References
Abreha, K.B., Enyew, M., Carlsson, A.S., Vetukuri, R.R., Feyissa, T., Motlhaodi, T., Ng’uni, D., Geleta, M., 2022. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta. 255, 20. https://doi.org/10.1007/s00425-021-03799-7
Akman, M., Carlson, J.E., Latimer, A.M., 2021. Climate explains population divergence in drought-induced plasticity of functional traits and gene expression in a South African Protea . Mol Ecol. 30, 255-273. https://doi.org/10.1111/mec.15705
Ashrafi, M., Azimi-Moqadam, M.R., Moradi, P., MohseniFard, E., Shekari, F., Kompany-Zareh, M., 2018. Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiology and Biochemistry. 132, 391-399. https://doi.org/10.1016/j.plaphy.2018.09.009
Basu, S., Ramegowda, V., Kumar, A., Pereira, A., 2016. Plant adaptation to drought stress. F1000Res. 5, 1554. https://doi.org/10.12688/f1000research.7678.1
Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes P, Dixon, R.A., Sumner, L.W., 2005. Metabolic profiling ofMedicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot. 56, 323-336. https://doi.org/10.1093/jxb/eri058
Bushman, B.S., Robbins, M.D., Thorsted, K., Robins, J.G., Warnke, S.E., Martin, R., Harris-Shultz, K., 2021. Transcript responses to drought in Kentucky bluegrass (Poa pratensis L.) germplasm varying in their tolerance to drought stress. Environmental and Experimental Botany. 190, 104571. https://doi.org/10.1016/j.envexpbot.2021.104571
Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34, i884-i890. https://doi.org/10.1093/bioinformatics/bty560
de Dorlodot, S., Forster, B., Pagès, L., Price, A., Tuberosa, R., Draye, X., 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 12, 474-481. https://doi.org/10.1016/j.tplants.2007.08.012
Dias, P.C., Araujo, W.L., Moraes, G.A.B.K., Barros, R.S., DaMatta, F.M., 2007. Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology. 164, 1639-1647. https://doi.org/10.1016/j.jplph.2006.12.004
Fang, Y., Xiong, L., 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci. 72, 673-689. https://doi.org/10.1007/s00018-014-1767-0
Gao, G., Lv, Z., Zhang, G., Li, J., Zhang, J., He, C., 2021. An ABA-flavonoid relationship contributes to the differences in drought resistance between different sea buckthorn subspecies. Tree Physiol. 41, 744-755. https://doi.org/10.1093/treephys/tpaa155
Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29, 644-652. https://doi.org/10.1038/nbt.1883
Gu, R., Chao, L., Zhang, L., Su, L., Wan, Z., Yan, Y., Chen, Y., Gao Q., 2015. The influence of hydrothermal factors on soil respiration and soil temperature sensitivity of Stipa krylovii steppe, Inner Mongolia, China. Acta Prataculturae Sinica. 24, 21-29. https://doi.org/10.11686/cyxb20150403
Guo, J., Yang, X., Jiang, W., Xing, X., Zhang, M., Chen, A., Yang, D., Yang, M., Wei, L., Xu, B., 2023. Resistance of grassland under different drought types in the Inner Mongolia autonomous region of China. Remote Sensing. 15, 5045. https://doi.org/10.3390/rs15205045
Heinemann, B., Künzler, P., Eubel, H., Braun, H.P., Hildebrandt, T.M., 2021. Estimating the number of protein molecules in a plant cell: protein and amino acid homeostasis during drought. Plant Physiol. 185, 385-404. https://doi.org/10.1093/plphys/kiaa050
Jin, Y., Yang, H., Wei, Z., Ma, H., Ge, X., 2013. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. Molecular Plant. 6, 1630-1645. https://doi.org/10.1093/mp/sst067
Klein, Z., Mitchell, R.M., 2024. Seed source environment predicts response to water availability in Plantago patagonica . Restor Ecol. 32, e14002. https://doi.org/10.1111/rec.14002
Kolde, R., 2019. Pheatmap: Pretty Heatmaps. R Package Version 1.0.12.
Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12, 323. https://doi.org/10.1186/1471-2105-12-323
Li, W., Mi, X., Jin, X., Zhang, D., Zhu, G., Shang, X., Zhang, D., Guo, W., 2022. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton. Plant J. 111, 374-390. https://doi.org/10.1111/tpj.15793
Liu, G., 2004. Analysis on dynamics in grassland of Xilinguole based on technology of remote sensing, geographical information and global position system. Master’s thesis. Inner Mongolia Agricultural University.
