

𝜃̇𝑖,1 = 𝜆𝑖,1
(

(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1𝜑𝑖,1(𝑥̂𝑖,1) − 𝛾𝑖,1𝜃𝑖,1
)

(46)

𝜃̇𝑗,1 = −𝛽𝑗,1
(

𝜂𝑗,1𝑣𝑗,1𝜑𝑗,1 − 𝜎𝑗,1𝜃𝑗,1
)

(47)
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and substituting (46) and (47) into (45) , we can gain

𝑉̇1 ≤ 𝑉̇0 +
𝑁
∑

𝑖=1
𝑣𝑖,1

{

−𝑔𝑖,1𝑣𝑖,1 +
7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1𝑣𝑖,1 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑣𝑖,2
}

+
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

1
2
𝑟2𝑖,1

−
𝑁
∑

𝑖=1

1
𝜆𝑖,1
𝜃𝑇𝑖,1

(

𝜃̇𝑖,1 − 𝜆𝑖,1(𝑏𝑖 + 𝜇𝑖)𝜂𝑖,1𝑣𝑖,1𝜑𝑖,1(𝑥̂𝑖,1)
)

−
𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑎𝑖,𝑗
𝛽𝑗,1
𝜃𝑇𝑗,1

(

𝜃̇𝑗,1 − 𝛽𝑗,1𝜂𝑗,1𝑣𝑖,1𝜑𝑗,1(𝑥̂𝑗,1)
)

≤
𝑁
∑

𝑖=1

{

−[𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝

}

+
𝑁
∑

𝑖=1
𝑣𝑖,1{−(𝑔𝑖,1 −

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1)𝑣𝑖,1 + 𝜂𝑖,1(𝑏𝑖 + 𝜇𝑖)𝑣𝑖,2}

+
𝑁
∑

𝑖=1
{‖‖
‖

𝑥̃𝑖
‖

‖

‖

2
+ ‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2
} +

𝑁
∑

𝑖=1

1
2
𝑟2𝑖,1

+
𝑁
∑

𝑖=1
𝛾𝑖,1𝜃𝑇𝑖,1𝜃𝑖,1 +

𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗𝜃𝑇𝑗,1𝜃𝑗,1

(48)

Step p (2 ≤ p ≤ n−1): From (17) and (31), we can acquire the derivatives of 𝑠𝑖,𝑝
𝑠̇𝑖,𝑝 = ̇̂𝑥𝑖,𝑝 − ℏ̇𝑖,𝑝

= 𝑥̂𝑖,𝑝+1 + 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1) + 𝜃𝑇𝑖,𝑝𝑆𝑖,𝑝(𝑥̂𝑖,𝑝) − ℏ̇𝑖,𝑝
= ℏ𝑖,𝑝+1 + 𝑠𝑖,𝑝+1 + 𝛼𝑖,𝑝+1 − 𝛼𝑖,𝑝+1 + 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1) + 𝜃𝑇𝑖,𝑝𝑆𝑖,𝑝(𝑥̂𝑖,𝑝) − ℏ̇𝑖,𝑝

(49)

By introducing the following filter similar to Step 1, the specific calculations about the derivative of 𝛼𝑖,𝑝 are avoided

𝜕𝑖,𝑝ℏ̇𝑖,𝑝 + ℏ𝑖,𝑝 = 𝛼𝑖,𝑝,
ℏ𝑖,𝑝(0) = 𝛼𝑖,𝑝(0),

(50)

where 𝜕𝑖,𝑝 > 0 is a constant, and the output and input signals of the filter are ℏ𝑖,𝑝 and 𝛼𝑖,𝑝, respectively. Besides, To remove the
impact caused by the filter, the following compensation signal is designed

𝑞̇𝑖,𝑝 = ℏ𝑖,𝑝+1 − 𝑔𝑖,𝑝𝑞𝑖,𝑝 − 𝑞𝑖,𝑝−1 + 𝑞𝑖,𝑝+1 − 𝛼𝑖,𝑝+1 − 𝑟𝑖,𝑝 tanh(𝑞𝑖,𝑝) (51)

By combining (49) and (51), the compensation tracking error can be formulated as

𝑣𝑖,𝑝 = 𝑠𝑖,𝑝 − 𝑞𝑖,𝑝 (52)

Differentiating 𝑣𝑖,𝑝, results in

𝑣̇𝑖,𝑝 = 𝑠̇𝑖,𝑝 − 𝑞̇𝑖,𝑝
= 𝑠𝑖,𝑝+1 + ℏ𝑖,𝑝+1 + 𝛼𝑖,𝑝+1 − 𝛼𝑖,𝑝+1 + 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝)
+𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1) − ℏ̇𝑖,𝑝 −

[

−𝑔𝑖,𝑝𝑞𝑖,𝑝 + ℏ𝑖,𝑝+1 − 𝛼𝑖,𝑝+1
−𝑞𝑖,𝑝−1 + 𝑞𝑖,𝑝+1 − 𝑟𝑖,𝑝 tanh(𝑞𝑖,𝑝)

]

= 𝑣𝑖,𝑝+1 + 𝛼𝑖,𝑝+1 + 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1) + 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝)
+𝑞𝑖,𝑝−1 + 𝑔𝑖,𝑝𝑞𝑖,𝑝 + 𝑟𝑖,𝑝 tanh(𝑞𝑖,𝑝) − ℏ̇𝑖,𝑝

(53)

The Lyapunov function is selected as

𝑉𝑝 = 𝑉𝑝−1 +
1
2
[

𝑁
∑

𝑖=1
(𝑣2𝑖,𝑝 +

1
𝜆𝑖,𝑝

𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝)
]

