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Abstract8

The study of the spatial point patterns in ecology, such as the records of the ob-9

served locations of trees, shrubs, nests, burrows, or documented animal presence, relies10

on multivariate point process models. This study aims to compare the efficacy and11

applicability of two prominent multivariate point process models, the multivariate log12

Gaussian Cox process (MLGCP) and the Saturated Pairwise Interaction Gibbs Point13

Process model (SPIGPP) , highlighting their respective strengths and weaknesses in14

various scenarios. Using synthetic and real datasets, we assessed both models based15

on their predictive accuracy of the empirical K function (can we say this?). Our anal-16

ysis revealed that both MLGCP and SPIGPP effectively identify and capture mild to17

moderate attractions and regulations. MLGCP struggles to capture repulsive associa-18

tions as they intensify. In contrast, SPIGPP can well estimates both the direction and19

magnitude of interactions even when the model is miss-specified. Both models present20

∗Corresponding author. Email: chathuri.l.samarasekara@gmail.com

2



unique advantages: MLGCP is particularly effective when there is a need to account21

for complex, unobserved heterogeneities that vary across space, while SPIGPP is suit-22

able when interactions between points are the primary focus. The choice between23

these models should be guided by the specific needs of the research question and data24

characteristics.25

Keywords log-Gaussian Cox process, saturated pairwise interaction Gibbs point pro-26

cess, semi-parametric, pair correlation function, point process, multivariate27
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1 Introduction28

Spatial point patterns in ecology record are a common object of study. Point Process29

Models (PPMs) offer a theoretical foundation for the understanding and analysis ofthe30

spatial arrangement of trees or animals. PPMs also play a crucial role in understanding31

species distributions across continuous space. The majority of multivariate spatial point32

process applications in ecology so far have predominantly taken descriptive approaches,33

relying on cross summary statistics such as cross K, cross pair correlation, or cross J func-34

tions (Baddeley et al., 2014; Cronie and van Lieshout, 2016; Møller and Waagepetersen,35

2003) if consistent estimates of the intensity functions are available. Parametric estimation36

of cross associations is also possible. Jalilian et al. (2015); Waagepetersen et al. (2016)37

and Choiruddin et al. (2020) used parametric models of intensity and pair correlation38

functions, while Rajala et al. (2018) specified a full multivariate Markov point process39

model.40

To address this limitation, two primary multivariate point process models have emerged,41

the Multivariate Log Gaussian Cox Process (Waagepetersen et al., 2016) and the Saturated42

Pairwise Interaction Gibbs Point Process (Flint et al., 2022; Rajala et al., 2018). In a recent43

development, Hessellund et al. (2022a) replaced the parametric model in Waagepetersen44

et al. (2016) with a semi-parametric model from Hessellund et al. (2022b), deriving a45

second-order conditional composite likelihood function for Multivariate Log Gaussian Cox46

Process (MLGCP). Hessellund et al. (2022a) combines semi-parametric composite likeli-47

hood with a Lasso penalization. A similar technique was applied by Choiruddin et al.48

(2020) to explore least squares estimation for a MLGCP, where a full parametric model49

determined the multivariate intensity function.50

Cox processes struggle to model negative interactions and interactions of varying scales51
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(Waagepetersen et al., 2016). In contrast, the saturated models, which are a type of Gibbs52

processes, address these limitations by introducing a saturation parameter that allow them53

to model either attraction or repulsion (C.J.Geyer, 1999). Rajala et al. (2018) extended54

this process to the setting so as to study a larger species subset from the Barro Colorado55

Island dataset.56

However, Rajala et al. (2018) models interactions as being driven by step-function57

potentials. To overcome this, Flint et al. (2022) introduced the Saturated Pairwise Inter-58

action Gibbs Point Process (SPIGPP) model, building upon Rajala et al. (2018). This59

model introduces a unified framework to model multi-species marked point patterns, by60

allowing for a range of potential shapes, enabling ecologically grounded potential functions61

that account for individual characteristics such as size or diameter.62

While these models have seen widespread use, there has been a notable absence of63

direct comparative studies between the two types of point process models of MLGCP64

and SPIGPP. This may be due to their different theoretical foundations, which make65

direct comparisons challenging. Our research addresses this gap by developing statistical66

measures that facilitate the systematic evaluation of these two distinct types of point67

process models. Through our comprehensive simulation study and the examination of real68

data examples, we not only highlight the advantages and disadvantages of both models, but69

also provide novel insights into where they excel and their limitations. This comparative70

analysis is essential for advancing our understanding of multi-type point pattern modelling71

in ecology, offering clear context-dependent guidance on selecting and comparing these72

models.73

The paper is organized as follows: Section 2 includes an overview of multivariate log74

