References
Baduel, P., Hunter, B., Yeola, S., & Bomblies, K. (2018). Genetic basis
and evolution of rapid cycling in railway populations of tetraploid
Arabidopsis arenosa. PLoS genetics, 14 (7), e1007510. Bolger, A.
M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics, 30 (15), 2114-2120.
Bonanno, G., & Giudice, R. L. (2010). Heavy metal bioaccumulation by
the organs of Phragmites australis (common reed) and their potential use
as contamination indicators. Ecological indicators, 10 (3),
639-645. Březinová, T. D., & Vymazal, J. (2022). Distribution of heavy
metals in Phragmites australis growing in constructed treatment wetlands
and comparison with natural unpolluted sites. Ecological
Engineering, 175 , 106505. Brysting, A. K., Fay, M. F., Leitch, I. J.,
& Aiken, S. G. (2004). One or more species in the arctic grass genus
Dupontia?–a contribution to the Panarctic Flora project. Taxon,
53 (2), 365-382. Case, A. L., Finseth, F. R., Barr, C. M., & Fishman,
L. (2016). Selfish evolution of cytonuclear hybrid incompatibility in
Mimulus. Proceedings of the Royal Society B: Biological Sciences,
283 (1838), 20161493. Chen, L., Cai, Y., Qu, M., Wang, L., Sun, H.,
Jiang, B., . . . Wu, C. (2020). Soybean adaption to high‐latitude
regions is associated with natural variations of GmFT2b, an ortholog of
FLOWERING LOCUS T. Plant, Cell & Environment, 43 (4), 934-944.
Cicero-Fernández, D., Peña-Fernández, M., Expósito-Camargo, J. A., &
Antizar-Ladislao, B. (2016). Role of Phragmites australis (common reed)
for heavy metals phytoremediation of estuarine sediments.International journal of phytoremediation, 18 (6), 575-582.
Cordeiro, J. M. P., & Felix, L. P. (2018). Intra-and interspecific
karyotypic variations of the genus Senna Mill.(Fabaceae,
Caesalpinioideae). Acta Botanica Brasilica, 32 (1), 128-134.
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V.,
Pollard, M. O., . . . Davies, R. M. (2021). Twelve years of SAMtools and
BCFtools. GigaScience, 10 (2), giab008. Del Pozo, J. C., &
Ramirez-Parra, E. (2015). Whole genome duplications in plants: an
overview from Arabidopsis. Journal of Experimental Botany,
66 (22), 6991-7003. Dias, M. C., Monteiro, C., Moutinho-Pereira, J.,
Correia, C., Gonçalves, B., & Santos, C. (2013). Cadmium toxicity
affects photosynthesis and plant growth at different levels. Acta
physiologiae plantarum, 35 , 1281-1289. Dobin, A., Davis, C. A.,
Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., . . . Gingeras, T.
R. (2013). STAR: ultrafast universal RNA-seq aligner.Bioinformatics, 29 (1), 15-21. Eller, F., Skálová, H., Caplan, J.
S., Bhattarai, G. P., Burger, M. K., Cronin, J. T., . . . Kettenring, K.
M. (2017). Cosmopolitan species as models for ecophysiological responses
to global change: the common reed Phragmites australis. Frontiers
in Plant Science, 8 , 1833. Ellison, C., & Burton, R. (2010).
Cytonuclear conflict in interpopulation hybrids: the role of RNA
polymerase in mtDNA transcription and replication. Journal of
evolutionary biology, 23 (3), 528-538. Figueiredo, M., Bruno, R., Barros
e Silva, A., Nascimento, S., Oliveira, I., & Felix, L. (2014).
Intraspecific and interspecific polyploidy of Brazilian species of the
genus Inga (Leguminosae: Mimosoideae). Genetics and Molecular
Research, 13 (2), 3395-3403. Gardner, E. M., Bruun-Lund, S., Niissalo,
M., Chantarasuwan, B., Clement, W. L., Geri, C., . . . Khew, G. (2023).