(54)



AUTHOR ONE ET AL 11

Computing its derivative, we have

𝑉̇𝑝 = 𝑉̇𝑝−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑝𝑣̇𝑖,𝑝 +

𝑁
∑

𝑖=1

1
𝜆𝑖,𝑝
𝜃𝑇𝑖,𝑝𝜃̇𝑖,𝑝

= 𝑉̇𝑝−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑝

{

𝑣𝑖,𝑝+1 + 𝛼𝑖,𝑝+1 + 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝) + 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1)

+𝑔𝑖,𝑝𝑞𝑖,𝑝 + 𝑞𝑖,𝑝−1 + 𝑟𝑖,𝑝 tanh(𝑞𝑖,𝑝) − ℏ̇𝑖,𝑝 + 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝)

−𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝)
}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑝
𝜃𝑇𝑖,𝑝𝜃̇𝑖,𝑝

= 𝑉̇𝑝−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑝

{

𝑣𝑖,𝑝+1 + 𝛼𝑖,𝑝+1 + 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝) + 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1)

+𝑔𝑖,𝑝𝑞𝑖,𝑝 + 𝑞𝑖,𝑝−1 + 𝑟𝑖,𝑝 tanh(𝑞𝑖,𝑝) − ℏ̇𝑖,𝑝 − 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝)
}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑝
𝜃𝑇𝑖,𝑝(𝜃̇𝑖,𝑝 − 𝜆𝑖,𝑝𝑣𝑖,𝑝𝑆𝑖,𝑝(𝑥̂𝑖,𝑝))

(55)

By utilizing Yong’s inequality, we can find that

𝑣𝑖,𝑝𝑟𝑖,𝑝 tanh(𝑞𝑖,𝑝) ≤
1
2
𝑣2𝑖,𝑝 +

1
2
𝑟2𝑖,𝑝 (56)

𝑣𝑖,𝑝(−𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝)) ≤
1
2
𝑣2𝑖,𝑝 +

1
2
𝜃2𝑖,𝑝 (57)

With the assist of (56) and (57), we can achieve

𝑉̇𝑝 ≤ 𝑉̇𝑝−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑝

{

𝑣𝑖,𝑝+1 + 𝛼𝑖,𝑝+1 + 𝑖, 𝑝𝑇𝜑𝑖,𝑝(𝑥̂𝑖,𝑝) + 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1)

+𝑔𝑖,𝑝𝑞𝑖,𝑝 + 𝑞𝑖,𝑝−1 − ℏ̇𝑖,𝑝 +
1
2
𝑣2𝑖,𝑝 +

1
2
𝑟2𝑖,𝑝 +

1
2
𝑣2𝑖,𝑝 +

1
2
𝜃2𝑖,𝑝

}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑝
𝜃𝑇𝑖,𝑝(𝜃̇𝑖,𝑝 − 𝜆𝑖,𝑝𝑣𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝))

(58)

By constructing the following virtual controller and adaptive law

𝛼𝑖,𝑝+1 = −𝑠𝑖,𝑝−1 − 𝑔𝑖,𝑝𝑠𝑖,𝑝 − 𝑙𝑖,𝑝(𝑦𝑖 − 𝑥̂𝑖,1) + ℏ̇𝑖,𝑝 − 𝜃𝑇𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝), (59)

𝜃̇𝑖,𝑝 = 𝜆𝑖,𝑝𝑣𝑖,𝑝𝜑𝑖,𝑝(𝑥̂𝑖,𝑝) − 𝜆𝑖,𝑝𝛾𝑖,𝑝𝜃𝑖,𝑝. (60)
and substitute them into (58), we have

𝑉̇𝑝 ≤ 𝑉̇𝑝−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑝

{

𝑣𝑖,𝑝+1 − 𝑔𝑖,𝑝𝑣𝑖,𝑝 + 𝑣𝑖,𝑝−1 +
1
2
𝑣2𝑖,𝑝

+ 1
2
𝑟2𝑖,𝑝 +

1
2
𝑣2𝑖,𝑝 +

1
2
𝜃2𝑖,𝑝

}

−
𝑁
∑

𝑖=1
𝜃𝑇𝑖,𝑝𝛾𝑖,𝑝𝜃𝑖,𝑝

≤
𝑁
∑

𝑖=1

{

−
[

𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝

]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝

}

−
𝑁
∑

𝑖=1
(𝑔𝑖,1 −

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1)𝑣2𝑖,1 −
𝑁
∑

𝑖=1
[
𝑝
∑

𝑚=2
(𝑔𝑖,𝑚 − 1)𝑣2𝑖,𝑚] +

𝑁
∑

𝑖=1
𝑣𝑖,𝑝𝑣𝑖,𝑝+1}

+
𝑁
∑

𝑖=1

{[

− 𝛾𝑖,1
2
‖

‖

𝜃𝑖,1‖‖
2 − 𝛾𝑖,2

2
‖

‖

𝜃𝑖,2‖‖
2 − 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

[ 𝛾𝑖,1
2
‖

‖

‖

𝜃∗𝑖,1
‖

‖

‖

2
+ 𝛾𝑖,2

2
‖

‖

‖

𝜃∗𝑖,2
‖

‖

‖

2
+ 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃∗𝑗,1
‖

‖

‖

2]}

+
𝑁
∑

𝑖=1
{‖‖
‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2
} +

𝑁
∑

𝑖=1

1
2
𝑟2𝑖,1 +

𝑁
∑

𝑖=1
𝜃𝑇𝑖,𝑝𝛾𝑖,𝑝𝜃𝑖,𝑝 +

𝑁
∑

𝑖=1
(
𝑝
∑

𝑚=2

1
2
𝑟2𝑖,𝑚 + 1

2
𝜃2𝑖,𝑚)