Gaussian Cox processes and saturated pairwise Gibbs processes and the detailed protocol75
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for comparison of fitted models. Then in Sections 3 and 4 we applied the methodologies76

to the simulation studies and case analyses. Section 5 includes a detailed discussion of the77

results obtained from both the simulation study and the case study. Finally, Section 678

concludes with some closing remarks.79

2 Materials and Methodology80

In this section, we provide a brief overview of the MLGCP and SPIGPP models.81

2.1 Multivariate Log Gaussian Cox Process82

This section describes the theoretical underpinnings of the MLGCP as introduced by83

Hessellund et al. (2022a), which builds upon the groundwork laid by Waagepetersen et al.84

(2016). Choiruddin et al. (2020) and Jalilian et al. (2020) have additionally contributed85

to its expansion.86

Following the definition outlined in Waagepetersen et al. (2016), we denote by X =87

(X1, . . . , Xp), a multivariate spatial point process, where Xi is a spatial point process on88

Rd (in ecology we will be using d = 2) representing points of type i = 1, . . . , p. The point89

pattern Xi for i = 1, 2, . . . , p is modelled as a Cox process with random intensity function;90

Λi(u) = ρ0(u) exp(γ
T
i z(u)) exp

(
µi +

q∑
k=1

αikYk(u) + σiUi(u)
)
. (1)

A Cox process simply is a Poisson point process in which the intensity is random91

because of the Gaussian filed introduced. Note that we will define and interpret the92

various terms in the following paragraphs.93

In the approach outlined in Hessellund et al. (2022a), a semi-parametric model is94

employed. The background intensity function ρ0, aims to capture intricate variations95

in intensity functions common to all point processes X1, . . . , Xp. The intensity of Xi is96
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determined by a regression parameter vector γi alongside a vector of spatial covariates97

denoted as z(u) at location u.98

The formulation involves independent zero-mean unit-variance Gaussian random fields99

Yk and Ui with µi = −
∑q

k=2
α2
ik
2 − σ2

i
2 . Yk acts as a latent factor influencing all point100

types, potentially creating correlations among different types due to their simultaneous101

dependence on Yk. Conversely, each Ui is a type-specific factor exclusively impacting the102

ith point type, modeling clustering within Xi. The parameter q, representing the number103

of latent common fields, governs the model’s complexity.104

When Yk is observed (i.e., non-random), constraints such as αpl = 0 or
∑p

i=1 αil = 0,105

l = 1, . . . , q are necessary for identifiability. With unobserved Yk and less information, a106

sum-to-zero constraint,
∑p

i=1 αil = 0, i = 1, . . . , q, ensures symmetrical treatment across107

all Xi. The cross pair correlation function (pcf) of Xi and Xj are given by (Hessellund108

et al., 2022a);109

gij(r; θ) = exp

[
q∑

k=1

αikαjk exp
(−r
ξk

)
+ 1[i = j]σ2i exp

(−r
ψi

)]
, (2)

where θ is the concatenation of α.k = (α1k, . . . , αpk)
T (k = 1, . . . , q), ξ = (ξ1, . . . , ξq)

T , σ2 =110

(σ21, . . . , σ
2
p)

T
and ψ = (ψ1, . . . , ψp)

T . If
∑q

k=1 αikαjk exp
(
−r
ξk

)
is positive (negative), it111

indicates positive (negative) spatial correlation between points from Xi and Xj at distance112

r. The parameters ξk and ψi are the exponential correlation scale parameters of Yk and113

Ui, respectively.114

In Hessellund et al. (2022a), βi, the coefficients of the covariates are estimated first115

using the first order conditional likelihood as used in Hessellund et al. (2022b). Then, esti-116

mating θ is done by maximizing the second-order conditional composite likelihood function117

in equation (7) in Hessellund et al. (2022a). The cross Pair Correlation Functions (PCFs)118

in equation 2 and the second-order conditional composite likelihood function (equation119
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(7) in Hessellund et al. (2022a)) remain invariant to specific transformations, as noted120

by Hessellund et al. (2022a). The lack of identifiability isn’t a significant concern, given121

the focus on the correlation structure rather than individual αij ’s. Further optimization122

details can be found in Sections 3.1 and 3.2 of Hessellund et al. (2022a).123

2.2 Saturated Pairwise Interaction Gibbs Point Process124

This section recall the definition of the Saturated Pairwise Interaction Gibbs Point Process125

(SPIGPP) as introduced in Flint et al. (2022). The model is specified by its density126

j(X) = C exp

[ ∑
(x,i,m)∈X

(β0,i +
∑

βi,kZk(x))

+

p∑
i=1

∑
z=(x1,i1,m1)∈X

αpi1,i2
u(z, (X \ {z})i2) +

p∑
i=1

∑
z=(x1,i1,m1)∈X

γi1,i2v(z, (X \ {z})i2)

]
.