Echoes of ancient introgression punctuate stable genomic lineages in the
evolution of figs. Proceedings of the National Academy of
Sciences, 120 (28), e2222035120. Ge, W., Xin, J., & Tian, R. (2023).
Phenylpropanoid pathway in plants and its role in response to heavy
metal stress: a review. Sheng wu Gong Cheng xue bao= Chinese
Journal of Biotechnology, 39 (2), 425-445. Ghouri, F., Shahid, M. J.,
Liu, J., Lai, M., Sun, L., Wu, J., . . . Shahid, M. Q. (2023).
Polyploidy and zinc oxide nanoparticles alleviated Cd toxicity in rice
by modulating oxidative stress and expression levels of sucrose and
metal-transporter genes. Journal of Hazardous Materials, 448 ,
130991. Guan, B., Yu, J., Wu, M., Liu, X., Wang, X., Yang, J., . . .
Zhang, X. (2023). Clonal integration promotes the growth of Phragmites
australis populations in saline wetlands of the Yellow River Delta.Frontiers in Plant Science, 14 , 1162923. Guozhang, K., Guchou,
S., & Zhengxun, W. (2004). Salicylic acid and its environmental stress
tolerance in plants. Guangxi Zhiwu, 24 (2), 178-183. Haider, F.
U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., . . .
Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation
strategies. Ecotoxicology and Environmental Safety, 211 , 111887.
Hakmaoui, A., Ater, M., Boka, K., & Baron, M. (2007). Copper and
cadmium tolerance, uptake and effect on chloroplast ultrastructure.
Studies on Salix purpurea and Phragmites australis. Zeitschrift
für Naturforschung C, 62 (5-6), 417-426. Hamann, E., Pauli, C. S.,
Joly‐Lopez, Z., Groen, S. C., Rest, J. S., Kane, N. C., . . . Franks, S.
J. (2021). Rapid evolutionary changes in gene expression in response to
climate fluctuations. Molecular Ecology, 30 (1), 193-206. Huang,
D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., . . . Cheng, M.
(2017). Effects of calcium at toxic concentrations of cadmium in plants.Planta, 245 , 863-873. Javed, M. T., Tanwir, K., Akram, M. S.,
Shahid, M., Niazi, N. K., & Lindberg, S. (2019). Phytoremediation of
cadmium-polluted water/sediment by aquatic macrophytes: role of
plant-induced pH changes. In Cadmium toxicity and tolerance in
plants (pp. 495-529): Elsevier.Kahle, H. (1993). Response of roots of
trees to heavy metals. Environmental and experimental botany,
33 (1), 99-119. Klopfenstein, D., Zhang, L., Pedersen, B. S., Ramírez,
F., Warwick Vesztrocy, A., Naldi, A., . . . Weigel, M. (2018). GOATOOLS:
A Python library for Gene Ontology analyses. Scientific reports,
8 (1), 10872. Korneliussen, T. S., Albrechtsen, A., & Nielsen, R.
(2014). ANGSD: analysis of next generation sequencing data. BMC
bioinformatics, 15 , 1-13. Lambertini, C., Guo, W.-Y., Ye, S., Eller,
F., Guo, X., Li, X.-Z., . . . Brix, H. (2020). Phylogenetic diversity
shapes salt tolerance in Phragmites australis estuarine populations in
East China. Scientific reports, 10 (1), 17645. Lambertini, C.,
Gustafsson, M., Frydenberg, J., Lissner, J., Speranza, M., & Brix, H.
(2006). A phylogeographic study of the cosmopolitan genus Phragmites
(Poaceae) based on AFLPs. Plant Systematics and Evolution, 258 ,
161-182. Liu, L. L., Yin, M. Q., Guo, X., Wang, J. W., Cai, Y. F., Wang,
C., . . . Eller, F. (2022). Cryptic lineages and potential introgression
in a mixed‐ploidy species (Phragmites australis) across temperate China.Journal of Systematics and Evolution, 60 (2), 398-410. Liu, Z.,
Sun, Z., Zeng, C., Dong, X., Li, M., Liu, Z., & Yan, M. (2022). The
elemental defense effect of cadmium on Alternaria brassicicola in
Brassica juncea. BMC Plant Biology, 22 (1), 1-14. Loix, C.,
Huybrechts, M., Vangronsveld, J., Gielen, M., Keunen, E., & Cuypers, A.