(61)

Using the Young’s inequality again, there are

𝛾𝑖,𝑝𝜃
𝑇
𝑖,𝑝𝜃𝑖,𝑝 ≤

1
2
𝛾𝑖,𝑝

‖

‖

‖

𝜃∗𝑖,𝑝
‖

‖

‖

2
− 1

2
𝛾𝑖,𝑝

‖

‖

‖

𝜃𝑖,𝑝
‖

‖

‖

2
. (62)
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Simplify 𝑉̇𝑝 yields

𝑉̇𝑝 ≤
𝑁
∑

𝑖=1

{

−
[

𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝

]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝

}

−
𝑁
∑

𝑖=1

{(

𝑔𝑖,1

− 7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1
)

𝑣2𝑖,1
}

−
𝑁
∑

𝑖=1
[
𝑝
∑

𝑚=2
(𝑔𝑖,𝑚 − 1)𝑣2𝑖,𝑚] +

𝑁
∑

𝑖=1
𝑣𝑖,𝑝𝑣𝑖,𝑝+1

+
𝑁
∑

𝑖=1

[

− 𝛾𝑖,1
2
‖

‖

𝜃𝑖,1‖‖
2 −

𝑝−1
∑

𝑚=2

𝛾𝑖,𝑚
2
‖

‖

𝜃𝑖,𝑚‖‖
2 − 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

[ 𝛾𝑖,1
2
‖

‖

‖

𝜃∗𝑖,1
‖

‖

‖

2
+

𝑝−1
∑

𝑚=2

𝛾𝑖,𝑚
2
‖

‖

‖

𝜃∗𝑖,𝑚
‖

‖

‖

2
+ 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃∗𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

1
2
𝑟2𝑖,1 +

𝑁
∑

𝑖=1

[

𝑝
∑

𝑚=2
( 1
2
𝑟2𝑖,𝑚 + 1

2
𝜃2𝑖,𝑚)

]

+
𝑁
∑

𝑖=1

[

− 1
2
𝛾𝑖,𝑝

‖

‖

‖

𝜃𝑖,𝑝
‖

‖

‖

2
+ 1

2
𝛾𝑖,𝑝

‖

‖

‖

𝜃∗𝑖,𝑝
‖

‖

‖

2]

≤
𝑁
∑

𝑖=1

{

−
[

𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝

]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝

}

−
𝑁
∑

𝑖=1
(𝑔𝑖,1 −

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1)𝑣2𝑖,1 −
𝑁
∑

𝑖=1
[
𝑝
∑

𝑚=2
(𝑔𝑖,𝑚 − 1)𝑣2𝑖,𝑚] +

𝑁
∑

𝑖=1
𝑣𝑖,𝑝𝑣𝑖,𝑝+1

+
𝑁
∑

𝑖=1

[

− 𝛾𝑖,1
2
‖

‖

‖

𝜃𝑖,1
‖

‖

‖

2
−

𝑝
∑

𝑚=2

𝛾𝑖,𝑚
2
‖

‖

‖

𝜃𝑖,𝑚
‖

‖

‖

2
− 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

[

𝑝
∑

𝑚=1

𝛾𝑖,1
2
‖

‖

‖

𝜃∗𝑖,1
‖

‖

‖

2
+ 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃∗𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

𝑝
∑

𝑚=1

1
2
𝑟2𝑖,𝑚 +

𝑁
∑

𝑖=1

𝑝
∑

𝑚=2

1
2
𝜃2𝑖,𝑚

(63)

Step n: In this final step, an adaptive controller suitable for both with and without output constraints would be established,
in which an event-triggered control strategy with relative threshold is applied to decrease the communication from controller to
actuators. Finding the derivative of 𝑠𝑖,𝑛 = 𝑥̂𝑖,𝑛 − ℏ𝑖,𝑛 yields

𝑠̇𝑖,𝑛 = ̇̂𝑥𝑖,𝑛 − ℏ̇𝑖,𝑛 = 𝑚𝑖(𝑢𝑖) + 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1) + 𝜃𝑇𝑖,𝑛𝑆𝑖,𝑛(𝑥̂𝑖,𝑛) − ℏ̇𝑖,𝑛 (64)

Construct the following compensation signal

𝑞̇𝑖,𝑛 = −𝑔𝑖,𝑛𝑞𝑖,𝑛 − 𝑞𝑖,𝑛−1 − 𝑟𝑖,𝑛 tanh(𝑞𝑖,𝑛) (65)

Considering (64) and (65) results in the following compensation tracking signal

𝑣𝑖,𝑛 = 𝑠𝑖,𝑛 − 𝑞𝑖,𝑛 (66)

and its differentiation can be obtained
𝑣̇𝑖,𝑛 = 𝑠̇𝑖,𝑛 − 𝑞̇𝑖,𝑛

= 𝑚𝑖(𝑢𝑖) + 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) + 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1) − ℏ̇𝑖,𝑛
−
[

−𝑔𝑖,𝑛𝑞𝑖,𝑛 − 𝑞𝑖,𝑛−1 − 𝑟𝑖,𝑛 tanh(𝑞𝑖,𝑛)
]

= 𝑚𝑖(𝑢𝑖) + 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) + 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1)
+𝑔𝑖,𝑛𝑞𝑖,𝑛 + 𝑞𝑖,𝑛−1 + 𝑟𝑖,𝑛 tanh(𝑞𝑖,𝑛) − ℏ̇𝑖,𝑛