(3)

In the equation above, X is a spatial pattern and C > 0 is a normalization constant127

and the other parameters are interpreted as (Flint et al., 2022):128

(a) An intercept vector (β1,0, β2,0, ...., βp,0)
T ∈ Rp, representing the log-intensities of129

distinct species in the absence of interactions.130

(b) Environmental covariates Z1, . . . , ZK , assumed to have bounded values.131

(c) For 1 ≤ i ≤ p and 1 ≤ k ≤ K, coefficients βi,k indicating the response of species i to132

environmental covariate k.133

(d) A function u(z, (X \ {z})i2) modeling short-range interactions between species i2 in134

X and an individual z = (x, i1,m) of species i1 with mark m at location x.135

(e) A function v(z, (X \ {z})i2)representing medium-range interactions between species136

i2 in X and an individual z as in (d).137
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(f) Coefficients αpi1,i2
for 1 ≤ i1, i2 ≤ p, denoting the magnitude of short-range inter-138

actions between species i1 and i2. Positive values signify attraction, while negative139

values denote repulsion. The assumption of symmetry holds (αpi1,i2
= αpi2,i1

).140

(g) Symmetric coefficients γi1,i2 for 1 ≤ i1, i2 ≤ p, representing the magnitude of141

medium-range interactions between each pair of species i1 and i2. Similar to (f),142

the sign of γi1,i2 indicates attraction or repulsion.143

The Papangelou conditional intensity π is directly derived from equation 3 using the144

formula: π((x, i,m), X) := j(X ∪ (x, i,m))/j(X) for (x, i,m) ∈ X. Furthermore, the145

definitions of short, medium and long range interactions distances can be found equations146

2− 5 of Flint et al. (2022).147

2.3 Protocol/Algorithm for Comparison of fitted PPMs148

The primary objective of this study is to compare the performance of different point149

process models. However, due to the different nature of MLGCP and SPIGPP models,150

direct comparison is not feasible. To allow for their comparison, we propose a step-by-step151

procedure.152

As discussed earlier, the pair correlation function of a MLGCP (equation 2) has a153

closed form whereas in SPIGPP there exists only a series of expansion which is difficult to154

compute in practice. Therefore, a comparison of the two methods using the theoretical pair155

correlations functions is not feasible. However, estimates of summary statistics of both156

SPIGPP and MLGCP can be computed through using Monte-Carlo (MC) simulations. In157

the following we focus on the K function which can be estimated more reliably by this MC158

procedure than alternatives.159

Therefore, we propose simulating N samples from the fitted model, and subsequently160
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computing MC estimates of the K function. This process can be easily implemented161

with the ‘spatstat’ R package. Using this method, the K functions will be comparable162

across models, regardless of the model used. As a further step, we compute the mean163

Integrated Squared Errors (MISE) (Hessellund et al., 2022a) aggregated over all cross-164

type K functions, that is;165

MISEbetween(θ̂) =
∑
i<j

E

[∫ 0.1

0.01
(Kij(r; θ̂ij)−Kij(r; θij))

2dr

]
. (4)

Where for any pair of types i and j, the multitype K-function Kij(r, ), also called the166

bivariate or cross- type K-function (Baddeley et al., 2016). We also extend this definition167

to MISEwithin and MISEtotal, which are similar to MISEbetween but with summation168

over i = j or i ≤ j. It is important to note that this proposed method is applicable to169

any summary statistic, including cross pair correlation functions, cross J functions, cross170

L functions, cross F functions, as well as cross K functions. As mentioned previously,171

we have used cross-type K functions due to their stable nature, which facilitates clearer172

interpretation.173

3 Simulation Study174

In this section, we describe the framework of our simulation study. In the first subsection,175

we discuss the thorough analysis of the SPIGPP (Flint et al., 2022) and MLGCP models176

(Hessellund et al., 2022a) under various scenarios with two species.177

In the Appendix A, we expand on the simulation study introduced in Waagepetersen178

et al. (2016) and revisited in Hessellund et al. (2022a). We have also assessed the SPIGPP179

model fit performance when data are simulated from MLGCP, extending beyond the bi-180

variate case using this simulation study given in the Appdenix B.181
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To carry out this investigation, we used R (version 4.3.1) statistical software, and the182

packages ‘Multilogreg’, ‘randomField’, ‘spatstat’, ‘ppjsdm’, and ‘ggplot2’.183

3.1 Comparative Simulation Study: Assessing MLGCP and SPIGPP184

Models Under Various Scenarios185

In this section, we describe the comprehensive simulation study, utilising both MLGCP186

and SPIGPP models with two species. The main objective here is to discern the strengths187

and weaknesses of each model across various scenarios. The simulation study is organized188

into two parts: 1) MLGCP Scenarios and 2) SPIGPP Scenarios. Subsequent discussions189

address each part separately, providing a detailed exploration of the performance of each190

model under diverse conditions.191

3.1.1 MLGCP Scenarios192

In each part of the simulation, we explored the association between two different species in193

various ways, focusing on both within and between species associations. When generating194