(2017). Reciprocal interactions between cadmium-induced cell wall
responses and oxidative stress in plants. Frontiers in Plant
Science, 8 , 1867. Love, M. I., Huber, W., & Anders, S. (2014).
Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome biology, 15 (12), 1-21. Martin, M. (2011). Cutadapt
removes adapter sequences from high-throughput sequencing reads.EMBnet. journal, 17 (1), 10-12. Meyerson, L. A., Cronin, J. T.,
Bhattarai, G. P., Brix, H., Lambertini, C., Lučanová, M., . . . Pyšek,
P. (2016). Do ploidy level and nuclear genome size and latitude of
origin modify the expression of Phragmites australis traits and
interactions with herbivores? Biological Invasions, 18 ,
2531-2549. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., &
Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway
reconstruction server. Nucleic acids research, 35 (suppl_2),
W182-W185. Mural, R. J. (1991). Fundamentals of light-regulated gene
expression in plants. Plant Genetic Engineering , 191-211. Oono,
Y., Yazawa, T., Kanamori, H., Sasaki, H., Mori, S., Handa, H., &
Matsumoto, T. (2016). Genome-wide transcriptome analysis of cadmium
stress in rice. BioMed Research International, 2016 . Parmar, P.,
Kumari, N., & Sharma, V. (2013). Structural and functional alterations
in photosynthetic apparatus of plants under cadmium stress.Botanical Studies, 54 (1), 1-6. Pertea, M., Pertea, G. M.,
Antonescu, C. M., Chang, T.-C., Mendell, J. T., & Salzberg, S. L.
(2015). StringTie enables improved reconstruction of a transcriptome
from RNA-seq reads. Nature biotechnology, 33 (3), 290-295. Pieri,
A., Beleggia, R., Gioia, T., Tong, H., Di Vittori, V., Frascarelli, G.,
. . . Fiorani, F. (2024). Transcriptomic response to nitrogen
availability reveals signatures of adaptive plasticity during tetraploid
wheat domestication. The Plant Cell , koae202. Roux, F.,
Mary-Huard, T., Barillot, E., Wenes, E., Botran, L., Durand, S., . . .
Budar, F. (2016). Cytonuclear interactions affect adaptive traits of the
annual plant Arabidopsis thaliana in the field. Proceedings of the
National Academy of Sciences, 113 (13), 3687-3692. Saltonstall, K.
(2002). Cryptic invasion by a non-native genotype of the common reed,
Phragmites australis, into North America. Proceedings of the
National Academy of Sciences, 99 (4), 2445-2449. Saltonstall, K. (2016).
The naming of Phragmites haplotypes. Biological Invasions, 18 (9),
2433-2441. Sheng, W., Liu, L., Wu, Y., Yin, M., Yu, Q., Guo, X., . . .
Guo, W. (2024). Exploring salt tolerance and indicator traits across
four temperate lineages of the common wetland plant, Phragmites
australis. Science of The Total Environment, 912 , 169100. Sloan,
D. B., Warren, J. M., Williams, A. M., Wu, Z., Abdel-Ghany, S. E.,
Chicco, A. J., & Havird, J. C. (2018). Cytonuclear integration and
co-evolution. Nature Reviews Genetics, 19 (10), 635-648.