(67)

The Lyapunov function is designed as

𝑉𝑛 = 𝑉𝑛−1 +
1
2
[
𝑁
∑

𝑖=1
(𝑣2𝑖,𝑛 +

1
𝜆𝑖,𝑛

𝜃𝑇𝑖,𝑛𝜃
)
𝑖,𝑛] (68)
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Calculating the derivative of 𝑉𝑛 leads to

𝑉̇𝑛 = 𝑉̇𝑛−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑛𝑣̇𝑖,𝑛 −

𝑁
∑

𝑖=1

1
𝜆𝑖,𝑛
𝜃𝑇𝑖,𝑛𝜃̇𝑖,𝑛

= 𝑉̇𝑛−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑛

{

𝑚𝑖(𝑢𝑖) + 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) + 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1) + 𝑔𝑖,𝑛𝑞𝑖,𝑛

+𝑞𝑖,𝑛−1 + 𝑟𝑖,𝑛 tanh(𝑞𝑖,𝑛) − ℏ̇𝑖,𝑛
}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑛
𝜃𝑇𝑖,𝑛𝜃̇𝑖,𝑛

= 𝑉̇𝑛−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑛

{

𝑚𝑖(𝑢𝑖) + 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) + 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1)

+𝑔𝑖,𝑛𝑞𝑖,𝑛 + 𝑞𝑖,𝑛−1 + 𝑟𝑖,𝑛 tanh(𝑞𝑖,𝑛) − ℏ̇𝑖,𝑛 − 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)
}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑛
𝜃𝑇𝑖,𝑛

(

𝜃̇𝑖,𝑛 − 𝜆𝑖,𝑛𝑣𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)
)

(69)

In aid of the Young’s inequality, we can deduce that

𝑣𝑖,𝑛𝑟𝑖,𝑛 tanh(𝑞𝑖,𝑛) ≤
1
2
𝑣2𝑖,𝑛 +

1
2
𝑟2𝑖,𝑛 (70)

𝑣𝑖,𝑛(−𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)) ≤
1
2
𝑣2𝑖,𝑛 +

1
2
𝜃2𝑖,𝑛 (71)

Considering the existence of input dead-zone model, there exists

𝑚𝑖(𝑢𝑖) = 𝜌
𝑖
(1 + 𝑟𝑖(𝑡))𝑢𝑖(𝑡) +𝐻𝑖(𝑡) ≤ 𝜌

𝑖
𝑢𝑖 + (𝜌𝑖 − 𝜌𝑖)Υ𝑖 +𝐻 𝑖 (72)

By replacing (70)-(72) into (69), 𝑉̇𝑛 can be simplified to

𝑉̇𝑛 ≤ 𝑉̇𝑛−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑛

{

𝜌
𝑖
𝑢𝑖 + (𝜌𝑖 − 𝜌𝑖)Υ𝑖 +𝐻 𝑖 + 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)

+𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1) + 𝑔𝑖,𝑛𝑞𝑖,𝑛 + 𝑞𝑖,𝑛−1 − ℏ̇𝑖,𝑛 + 𝑣𝑖,𝑛

+ 1
2
𝑟2𝑖,𝑛 +

1
2
𝜃2𝑖,𝑛

}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑛
𝜃𝑇𝑖,𝑛(𝜃̇𝑖,𝑛 − 𝜆𝑖,𝑛𝑣𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)

(73)

The event-based triggered adaptive controller with time-varying threshold is designed as follows

𝜔𝑖 = −(1 + 𝑞𝑖)[𝛼𝑖,𝑛 tanh(
𝑣𝑖,𝑛𝛼𝑖,𝑛
𝜍𝑖

) + 𝑧𝑖 tanh(
𝑣𝑖,𝑛𝑚̄
𝜍𝑖

)] (74)

𝑢𝑖 = 𝜔𝑖,∀𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+1
)

(75)
𝑡𝑘+1 = inf{𝑡 ∈ 𝑅| |

|

𝜔𝑖 − 𝑢𝑖|| ≥ 𝑞𝑖 ||𝑢𝑖|| + 𝑧𝑖} (76)
where 𝛼𝑖,𝑛 is actual controller and 𝛼𝑖,𝑛 = − 1

𝜌
𝑖

(

𝑔𝑖,𝑛𝑠𝑖,𝑛 − 𝑠𝑖,𝑛−1 − 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1) + ℏ̇𝑖,𝑛 − 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛)
)

− 1
𝜌
𝑖

(

𝜌𝑖 − 𝜌𝑖
)

Υ𝑖 −
1
𝜌
𝑖

𝐻 𝑖, 𝜍𝑖 > 0,

0 < 𝑞𝑖 < 1, 𝑧𝑖 > 0 and 𝑧𝑖 >
𝑧𝑖

1−𝑞𝑖
are constants. 𝑡𝑘+1 is the triggering time and the control input will be updated in this time.