MLGCP scenarios, our emphasis was on understanding the underlying model behaviour.195

Given that MLGCP cannot model repulsion within a species, we design four distinct196

scenarios in this section, including mild to strong attractions between and within species197

as well as mild to strong repulsion between species. The scenarios were defined as follows:198

1. MLGCP Scenario 1 - Mild-moderate attraction between and within species (mild199

“+” b/w species)200

2. MLGCP Scenario 2 - Strong attraction between and within species (strong “+” b/w201

species)202
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3. MLGCP Scenario 3 - mild-moderate repulsion between and mild to moderate at-203

tractions within species (mild “-” b & mild “+” w)204

4. MLGCP Scenario 4 - Strong repulsion between and strong attractions within species205

(strong “-” b & mild “+” w)206

As the initial step of our analysis, we simulated 100 MLGCP processes following the207

principles outlined in Hessellund et al. (2022a) using the parameters specified in Table A.1208

in Appendix A. We then fitted these MLGCP scenarios using SPIGPP to evaluate the fit of209

SPIGPP when used for mis-specified models (A detailed description of the simulation and210

fitting procedure can be found in Appendix A). To assess the model fit, we compared the211

empirical K functions with the fitted K functions, along with their respective confidence212

bands. Retrieving the model parameters for the MLGCP models was not emphasized,213

given the identifiability issues discussed in Hessellund et al. (2022a); Jalilian et al. (2020);214

Choiruddin et al. (2020). Therefore, our primary focus was on the K functions when215

evaluating the model performance.216

In the Figure 1, we compare the fitted and empirical K functions against the baseline217

K function (given in red), representing the value of K for a homogeneous Poisson point218

process, defined as K(r) = π · r2. If the empirical K function deviates above (below) from219

this baseline K function, it indicates attraction (repulsion) within/between species.220

The K functions from scenario 1, featuring mild-moderate attractions between and221

within species, are depicted on the top row of Figure 1. The fitted SPIGPP model performs222

admirably in this scenario, with the fitted K functions (blue) closely aligning with all223

empirical MLGCP K functions (green) and falling well within the estimated confidence224

bands. We expect differences in the curve shapes of MLGCP and SPIGPP K functions, as225

they originate from two distinct underlying processes and are not anticipated to overlap.226
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(a) Scenario 1 - mild “+” b/w

(b) Scenario 2 - strong “+” b/w

(c) Scenario 3 - mild “-” b & mild “+” w

(d) Scenario 4 - strong “-” b & mild “+” w

Figure 1: Comparison of K functions across simulated MLGCP scenarios using SPIGPP models.

The red line represents the baseline K function (πr2), while the blue and green lines represent the

estimated SPIGPP K function and the empirical K function derived from the simulated MLGCP

data, respectively. Each row in the figure corresponds to a distinct scenario, labelled from 1 to 4,

showcasing variations across different simulation setups.

13



The two bottom rows in Figure 1 depict MLGCP scenarios 3 and 4 respectively, involv-227

ing between-species repulsion and within-species attractions ranging from mild-moderate228

to strong. SPIGPP adeptly captures the mild-moderate repulsion between species (middle229

graph in third row from top of Figure 1) as well as the moderate attraction within the230

species (left and right graphs in third row from top). In MLGCP scenarios 4 (bottom row231

of Figure 1), characterized by strong between-species repulsive associations and strong232

within-species attractions, the SPIGPP model effectively captures the between-species re-233

pulsive associations. It appropriately captures the strong within-species attractions at234

longer distances, although at shorter distances the SPIGPP fit slightly falls outside the235

confidence bounds.236

However, MLGCP scenarios 2 (given in the second row from top of Figure 1), char-237

acterized by strong attractions within and between species, present a different challenge.238

The point patterns exhibit notable instability, with a fluctuating number of points for each239

species during simulation from MLGCP under this scenario. In a lot of cases, SPIGPP240

underestimated the fitted αp. Even so, a SPIGPP with mild to large αp values (i.e.,241

interaction coefficients) is difficult to simulate from. Indeed, the Metropolis-Hastings al-242

gorithms in this case regularly fails to converge, with one species dying out and never243

reappearing. Filtering out some of the samples was thus required. To address this issue,244

we generated 150 samples of MLGCP processes under these scenarios and removed 50245

troublesome samples to obtain a final set of 100 samples. These refined samples were246

then used to fit SPIGPP models. However, even with this pre-processing, the number of247

points for each species still varied significantly within the 100 samples, making inference248

challenging for the SPIGPP.249
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3.1.2 SPIGPP Scenarios250