Srivastava, J., Kalra, S. J., & Naraian, R. (2014). Environmental
perspectives of Phragmitesaustralis (Cav.) Trin. Ex. Steudel.Applied Water Science, 4 (3), 193-202. Sun, X.-S., Chen, Y.-H.,
Zhuo, N., Cui, Y., Luo, F.-L., & Zhang, M.-X. (2021). Effects of
salinity and concomitant species on growth of Phragmites australis
populations at different levels of genetic diversity. Science of
The Total Environment, 780 , 146516. Tanaka, T. S., Irbis, C., &
Inamura, T. (2017). Phylogenetic analyses of Phragmites spp. in
southwest China identified two lineages and their hybrids. Plant
Systematics and Evolution, 303 (6), 699-707. Te Beest, M., Le Roux, J.
J., Richardson, D. M., Brysting, A. K., Suda, J., Kubešová, M., &
Pyšek, P. (2012). The more the better? The role of polyploidy in
facilitating plant invasions. Annals of botany, 109 (1), 19-45.
Van de Peer, Y., Ashman, T.-L., Soltis, P. S., & Soltis, D. E. (2021).
Polyploidy: an evolutionary and ecological force in stressful times.The Plant Cell, 33 (1), 11-26. Wagner, F., Ott, T., Zimmer, C.,
Reichhart, V., Vogt, R., & Oberprieler, C. (2019). ‘At the crossroads
towards polyploidy’: genomic divergence and extent of homoploid
hybridization are drivers for the formation of the ox‐eye daisy
polyploid complex (Leucanthemum, Compositae‐Anthemideae). New
Phytologist, 223 (4), 2039-2053. Wang, C., Liu, L., Yin, M., Eller, F.,
Brix, H., Wang, T., . . . Guo, W. (2021). Genome-wide analysis
illustrates the effect of polyploidization in Phragmites australis.bioRxiv . Wang, C., Liu, L., Yin, M., Eller, F., Brix, H., Wang,
T., . . . Guo, W. (2021). Genome-wide analysis tracks the emergence of
intraspecific polyploids in Phragmites australis. bioRxiv ,
2021.2009. 2005.458733. Wang, C., Liu, L., Yin, M., Liu, B., Wu, Y.,
Eller, F., . . . Salojärvi, J. (2024). Chromosome-level genome
assemblies reveal genome evolution of an invasive plant Phragmites
australis. Communications Biology, 7 (1), 1007.
doi:10.1038/s42003-024-06660-1Wang, C., Wang, T., Yin, M., Eller, F.,
Liu, L., Brix, H., & Guo, W. (2021). Transcriptome analysis of
tetraploid and octoploid common reed (Phragmites australis).Frontiers in Plant Science, 12 , 653183. Wang, H., Zhang, W., Yu,
Y., Fang, X., Zhang, T., Xu, L., . . . Xiao, H. (2024). Biased gene
introgression and adaptation in the face of chloroplast capture in
Aquilegia amurensis. Systematic Biology , syae039. Wang, J., Wei,
H., & Pan, B. (2023). Accumulation characteristics and probabilistic
risk assessment of Cd in agricultural soils across China. Huan
Jing ke Xue= Huanjing Kexue, 44 (7), 4006-4016. Wright, D., & Welbourn,
P. (1994). Cadmium in the aquatic environment: a review of ecological,
physiological, and toxicological effects on biota. Environmental
Reviews, 2 (2), 187-214. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai,
Z., . . . Zhan, L. (2021). clusterProfiler 4.0: A universal enrichment
tool for interpreting omics data. The innovation, 2 (3). Yan, L.,
& Yan, M. L. (2021). Package ‘ggvenn’. In: Google Scholar.Ye, L.-J.,
Möller, M., Luo, Y.-H., Zou, J.-Y., Zheng, W., Liu, J., . . . Gao, L.-M.
(2023). Variation in gene expression along an elevation gradient of
Rhododendron sanguineum var. haemaleum assessed in a comparative
transcriptomic analysis. Frontiers in Plant Science, 14 , 1133065.
Zhu, T., Li, L., Duan, Q., Liu, X., & Chen, M. (2021). Progress in our
understanding of plant responses to the stress of heavy metal cadmium.Plant Signaling & Behavior, 16 (1), 1836884.