Based on (76), we can get
𝜔𝑖 = (1 + 𝑐𝑖,1(𝑡)𝑞𝑖)𝑢𝑖 + 𝑐𝑖,2(𝑡)𝑧𝑖,∀𝑡 ∈

[

𝑡𝑘, 𝑡𝑘+1
]

(77)
where 𝑐𝑖,1(𝑡) ≤ 1 and 𝑐𝑖,2(𝑡) ≤ 1. Moreover, 𝑢𝑖 can be further obtained

𝑢𝑖 =
𝜔𝑖

(1 + 𝑐𝑖,1(𝑡)𝑞𝑖)
−

𝑐𝑖,2(𝑡)𝑧𝑖
(1 + 𝑐𝑖,1(𝑡)𝑞𝑖)

(78)

According to Lemma 2, it can be gained that 𝑣𝑖,𝑛𝜔𝑖 ≤ 0. Therefore, the following inequalities are true
𝑣𝑖,𝑛𝑤𝑖𝜌𝑖

(1+𝑐𝑖,1(𝑡)𝑞𝑖)
≤ −𝑣𝑖,𝑛𝜌𝑖

1+𝑞𝑖
(1+𝑐𝑖,1(𝑡)𝑞𝑖)

(𝛼𝑖,𝑛 tanh(
𝑣𝑖,𝑛𝛼𝑖,𝑛
𝜍𝑖

) + 𝑚̄𝑖 tanh(
𝑣𝑖,𝑛𝑚̄𝑖
𝜍𝑖

))
≤ 𝑣𝑖,𝑛𝜌𝑖𝛼𝑖,𝑛 − 𝜌𝑖𝑚̄𝑖

|

|

𝑣𝑖,𝑛|| + 0.557𝜌
𝑖
𝜍𝑖

(79)

−𝑣𝑖,𝑛𝜌𝑖
𝑐𝑖,2(𝑡)𝑚𝑖

(1 + 𝑐𝑖,1(𝑡)𝑞𝑖)
≤ |

|

𝑣𝑖,𝑛|| 𝜌𝑖
𝑚𝑖

(1 − 𝑞𝑖)
≤ |

|

𝑣𝑖,𝑛|| 𝜌𝑚̄𝑖 (80)

𝑣𝑖,𝑛𝜌𝑖(
𝑤𝑖

(1 + 𝑐𝑖,1(𝑡)𝑞𝑖)
−

𝑐𝑖,2(𝑡)𝑚𝑖
(1 + 𝑐𝑖,1(𝑡)𝑞𝑖)

) ≤ 𝑣𝑖,𝑛𝜌𝑖𝛼𝑖,𝑛 + 0.557𝜌
𝑖
𝜍𝑖 (81)
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Considering (74)-(81), 𝑉̇𝑛 can become

𝑉̇𝑛 ≤ 𝑉̇𝑛−1 +
𝑁
∑

𝑖=1
𝑣𝑖,𝑛

{

𝜌
𝑖
𝛼𝑖,𝑛 + 𝜃𝑇𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) + 𝑙𝑖,𝑛(𝑦𝑖 − 𝑥̂𝑖,1) +𝐻 𝑖

+(𝜌𝑖 − 𝜌𝑖)Υ𝑖 + 𝑔𝑖,𝑛𝑞𝑖,𝑛 + 𝑞𝑖,𝑛−1 − ℏ̇𝑖,𝑛 + 𝑣𝑖,𝑛 +
1
2
𝑟2𝑖,𝑛 +

1
2
𝜃2𝑖,𝑛

}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑛
𝜃𝑇𝑖,𝑛(𝜃̇𝑖,𝑛 − 𝜆𝑖,𝑛𝑣𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) +

𝑁
∑

𝑖=1
0.557𝜌

𝑖
𝜍𝑖

(82)

Meanwhile, the adaptive laws are designed as

𝜃̇𝑖,𝑛 = 𝜆𝑖,𝑛𝑣𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) − 𝜆𝑖,𝑛𝛾𝑖,𝑛𝜃𝑖,𝑛 (83)

Substituting 𝛼𝑖,𝑛 and 𝜃̇𝑖,𝑛 into (82), we can achieve

𝑉̇𝑛 ≤ 𝑉̇𝑛−1 +
𝑁
∑

𝑖=1

{

𝑣𝑖,𝑛
[

−𝑔𝑖,𝑛𝑣𝑖,𝑛 + 𝑣𝑖,𝑛−1 + 𝑣𝑖,𝑛 +
1
2
𝑟2𝑖,𝑛

+ 1
2
𝜃2𝑖,𝑛

]}

−
𝑁
∑

𝑖=1

1
𝜆𝑖,𝑛
𝜃𝑇𝑖,𝑛(𝜃̇𝑖,𝑛 − 𝜆𝑖,𝑛𝑣𝑖,𝑛𝜑𝑖,𝑛(𝑥̂𝑖,𝑛) +

𝑁
∑

𝑖=1
0.557𝜌

𝑖
𝜍𝑖

≤
𝑁
∑

𝑖=1
{−[𝜆min(𝑄𝑖) −

5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(‖
‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝}

−
𝑁
∑

𝑖=1
(𝑔𝑖,1 −

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1)𝑣2𝑖,1 −
𝑁
∑

𝑖=1
[
𝑛
∑

𝑚=2
(𝑔𝑖,𝑚 − 1)𝑣2𝑖,𝑚]

+
𝑁
∑

𝑖=1

[

− 𝛾𝑖,1
2
‖

‖

‖

𝜃𝑖,1
‖

‖

‖

2
−

𝑛−1
∑

𝑚=2

𝛾𝑖,𝑚
2
‖

‖

𝜃𝑖,𝑚‖‖
2 − 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

[

𝑛−1
∑

𝑚=1

𝛾𝑖,𝑚
2
‖

‖

‖

𝜃∗𝑖,𝑚
‖

‖

‖

2
+ 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃∗𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

𝑛
∑

𝑚=1

1
2
𝑟2𝑖,𝑚

+
𝑁
∑

𝑖=1

𝑛−1
∑

𝑚=2

1
2
𝜃2𝑖,𝑚 +

𝑁
∑

𝑖=1
𝜃𝑇𝑖,𝑛𝛾𝑖,𝑛𝜃𝑖,𝑛 +

𝑁
∑

𝑖=1
0.557𝜌

𝑖
𝜍𝑖

(84)

