References
1. Goodenough J B. Electrochemical energy storage in a sustainable
modern society. Energ. Environ. Sci . 2014; 7(1): 14-18.
2. Loh K, Liew J, Liu L, et al. A comprehensive review on fundamentals
and components of Zinc-ion hybrid supercapacitors. J. Energy
Storage. 2024; 81: 110370.3. Weiss M, Ruess R, Kasnatscheew J, et al.
Fast charging of lithium‐ion batteries: a review of materials aspects.Adv. Energy Mater . 2021; 11(33): 2101126.4. Wang H, Ye W, Yang Y,
et al. Zn-ion hybrid supercapacitors: achievements, challenges and
future perspectives. Nano Energy . 2021; 85: 105942.5. Liu Y, Wu
L. Recent advances of cathode materials for Zinc-ion hybrid capacitors.Nano Energy . 2023: 108290.6. Raza W, Ali F, Raza N, et al. Recent
advancements in supercapacitor technology. Nano Energy . 2018; 52:
441-473.7. Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid
supercapacitors enabled by layered B/N co-doped carbon cathode.Nano Energy . 2019; 66: 104132.8. Li H, Ma L, Han C, et al.
Advanced rechargeable Zinc-based batteries: Recent progress and future
perspectives. Nano Energy . 2019; 62: 550-587.9. He P, Chen Q, Yan
M, et al. Building better Zinc-ion batteries: a materials perspective.Energy Chem . 2019; 1(3): 100022.10. Liu P, Liu W, Huang Y, et al.
Mesoporous hollow carbon spheres boosted, integrated high performance
aqueous Zn-ion energy storage. Energy Storage Mater . 2020; 25:
858-865.11. Zuo S, Xu X, Ji S, et al. Cathodes for aqueous Zn‐ion
batteries: materials, mechanisms, and kinetics. Chemistry-A
European Journal . 2021; 27(3): 830-860.12. Javed M, Najim T, Hussain I,
et al. 2D V2O5 nanoflakes as a
binder-free electrode material for high-performance pseudocapacitor.Ceram. Int . 2021; 47(17): 25152-25157.13. Ma X, Cheng J, Dong L,
et al. Multivalent ion storage towards high-performance aqueous Zinc-ion
hybrid supercapacitors. Energy Storage Mater . 2019; 20:
335-342.14. Chen Q, Jin J, Kou Z, et al. Zn2+pre‐intercalation stabilizes the tunnel structure of
MnO2 nanowires and enables Zinc‐ion hybrid
supercapacitor of battery‐level energy density. Small . 2020;
16(14): 2000091.15. Gao F, Mei B, Xu X, et al. Rational design of
ZnMn2O4 nanoparticles on carbon
nanotubes for high-rate and durable aqueous Zinc-ion batteries.Chem. Eng. J. 2022; 448:137742.16. Wu S, Chen Y, Jiao T, et al.
An aqueous Zn-ion hybrid supercapacitor with high energy density and
ultrastability up to 80000 cycles. Adv. Energy Mater. 2019;
9(47): 1902915.17. Zhang L, Guo Y, Shen K, Huo J, Liu Y, Guo S,
Ion-matching porous carbons with ultra-high surface area and superior
energy storage performance for supercapacitors, J. Mater. Chem.
A . 2019, 7: 9163–9172.18. Li H, Wu J, Wang L, Liao Q, et al. A zinc
ion hybrid capacitor based on sharpened pencil-like hierarchically
porous carbon derived from metal-organic framework. Chem. Eng. J. 2022, 428:131071.19. Zhu S, Ni J, Li Y. Carbon nanotube-based electrodes
for flexible supercapacitors. Nano Research . 2020; 13:
1825-1841.20. Liu G, Huang H, Bi R, et al. K+ pre-intercalated manganese
dioxide with enhanced Zn2+ diffusion for high rate and
durable aqueous Zinc-ion batteries. J. Mater. Chem. A . 2019;
7(36): 20806-20812. 21. Wu B, Zhang G, Yan M, et al. Graphene
scroll‐coated α‐MnO2 nanowires as high‐performance
cathode materials for aqueous Zn‐ion battery. Small . 2018;
14(13): 1703850. 22. He S, Mo Z, Shuai C, Liu W, Yue R, Liu G, Pei H,
Chen Y, Liu N, Guo R. Pre-intercalation δ-MnO2 Zinc-ion
hybrid supercapacitor with high energy storage and Ultra-long cycle
life. Appl. Surf. Sci. 2022; 577:151904.23. Liao X, Pan C, Pan Y,
et al. Synthesis of three-dimensional β-MnO2/PPy
composite for high-performance cathode in zinc-ion batteries. J.
Alloy. and Compd . 2021; 888: 161619.24. Liu Y, Chi X, Han Q, Du Y,
Huang J, Liu Y, Yang J. α-MnO2 nanofibers/carbon
nanotubes hierarchically assembled microspheres: Approaching practical
applications of high-performance aqueous Zn-ion batteries. J.
Power Sources. 2019; 443:227244.25. Ng C, Lim H, Lim Y, et al.
Fabrication of flexible polypyrrole/graphene oxide/manganese oxide
supercapacitor. Int. J. Energy Res . 2015; 39(3): 344-355.26. Li
Z, Huang Y, Zhang J, et al. One-step synthesis of
MnOx/PPy nanocomposite as a high-performance cathode for
a rechargeable Zinc-ion battery and insight into its energy storage
mechanism. Nanoscale . 2020; 12(6): 4150-4158.27. Wu T, Liang W.
Reduced intercalation energy barrier by rich structural water in spinel
ZnMn2O4 for high-rate Zinc-ion
batteries. ACS Appl. Mater. Interfaces . 2021; 13(20):
23822-23832.28. Wu B, Zhang G, Yan M, Tong T, et al. Graphene
scroll‐coated α‐MnO2 nanowires as high‐performance
cathode materials for aqueous Zn‐ion battery. Small . 2018 ;
(13):1703850.27. Wang C, Zeng Y, Sao X, Wu S, et al.
γ-MnO2 nanorods/graphene composite as efficient cathode
for advanced rechargeable aqueous zinc-ion battery. J. Energy
Chem . 2020; 43:182-7.30. Deng X, Li J, Shan Z, et al. A N, O co-doped
hierarchical carbon cathode for high-performance Zn-ion hybrid
supercapacitors with enhanced pseudocapacitance. J. Mater. Chem.
A . 2020; 8(23): 11617-11625.
31. Zang X, Wang X, Liu H, et al. Enhanced ion conduction via
epitaxially polymerized two-dimensional conducting polymer for
high-performance cathode in Zinc-ion batteries. ACS Appl. Mater.
Interfaces .2020; 12(8): 9347-9354.