Liu, Y., Fan, B., Gong, Z., He, L., Chen, L., Ren, A., Zhao, N., Gao, Y., 2023. Intraspecific trait variation and adaptability of Stipa krylovii : Insight from a common garden experiment with two soil moisture treatments. Ecol Evol. 13, 1-12. https://doi.org/10.1002/ece3.10457
Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8
Ma, Y., Yu, X., Yu, Z., Sun, F., Li, X., Li, X., 2018. RNA-Seq ofAgropyron mongolicum Keng in response to drought stress. Grassl Sci. 64, 3-15. https://doi.org/10.1111/grs.12176
Mao, X., Cai, T., Olyarchuk, J.G., Wei, L.P., 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 21, 3787-3793. https://doi.org/10.1093/bioinformatics/bti430
McIntyre, S., Lavorel, S., Landsberg, J., Forbes, T.D.A., 1999. Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science. 10, 621-630. https://doi.org/10.2307/3237077
Moon, K.B., Ahn, D.J., Park, J.S., Jung, W.Y., Cho, H.S., Kim, H.R., Jeon, J.H., Park, Y.I., Kim, H.S., 2018. Transcriptome profiling and characterization of drought-tolerant potato plant (Solanum tuberosum L.). Mol Cells. 41, 979-992. https://doi.org/10.14348/molcells.2018.0312
Mukarram, M., Choudhary, S., Kurjak, D., Petek, A., Khan, M.M.A., 2021. Drought: Sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum. 172, 1291-1300. https://doi.org/10.1111/ppl.13423
Nakabayashi, R., Mori, T., Saito, K., 2014. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana . Plant Signal Behav. 9, e29518. https://doi.org/10.4161/psb.29518
Nawae, W., Shearman, J.R., Tangphatsornruang, S., Punpee, P., Yoocha, T., Sangsrakru, D., Naktang, C., Sonthirod, C., Wirojsirasak, W., Ukoskit, K., Sriroth, K., Klomsa-Ard, P., Pootakham, W., 2020. Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. PeerJ. 8, e9608. https://doi.org/10.7717/peerj.9608
Oliveros, J.C., 2015. Venny; An Interactive tool for comparing lists with Venn’s Diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html
Pacini, E., Dolferus, R., 2019. Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Front. Plant Sci. 10, 679. https://doi.org/10.3389/fpls.2019.00679
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer, L., 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist. 193, 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Qian, H., Xu, Z., Cong, K., Zhu, X., Zhang, L., Wang, J., Wei, J., Ji, P., 2021. Transcriptomic responses to drought stress inPolygonatum kingianum tuber. BMC Plant Biol. 21, 537. https://doi.org/10.1186/s12870-021-03297-8
Qin, L., Chen, E., Li, F., Yu, X., Liu, Z., Yang, Y., Wang, R., Zhang, H., Wang, H., Liu, B., Guan, Y., Ruan, Y., 2020. Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). Int J Mol Sci. 21, 8520. https://doi.org/10.3390/ijms21228520
Rangani, J., Panda, A., Parida, A.K., 2020. Metabolomic study reveals key metabolic adjustments in the xerohalophyte Salvadora persica L. during adaptation to water deficit and subsequent recovery conditions. Plant Physiol Biochem. 150, 180-195. https://doi.org/10.1016/j.plaphy.2020.02.036
Rolland, F., Baena-Gonzalez, E., Sheen, J., 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 57, 675-709. https://doi.org/10.1146/annurev.arplant.57.032905.105441
Seiler, J.R., Cazell, B.H., 1990. Influence of water stress on the physiology and growth of red spruce seedlings. Tree Physiology. 6, 69-77. https://doi.org/10.1093/treephys/6.1.69
Shahbazy, M., Moradi, P., Ertaylan, G., Zahraei, A., Kompany-Zareh, M., 2020. FTICR mass spectrometry-based multivariate analysis to explore distinctive metabolites and metabolic pathways: A comprehensive bioanalytical strategy toward time-course metabolic profiling ofThymus vulgaris plants responding to drought stress. Plant Sci. 290, 110257. https://doi.org/10.1016/j.plantsci.2019.110257
Shi, D., Wang, J., Bai, Y., Liu, Y., 2020. Transcriptome sequencing of okra (Abelmoschus esculentus L. Moench) uncovers differently expressed genes responding to drought stress. J. Plant Biochem. Biotechnol. 29, 155-170. https://doi.org/10.1007/s13562-019-00528-w
Ünlüsoy, A.G., Yolcu, S., Bor, M., Özdemir, F., Türkan, I., 2023. Activation of photorespiration facilitates drought stress tolerance inLotus corniculatus . J Plant Growth Regul. 42, 2088-2101. https://doi.org/10.1007/s00344-022-10683-5
Villarino, G.H., Bombarely, A., Giovannoni, J.J., Scanlon, M.J., Mattson, N.S., 2014. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing. PLoS ONE. 9, e94651. https://doi.org/10.1371/journal.pone.0094651
Wan, T., Feng, Y., Liang, C., Pan, L., He, L., Cai, Y., 2021. Metabolomics and transcriptomics analyses of two contrasting cherry rootstocks in response to drought stress. Biology (Basel). 10, 201. https://doi.org/10.3390/biology10030201
Wang J., Gao, Y., Zhao, N., Ren, A., Ruan, W., Chen, L, Liu, J., Li, C., 2006a. Morphological and RAPD analysis of the dominant speciesStipa krylovii Roshev. in Inner Mongolia Steppe. Bot. Stud. 47, 23-35.