With the assistant of Young’s inequality, we can deduce

𝜃𝑇𝑖,𝑛𝛾𝑖,𝑛𝜃𝑖,𝑛 ≤
𝛾𝑖,𝑛
2

‖

‖

𝜃𝑖,𝑛‖‖ +
𝛾𝑖,𝑛
2

‖

‖

‖

𝜃∗𝑖,𝑛
‖

‖

‖

. (85)

Combining (84) and (85) yields

𝑉̇𝑛 ≤
𝑁
∑

𝑖=1

{

−
[

𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝

]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2

+ 1
2
‖

‖

𝑃𝑖‖‖
2(
‖

‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2) + 1

2

𝑛
∑

𝑝=1
𝜃𝑇𝑖,𝑝𝜃𝑖,𝑝

}

−
𝑁
∑

𝑖=1
(𝑔𝑖,1 −

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1)𝑣2𝑖,1 −
𝑁
∑

𝑖=1

[

𝑛
∑

𝑚=2
(𝑔𝑖,𝑚 − 1)𝑣2𝑖,𝑚

]

+
𝑁
∑

𝑖=1

[

− 𝛾𝑖,1
2
‖

‖

‖

𝜃𝑖,1
‖

‖

‖

2
−

𝑛
∑

𝑚=2

𝛾𝑖,𝑚
2
‖

‖

𝜃𝑖,𝑚‖‖
2 − 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

[

𝑛
∑

𝑚=1

𝛾𝑖,𝑚
2
‖

‖

‖

𝜃∗𝑖,𝑚
‖

‖

‖

2
+ 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃∗𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

𝑛
∑

𝑚=1

1
2
𝑟2𝑖,𝑚 +

𝑁
∑

𝑖=1

𝑛
∑

𝑚=2

1
2
𝜃2𝑖,𝑚 +

𝑁
∑

𝑖=1
0.557𝜌

𝑖
𝜍𝑖

(86)
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By defining 𝜓 =
𝑁
∑

𝑖=1

{

‖

‖

‖

𝑑∗∗,1
‖

‖

‖

2
+ ‖

‖

‖

𝜀∗∗,1
‖

‖

‖

2}
+

𝑁
∑

𝑖=1

𝑛
∑

𝑚=1

1
2
𝑟2𝑖,𝑚 +

𝑁
∑

𝑖=1

[

𝑛
∑

𝑚=1

𝛾𝑖,𝑚
2
‖

‖

‖

𝜃∗𝑖,𝑚
‖

‖

‖

2
+ 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃∗𝑗,1
‖

‖

‖

2]
+

𝑁
∑

𝑖=1
0.557𝜌

𝑖
𝜍𝑖 +

𝑁
∑

𝑖=1

1
2
‖

‖

𝑃𝑖‖‖
2(
‖

‖

𝜀∗𝑖 ‖‖
2 + ‖

‖

𝑑∗𝑖 ‖‖
2), the following 𝑉̇𝑛 can be obtained

𝑉̇𝑛 ≤
𝑁
∑

𝑖=1

{

−
[

𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝

]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
+ 1

2

𝑛
∑

𝑚=1
𝜃𝑇𝑖,𝑚𝜃𝑖,𝑚

}

−
𝑁
∑

𝑖=1
(𝑔𝑖,1 −

7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1)𝑣2𝑖,1 −
𝑁
∑

𝑖=1

[

𝑛
∑

𝑚=2
(𝑔𝑖,𝑚 − 1)𝑣2𝑖,𝑚

]

+
𝑁
∑

𝑖=1

[

− 𝛾𝑖,1
2
‖

‖

𝜃𝑖,1‖‖
2 −

𝑛
∑

𝑚=2

𝛾𝑖,𝑚
2
‖

‖

𝜃𝑖,𝑚‖‖
2 − 1

2

∑

𝑗∈𝑁𝑖

𝜎𝑗,1𝑎𝑖,𝑗
‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2]

+
𝑁
∑

𝑖=1

𝑛
∑

𝑚=2

1
2
𝜃2𝑖,𝑚 + 𝜓

≤
𝑁
∑

𝑖=1

{

−
[

𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝

]

‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2}

−
𝑁
∑

𝑖=1

(

𝑔𝑖,1 −
7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1
)

𝑣2𝑖,1 −
𝑁
∑

𝑖=1

[

𝑛
∑

𝑚=2
(𝑔𝑖,𝑚 − 1)𝑣2𝑖,𝑚

]

−
𝑁
∑

𝑖=1
( 𝛾𝑖,1

2
− 1

2
)‖
‖

𝜃𝑖,1‖‖
2 −

𝑁
∑

𝑖=1

𝑛
∑

𝑚=1
( 𝛾𝑖,𝑚

2
− 1)𝜃𝑇𝑖,𝑚𝜃𝑖,𝑚

−
𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

1
2
𝜎𝑗,1𝑎𝑖,𝑗

‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2
+ 𝜓

(87)