Here, we once again consider two different species, focusing on both within and between251

species associations. Since SPIGPP models can handle repulsion within species, we create252

five distinct scenarios in this section, covering mild to strong attractions and repulsive253

associations within and between species. The scenarios are defined as follows:254

1. SPIGPP Scenario 1 - mild-moderate attraction between and within species (mild255

“+” b/w)256

2. SPIGPP Scenario 2 - strong attraction between and within species (strong “+” b/w)257

3. SPIGPP Scenario 3 - mild repulsion between species and mild-moderate attractions258

within species (mild “-” b & mild “+” w)259

4. SPIGPP Scenario 4 - mild-moderate repulsion between species and mild-moderate260

attractions within species (2, 2) and mild repulsion within species (1, 1) (mild “-”261

w/b & mild “+” w)262

5. SPIGPP Scenario 5 - Strong repulsion between and strong attractions within species263

(strong “-” b & strong “+” w)264

A detailed description of the simulation and fitting procedure is given in Appendix265

A. Consistent with the approach outlined in the previous section, we assessed the model266

performance of MLGCP fit in mis-specified scenarios by comparing the empirical and fitted267

K functions along with the respective confidence bands.268

The top row in Figure 2 shows the comparison of K functions for the SPIGPP scenario269

1, where there was mild-moderate attractions within and between the two species. The270

K functions on the top row of Figure 2 show that the MLGCP model captured the mild271
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(a) Scenario 1 - mild “+” b/w

(b) Scenario 2 - strong “+” b/w

(c) Scenario 3 - mild “-” b & mild “+” w

(d) Scenario 5 - strong “-” b & strong “+” w

Figure 2: Comparison of K functions across simulated MLGCP scenarios using SPIGPP models.

The red line represents the baseline K function (πr2), while the blue and green lines represent

the estimated SPIGPP K function and the empirical K function derived from the the simulated

MLGCP data, respectively. Each row in the figure corresponds to a distinct scenario, labelled from

1 to 3 and 5, showcasing variations across different simulation setups.16



(a) Scenario 4 - mild “-” w/b & mild “+” w

Figure 3: Comparison of K functions across simulated MLGCP scenarios using SPIGPP models.

The red line represents the baseline K function (πr2), while the blue and green lines represent

the estimated SPIGPP K function and the empirical K function derived from the the simulated

MLGCP data, respectively for scenario 4 where there is mild repulsion within species and mild

attraction and repulsion within species.

to moderate within-species attractions in the SPIGPP scenario well (the left and right272

graphs display the empirical K function in blue within the estimated confidence bands).273

However, the top middle plot, representing the between-species interaction, showed the274

empirical K function at the upper bound of the confidence band, indicating that the fit275

was not very accurate.276

It was observed that the stronger the attractions generated by SPIGPP, the more277

challenging it became for the MLGCP fit to achieve the required magnitude of attraction278

both within and between, even though it captured the presence of an attraction in the279

scenario (second row of Figure 2). This was similar to what we observed in the previous280

section with MLGCP scenarios.281

In the third row in Figure 2, we observed mild to moderate repulsion between species282

and moderate attractions within each species (SPIGPP scenario 3). The MLGCP fit283

performed well when the attraction was mild, as seen in the left graph in third row plots284

of Figure 2, and it also accurately estimated the attraction within the second species (right285

17



graph in third row) at short distances. While it identified the repulsion between species286

at shorter distances, it was challenging for the MLGCP fit to accurately estimate the287

magnitude of the moderate repulsion.288

Similarly, in scenarios with strong repulsion between species and strong attractions289

within each species (bottom row of Figure 2), such as Scenario 5, the MLGCP fit struggled290

to identify the repulsion. It also found it challenging to accurately model the magnitude291

of the attractions as well as the repulsive associations in this scenario.292

In Figure 3, we observed the K functions generated for SPIGPP scenario 4, which293

featured a moderate attraction within species 2, mild repulsion within species 1, and294

strong repulsion between species (1, 2) (represented by the blue solid line). The right plot295

in Figure 3 indicates a good fit for species 2, as the blue and green solid lines closely296

align and within the confidence bands. However, this accuracy was not observed in the297

other two K functions (left and middle plots in Figure 3), where the repulsion between298

the two species and within species 1 are inaccurately modeled as attractions by MLGCP299

model. While it was expected that the MLGCP fit may struggle to capture within-species300

repulsion, it should theoretically identify between-species repulsion, which was not the301

case in this scenario.302

4 Case Study303

In this section, we revisit the South Carolina Savannah river site study conducted in Flint304

et al. (2022). Studying the spatial patterns of plants is of significant interest to ecologists305

as it provides a better understanding of the community structure.306

Seven different plots of South Carolina Savannah river site were originally created by307