Wang, B., Lv, X., He, L., Zhao, Q., Xu, M., Zhang, L., Jia, Y., Zhang, F., Liu, F., Liu, Q., 2018. Whole-transcriptome sequence analysis ofVerbena bonariensis in response to drought stress. Int J Mol Sci. 19, 1751. https://doi.org/10.3390/ijms19061751
Wang, J., Zhao, N., Gao, Y., Lin, F., Ren, A., Ruan, W., Chen L., 2006b. RAPD analysis of genetic diversity and population genetic structure ofStipa krylovii reshov. in Inner Mongolia steppe. Russ J Genet. 42, 468-475. https://doi.org/10.1134/S1022795406050024
Wang, X., Yang, X., Feng, Y., Dang, P., Wang, W., Graze, R., Clevenger, J.P., Chu, Y., Ozias-Akins, P., Holbrook, C., Chen, C., 2021. Transcriptome profile reveals drought-induced genes preferentially expressed in response to water deficit in cultivated peanut (Arachis hypogaea L.). Front Plant Sci. 30, 645291. https://doi.org/10.3389/fpls.2021.645291
Yang, Z., Dai, Z., Lu, R., Wu, B., Tang, Q., Xu, Y., Cheng, C., Su, J., 2017. Transcriptome analysis of two species of jute in response to polyethylene glycol (PEG)- induced drought stress. Sci Rep. 7, 16565. https://doi.org/10.1038/s41598-017-16812-5
Ye, X., Li, Y., Liu, H., He, Y., 2020. Physiological analysis and transcriptome sequencing reveal the effects of drier air humidity stress on Pterocarya stenoptera . Genomics. 112, 5005-5011. https://doi.org/10.1016/j.ygeno.2020.09.027
You, J., Zhang, Y., Liu, A., Li, D., Wang, X., Dossa, K., Zhou, R., Yu, J., Zhang, Y., Wang, L., Zhang, X., 2019. Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol. 19, 267. https://doi.org/10.1186/s12870-019-1880-1
Yu, W., Liu, H., Luo, J, Zhang, S., Xiang, P., Wang, W., Cai, J., Lu, Z., Zhou, Z., Hu, J., Lu, Y., 2022. Partial root-zone simulated drought induces greater flavonoid accumulation than full root-zone simulated water deficiency in the leaves of Ginkgo biloba. Environmental and Experimental Botany. 201, 1-15. https://doi.org/10.1016/j.envexpbot.2022.104998
Zhang, X., Tian, Q., Zhao, Z., Dong, Z., Chen, Y., Chen, D., 2021. Analysis of differentially expressed proteins affecting insecticidal protein content in Bt cotton under high-temperature and water deficit stress using label-free quantitation. J Agro Crop Sci. 207, 1-11. https://doi.org/10.1111/jac.12438
Zhao, N., Cui, S., Li, X., Liu, B., Deng, H., Liu, Y., Hou, M., Yang, X., Mu, G., Liu, L., 2021. Transcriptome and co-expression network analyses reveal differential gene expression and pathways in response to severe drought stress in peanut (Arachis hypogaea L.). Front Genet. 12, 672884. https://doi.org/10.3389/fgene.2021.672884
Zhao, N., Zhang, L., Zhao, T., Mo, L., Zhang, J., Gao, Y., Wang J., 2016. Trait differentiation among Stipa krylovii populations in the Inner Mongolia Steppe region. Flora. 223, 90-98. https://doi.org/10.1016/j.flora.2016.05.004
Zhu, Y., Wang, X., Huang, L., Lin, C., Zhang, X., Xu, W., Peng, J., Li, Z., Yan, H., Luo, F., Wang, X., Yao, L., Peng, D., 2017. Transcriptomic identification of drought-related genes and SSR markers in Sudan Grass based on RNA-Seq. Frontiers in Plant Science. 8, 678. https://doi.org/10.3389/fpls.2017.00687
Zou, J., Yang, L., Li, Y., Piao, M., Li, Y., Yao, N., Zhang, X., Zhang, Q., Hu, G., Yang, D., Zuo, Z., 2022. Comparative proteomics combined with morphophysiological analysis revealed chilling response patterns in two contrasting maize genotypes. Cells. 11, 1321. https://doi.org/10.3390/cells11081321
Table 1 The latitude and longitude of 9 populations sampled and the major climate variables of S. krylovii habitats