The inequality (87) can be simplified as

𝑉̇𝑛 ≤ −
𝑁
∑

𝑖=1
𝑟0
‖

‖

‖

𝑥̃𝑖
‖

‖

‖

2
−

𝑁
∑

𝑖=1

𝑛
∑

𝑚=1
ℎ𝑣2𝑖,𝑚 −

𝑁
∑

𝑖=1

𝑛
∑

𝑚=1
𝜛‖

‖

𝜃𝑖,1‖‖
2

− 1
2

𝑁
∑

𝑖=1

∑

𝑗∈𝑁𝑖

𝑐 𝑎𝑖,𝑗
𝛽𝑗,1

‖

‖

‖

𝜃𝑗,1
‖

‖

‖

2
+ 𝜓

(88)

where 𝑟0 = 𝜆min(𝑄𝑖) −
5
2
− 1

2
‖

‖

𝑃𝑖‖‖
2 − 1

2
‖

‖

𝑃𝑖‖‖
2

𝑛
∑

𝑝=2
𝐻2
𝑖,𝑝, ℎ = min

{

𝑔𝑖,1 −
7
2
(𝑏𝑖 + 𝜇𝑖)

2𝜂2𝑖,1, (𝑔𝑖,2 −1), ...., (𝑔𝑖,𝑚 −1)
}

, 𝜛 = min
{

( 𝛾𝑖,1
2
−

1
2
), ...., ( 𝛾𝑖,𝑚

2
− 1)

}

, 𝑐 = min
{

𝜎𝑗,1𝛽𝑗,1
}

, and 2 ≤ 𝑝 ≤ 𝑛, 1 ≤ 𝑖 ≤𝑀 , 𝑗 ∈ 𝑁𝑖.

Remark 2. In the backstepping design framework, the virtual controller at each step contains the derivatives of the virtual
controller at the previous step, which denoting that the derivatives of the virtual control signal need to be computed. As the
order of the system increases, the number of differentiation terms will become more numerous and the order of differentiation
will increase, which will make the structure of the controller at the next step more complex and more difficult to design. To
overcome such difficulties, a first-order filter is introduced in21 to avoid the the detailed calculation of the above differentiation
terms. Nevertheless, the filter causes the filtering errors, which impairs system performances. Following work22, in this paper,
the compensation signals will be designed to counteract such errors for obtaining better system performances.

3.3 Stability Analysis
With the above derivation, the following results can be acquired.

Theorem 1. For the nonlinear multi-agents systems (1) with output constraints (8) meeting Assumptions 1-4, by introducing
the nonlinear mapping approach (28), the event-triggered mechanism (74)-(76), the combining backstepping technique and the
fuzzy state estimator (18) to construct the virtual controller (44) and (59), the actual controller (75) and the adaptive laws (46),
(47), (60) and (83), the following results can be gained

(1) The system output has not overstepped the output constraints during system operation.
(2) All signals of closed-loop systems are ultimately bounded.

Proof : By designing 𝜅 = min
{ 2𝑟0
𝜆max(𝑃𝑖)

, 2ℎ, 2𝜛, 𝜐
}

, 𝑉̇𝑛 can be further simplified as

𝑉̇𝑛 ≤ −𝜅𝑉𝑛 + 𝜓 (89)
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Multiplying both sides of the inequality by 𝑒𝜅𝑡 leads to

𝑒𝜅𝑡𝑉̇𝑛 ≤ −𝜅𝑉𝑛𝑒𝜅𝑡 + 𝜓𝑒𝜅𝑡 (90)

Considering the integral of (90) over the interval ∈
[

0, 𝑡
]

, one has the following inequality

𝑉𝑛𝑒
𝜅𝑡
|

𝑡
0 −

𝑡

∫
0

𝑉𝑛𝑑𝑒
𝜅𝑡 ≤ −𝜅

𝑡

∫
0

𝑉𝑛𝑒
𝜅𝑡𝑑𝑡 +

𝑡

∫
0

𝜓𝑒𝜅𝑡𝑑𝑡 (91)

By computing (91), one has
𝑉𝑛(𝑡) ≤ 𝑉𝑛(0)𝑒−𝜅𝑡 +

𝜓
𝜅
(1 − 𝑒−𝜅𝑡) (92)

From (89), we can obtain some information that if set 𝜅 > 𝜓
𝑤

, then 𝑉̇𝑛(𝑡) ≤ 0 on 𝑉𝑛(𝑡) = 𝑤. Thus, 𝑉𝑛(𝑡) ≤ 𝑤 is an invariant
set. It can be deduced that if 𝑉𝑛(0) ≤ 𝑤, the inequality holds 𝑉𝑛(𝑡) ≤ 𝑤 for ∀𝑡 ≥ 0. Hence, all signals in closed-loop systems are
ultimately bounded. In addition, it can be gained from (92) that ‖𝑠1‖2 ≤ 2𝑉𝑛(0)𝑒−𝜅𝑡 + 2𝜓

𝜅
(1 − 𝑒−𝜅𝑡) (𝑠1 =

[

𝑠1,1, 𝑠2,1, ..., 𝑠𝑀,1
]

).

Since lim
𝑡→∞

𝑒−𝜅𝑡 = 0, we can further acquire that lim
𝑡→∞

‖

‖

𝑠𝑖,1‖‖ ≤
√

2𝜓
𝜅

, denoting that 𝑠𝑖,1 can converges to an ideal areas by selecting
appropriate parameters 𝜓 , 𝜅. According to (31) and Assumptions 2 and 3, the boundedness of auxiliary variable 𝜉𝑖,1 can be
guaranteed. Thus, for systems initial condition meeting 𝑥𝑖,1(0) ∈ Ω𝑥𝑖,1 , the system output has not violated its constraints. The
proof is complete.