Bill Good (Good and Whipple, 1982) and several analyses have been conducted thereafter308
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(Good and Whipple, 1982; Jones et al., 1994; Dixon, 2002; Flint et al., 2022). In this309

study, we study one of the plots from the original experiment (Figure 4). The dataset310

can be obtained using the R language (R Core Team, 2019) as ecespa::swamp from the311

ecespa package available on CRAN.312

The dataset, as shown in Table C.1 in Appendix C, contains four species of trees and313

another (OT) group of eight additional tree species with their arrangement shown in the314

Figure 4. There are no known environmental covariates related to this dataset, however315

the (unmeasured) water level is thought to be important for the spatial distribution.316

Therefore, we have introduced an artificial horizontal covariate that is proportional to317

water level for this analysis (Flint et al., 2022).318

Figure 4: Trees in the Savannah River South Carolina, USA

We also utilise the K functions approximations computed through standard cross K319

functions methods provided in the ‘spatstat’ R package (Baddeley et al., 2016), where all320

the effects of covariates and the intensity function are included. This approach enables321

us to compare the performance of MLGCP and SPIGPP fits using these functions as322

explained in Section 2.3. The fitting procedure used in the analysis is explained in detail323

in Appendix C.324

The parameters ϕ and σ govern the volatility of the Gaussian random fields in the325

MLGCP (Table C.3 in Appendix C). The estimates of ϕi for tree species are small, with326
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Carolina Ash having the smallest value and Bald Cypress the largest. The estimates327

for σi are generally small to large depending on the tree species. For example, there is328

important clustering within Carolina Ash and the other tree category, while the clustering329

within Swamp Tupelo is the smallest. All other tree species exhibit moderate clustering.330

(a) Between tree species (b) Within tree species

Figure 5: Estimated Short range interaction coefficients for the Tree types of SPIGPP

fitted model.

The coefficients and their significance for estimated short-range interactions in the331

SPIGPP are presented in Figure 5. Notably, most of the coefficients of the short-range332

interactions (αp) are found to be statistically significant at 0.05 level of significance. In-333

teraction coefficients for within species are given in the right hand side while the left side334

shows the between species interaction coefficients. Within species interactions of Bald Cy-335

press, between species interactions of Bald Cypress and Other tree species, Water Tupelo336

and other species as well as Carolina Ash and Bald Cypress, are the interaction coefficients337

that were not found to be statistically significant.338

The within-species short-range interaction coefficients other than Bald Cypress are all339
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positive, and larger than that of between interaction coefficients, while all between tree340

species interactions are negative. The smallest repulsion (negative) is between in Carolina341

Ash and Other tree species (−0.301) and largest between Carolina Ash and Bald Cypress342

(−0.038). This suggests that similar species of trees tend to occur together more frequently343

than different species of trees occurring together. Similar findings were reported in the344

analysis by Flint et al. (2022).345

The response to the background intensity estimated from the data is statistically sig-346

nificant for almost all (except for Water Tupelo) of the tree species. It is always positive347

and this is expected since it captures the general area where trees occur.348

FX NS NX OT TD

Intercept −4.60 −3.88 −4.93 −5.64 −5.42

Water level −0.88 ∗ ∗∗ −0.22 −0.43 ∗ ∗ −0.88 ∗ ∗∗ −0.57 ∗ ∗

Background Intensity 0.20∗ 0.04 0.23 ∗ ∗∗ 0.44 ∗ ∗∗ 0.52 ∗ ∗∗

Table 1: Significance of covariates in SPIGPP Model

Log-Papangelou conditional intensities (Baddeley et al., 2016; Daley and Vere-Jones,349

2003) of a given species in the SPIGPP model, conditional on all other species, are given350

in Figure C.2 in Appendix C.351

The fitted model has effectively captured the spatial inhomogeneity, with its condi-352

tional intensity appropriately delineating the area into regions of high and low tree density.353

The clustering within the points as given in the conditional predictions show similar re-354

sults as given by σ̂i of the MLGCP model. The rather large corresponding AUC values for355

these species [Carolina Ash (0.703), Swamp Tupelo (0.605), Water Tupelo (0.609), Other356

tree species (0.728) and Bald Cypress (0.679)] corroborate this result.357
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Figures 6 - 7 display the respective K functions for the fitted models: MLGCP (green)358

and SPIGPP (blue). We computed the envelopes of the K-function based on simulations359

from the fitted models of MLGGP and SPIGPP, and they are given in light green and360

light blue respectively . Additionally, the empirical (purple) and base K (red) functions361

are shown for comparison.362

In Figure 6, we display all the within associations of the five tree species, which show363

attractions (positive associations). For Carolina Ash (top left) and Other tree species364

(bottom left) both SPIGPP and MLGCP fit the data well at shorter distances (< 4m).365