Remark 3. Following (69), by defining 𝐸𝑖(𝑡) = 𝜔𝑖 − 𝑢𝑖,∀𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+1
)

, it can be deduced that 𝑑
|
𝐸𝑖(𝑡)|
𝑑𝑡

=
𝑑
√

𝐸2
𝑖 (𝑡)

𝑑𝑡
≤

𝑠𝑔𝑛(𝐸𝑖(𝑡))𝐸̇𝑖(𝑡) ≤ |

|

𝐸̇𝑖(𝑡)|| ≤ 𝑜𝑖 with 𝑜𝑖 > 0 being a constant. Due to 𝐸𝑖(𝑡𝑘) = 0 and lim𝑡→𝑡𝑘+1 𝐸𝑖(𝑡𝑘+1) = 𝑞𝑖 ||𝑢𝑖|| + 𝑧𝑖, which
mean that the interexecution time interval 𝑇 = 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝑞𝑖|𝑢𝑖|+𝑧𝑖

𝑜𝑖
. Meanwhile, we can further infer that 𝑇 has a lower bound

𝑇 ∗ = 𝑧𝑖
𝑜𝑖
> 0. Thus, the Zeno phenomenon is avoided.

4 SIMULATION EXAMPLE

In this section, a numerical simulation example would be used to confirm the validity and feasibility of the proposed method.
The dynamic of each agent are modeled as follows

⎧

⎪

⎨

⎪

⎩

𝑥̇𝑖,1 = 𝑥𝑖,2 + 𝜙𝑖,1(𝑥𝑖,1) + 𝑑𝑖,1
𝑥̇𝑖,2 = 𝑚𝑖(𝑢𝑖) + 𝜙𝑖,2(𝑥𝑖,2) + 𝑑𝑖,2
𝑦𝑖 = 𝑥𝑖,1, 𝑖 = 1,… , 4,

(93)

where the system functions are set as 𝜙𝑖,1(𝑥𝑖,1) = − sin(𝑥𝑖,1) and 𝜙𝑖,2(𝑥𝑖,2) = − cos(𝑥𝑖,2); the external disturbances are selected
as 𝑑𝑖,1 = −0.1 sin(10𝑡) and 𝑑𝑖,2 = −0.1 cos(10𝑡); the output constrains functions are chosen as 𝐿𝑖,1 = 3 + 0.5 sin(𝑡) and 𝐿𝑖,2 =
3 + 3 sin(𝑡). The ideal trajectories provided by 𝑦𝑑 = sin(𝑡). The undirected communication graph of the whole multi-agents
systems is exhibited in Fig 1

To gain the expected control objective, the relative parameters are configured as 𝑙𝑖,1 = 7, 𝑙𝑖,2 = 9, 𝜆𝑖,1 = 10, 𝜆𝑖,2 = 10,
𝛾𝑖,1 = 0.2, 𝛾𝑖,2 = 2, 𝑔𝑖,1 = 15, 𝑔𝑖,2 = 30, 𝑟𝑖,1 = 5, 𝑟𝑖,2 = 0.2, 𝜕𝑖,2 = 0.05, 𝑞𝑖 = 0.5, 𝑧𝑖 = 0.2, 𝜍𝑖 = 1, 𝜌𝑖𝑟 = 1, 𝜌𝑖𝑟 = 1.1,
ℎ𝑖𝑟 = 0.45, ℎ𝑖𝑙 = −0.45. Meanwhile, the initial values of control systems are assigned as 𝑥1,1 = 1, 𝑥1,2 = 0, 𝑥2,1 = 0.7, 𝑥2,2 = 0,
𝑥3,1 = 0.4,𝑥3,2 = 0, 𝑥4,1 = −0.2, 𝑥4,2 = 0, and 𝑥̂𝑖,1 = 𝑥̂𝑖,2 = 0, 𝜃𝑖,1 = 𝜃𝑖,2 =

[

0, 0, 0, 0, 0, 0, 0
]𝑇 .

Through applying the presented approach in this paper, the following simulation results can be obtained.
The tracking performances of system are shown in Figs 2 and 3 , in which the tracking errors can converge into a small

interval, and the consensus objective can be obtained. In Figs 4 and 5 , the system states and the estimates are exhibited.
In Figs 6 and 7 , the event triggered-based controller and the input signals are displayed, and the inter-execution internal of
triggering are expressed. The adaptive laws of each agent are exhibited in Fig 8 .
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FIGURE 1 The undirected communication protocol of multi-agents.
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FIGURE 2 The output 𝑦𝑖 of each agent and the ideal signal 𝑦𝑑 .
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FIGURE 3 The tracking errors 𝑠𝑖,1 of each agent.
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FIGURE 4 The state of each agent and the corresponding estimate.
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FIGURE 5 The state of each agent and the corresponding estimate.
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FIGURE 6 The input signals 𝑢𝑖 and the control signal 𝑚𝑖(𝑢𝑖) subject to input dead zone.
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FIGURE 7 The inter-execution internal of event triggering.
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FIGURE 8 The adaptive laws 𝜃𝑖,1 and 𝜃𝑖,2.
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5 CONCLUSION

In this work, an adaptive event triggered-based leader-follower consensus control strategy has been reported for nonlinear
multi-agents systems with output constraints. A fuzzy state estimator has been constructed by utilizing the system outputs to
reconstruct the unavailable state. By introducing an advanced nonlinear mapping approach, the two cases with and without
constraints can be handled uniformly without no needing to change the control structure. In view of the restrictions of com-
munication channels from controller to actuator, an event triggered mechanism with relative threshold has been used to reduce
the information transmission. Meanwhile, a hyperbolic tangent function has been employed to reduce the chattering issue. In
addition, it has been demonstrated through Lyapunov function that all signals in closed-loop systems are ultimately bounded
and the time-varying output constraints have not been overstepped. At last, a numerical simulation example has been applied
to confirm the effectiveness and feasibility of the reported strategy.
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