However, at longer distances (4m - 12m), SPIGPP continues to capture species interactions366

effectively, while MLGCP fails to do so. For Bald Cypress (bottom right), the SPIGPP367

model gives a better fit compared to the MLGCP model. For Bald Cypress (bottom right),368

the empirical (purple) K function is zero up until 2m, as trees closer than 2m to each other369

had been cut down by people at the time of measurement. Unfortunately, none of the370

models have been able to accurately capture this change in the K functions. However, the371

SPIGPP is able to well capture the intra-species interaction beyond distance of 2m. For372

Swamp Tupelo (top middle), the MLGCP model shows a slightly better fit. Both MLGCP373

and SPIGPP models perform exceptionally well at modeling Water Tupelo (top right).374

In Figures 7, the between species associations are presented. Here, we observe that the375

SPIGPP model provides a better fit than the MLGCP model for most of the between tree376

associations shown in Figure 7. Most of the repulsive associations/negative associations377

(top middle, top right graphs, third row graphs, second row middle and right graphs) are378

either estimated as attractions/positive associations by the MLGCP model or are not ac-379

curately identified, defaulting to the baseline K function, while SPIGPP accurately models380

them. For the top left graph of association between Carolina Ash and Swamp Tupelo for381
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Figure 6: Comparison of fitted estimated K functions of the models using SPIGPP (blue)

and MLGCP (green) for the Savannah river study. The empirical K function is given in

orange while the red solid line indicates the baseline K function of πr2. K11 represents the

estimated K function of FX and similarly, K22, K33, K44 and K55 represent the estimated

K functions of NS, NX, OT and TD respectively.
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Figure 7: Comparison of fitted estimated K functions of the models using SPIGPP

(blue) and MLGCP (green) for the Savannah River study. The empirical K function

is given in orange while the red solid line indicates the baseline K function of πr2. K12,

K13, K14, K15, K23, K24, K25, K34 and K45 represent the estimated K functions be-

tween (FX,NS), (FX,NX), (FX,OT), (FX,TD),(NS,NX), (NS,OT), (NS,TD), (NX,OT),

(NX,TD) and (OT,TD) respectively.
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which both MLGCP and SPIGPP fails to capture the maginitude of the repulsion accu-382

rately. For the positive associations between Carolina Ash and Bald Cypress (second row383

left) and Other tree species and Bald Cypress (bottom), the MLGCP model does identify384

the attraction accurately but fails to estimate the magnitude effectively while SPIGPP385

accurately estimates the associations.386

As shown in Table 2, the MISEs for SPIGPP are much smaller for both within and387

between species interactions. SPIGPP performs much better at modeling both between388

and within tree species associations. While the MLGCP models do a fair job of modeling389

within species associations compared to the baseline, they are not as effective as SPIGPP.390

As a summary, our findings indicate that the SPIGPP offers a superior fit for the K391

function compared to the MLGCP model in this case study. Specifically, the Gibbs process392

more accurately captures the spatial interactions and dependencies present in the data,393

leading to more reliable and interpret-able results. This improved fit is evident across394

various distances, highlighting the robustness of the Gibbs process in modeling spatial395

point patterns.396

SPIPP MLGCP Base

MISEtotal 715.76 3861.69 13012.67

MISEwithin 1448.38 8841.47 43036.64

MISEbetween 316.15 1145.44 1003.09

Table 2: MISE of fitted SPIPP and MLGCP models for the Savannah Trees
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5 Discussion397

In this paper, we specifically focus on the Log Gaussian Cox process proposed byWaagepetersen398

et al. (2016) and Hessellund et al. (2022a) and the saturated pairwise interaction Gibbs399

Point process model introduced by Flint et al. (2022). This study is the first comparison400

of these two models through extensive simulation studies and an illustrative case study,401

aiming to identify the conditions under which the models excel or fall short.402

Based on our simulation study outlined in Sections 3.1, we observe that MLGCP403

models perform well in scenarios involving mild attractions between and within species.404

Additionally, MLGCP models maintain a good fit for scenarios with moderate and strong405

attractions between and within species as well. MLGCP correctly detect positive associ-406

ations even though they sometimes fail to precisely model the magnitude of attractions.407

These models excel in cases of mild to moderate repulsive associations between species408

coupled with mild to moderate attractions within species. However, their performance409

diminishes in capturing true repulsion when confronted with strong to extremely strong410

repulsion between species, accompanied by strong attractions within species. Furthermore,411

MLGCP models can not identify within-species repulsion, as the model is inherently not412

designed for this aspect.413

In contrast, SPIGPP models perform well in scenarios with mild to moderate attrac-414

tions and/or repulsion between species, along with mild to moderate attractions within415

species. They particularly excel in modeling repulsive associations between species, span-416

ning from mild to extremely strong. Challenges arise for SPIGPP models when confronted417

with strong to extremely strong attractions within and between species. Notably, the418

strong or extremely strong attractions between and/or within species generated from the419

MLGCPS show considerable fluctuations in the number of points for each species across420
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different realizations. The SPIGPP, however, is designed to model a roughly constant421

number of points between samples, making it challenging to handle such situations (Bad-422

deley et al., 2016). Thus, SPIGPP models have difficulty in accurately fitting processes423

with strong and extremely strong attractions between and within species. In spite of this,424

the SPIGPP models are able to consistently identify the direction of attractions and/or425

repulsion accurately. A summary of these findings is provided in Table 3, which evaluates426

the situations in which each model (SPIGPP and/or MLGCP) should be used, considering427

inter- and intra-species interactions (within and between) and the ground truth.428

Scenarios Fit with MLGCP Fit with SPIGPP

within between within between

mild “+” b/w good good good good

strong “+” b/w poor poor poor poor

mild “-” b/w & mild “+” w good (attraction) poor good good

- - good (repulsion) -

mild “-” b & mild “+” w good good good good

strong “-” b & strong“+” w poor poor good good

Table 3: Summary of comparative simulation study.

Furthermore, based on our investigation into the five-variate LGCP simulation (in429

Appendix B), we observe that the SPIGPP model accurately identifies attractions and430

repulsive associations when there are no transitions from attraction to repulsion or vice431

versa within a single species. However, when there are fluctuations with distance be-432

tween attractions and/or repulsive associations, the SPIGPP model effectively captures433

the interaction in short ranges but struggles to accurately represent the transitions in the434
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interaction, while MLGCP tends to capture the attractions at the longer distances. This435

limitation in SPIGPP may arise from the disparities in the underlying Cox and Gibbs436

processes between MLGCP and SPIGPP models. We may be able to get a better fit by437

using medium_range and/or long_range in SPIGPP.438

In our examination of real data, we observe that while the MLGCP models yield439

adequate results for the within-species associations, they are unable to accurately model440

the between-species associations. In contrast, the SPIGPP models perform admirably in441

fitting the data, as evidenced by the low MISE values as well as the estimated conditional442

predictions shown in Figure C.2 in Appendix C.443

When deciding on the use of SPIGPP and MLGCP for fitting data, we can take the444

following into consideration.445

• Gibbs model is suitable when interactions between points are the primary focus. If446

the intensity of points varies significantly over space and this variation is crucial447

to your analysis, MLGCPs provide a natural framework for incorporating complex448

unobserved heterogeneities.449

• Gibbs processes often offer more direct interpretability regarding interaction terms.450

In contrast, MLGCPs, while more flexible and capable of capturing more complex451

patterns, can sometimes offer less direct interpretability due to the latent Gaussian452

field.453

• Both MLGCP and SPIGPP effectively identify and capture mild to moderate attrac-454

tions and repulsive associations. MLGCP struggles to capture repulsive associations455

as they intensify. In contrast, SPIGPP can well estimates both the direction and456

magnitude of interactions generated by MLGCP. A limitation of SPIGPP, however,457

is its difficulty in modeling fluctuating interactions that transition between attrac-458
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tions and repulsive associations. (This may be addressed by fitting more advanced459

SPIGPP models.)460

• SPIGPP is highly effective in handling many species and points, accommodating461

approximately hundreds of species and up to ∼ 100, 000 points. Such a scale is462

challenging for MLGCP models, particularly when species has complex correlation463

structure involving within-species repulsion and attractions/repulsive associations at464

various distances.465

• It is also worthwhile to remember that Rajala et al. (2018) says “For longer spatial466

scales the log-Gaussian Cox process is a well-suited modelling framework, but it is467

not a good framework for studying small-scale interactions. Instead we shall use468

the multivariate Gibbs point process model to discover small scale point-to-point469

interactions...”470

• Ultimately, the choice between models depends on the setting of the scenario. For471

instance, if there is an expectation of a missing unmeasured covariate distributed472

as an approximate Gaussian field, MLGCP models are more reliable for inferring473

missing covariates and explaining clustering as a result of the covariate. In contrast,474

if interactions between points are not important, SPIGPP would be the preferable475

option.476

6 Conclusions477

This paper demonstrates that both MLGCP and SPIGPP excel within their own distinct478

contexts, despite their unique underlying character. The performance of each model is479

comparable when dealing with mild to moderate attractions/repulsive associations, as480
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both are proficient in identifying and appropriately capturing these patterns. Notably,481

SPIGPP models are better at identifying and modeling repulsive associations compared482

to MLGCP models, while MLGCP models excel at capturing strong attractions. SPIGPP483

models consistently identify the direction of the interaction type accurately, even when484

faced with challenges in modeling their magnitude appropriately. A limitation of MLGCP485

models is their inability to identify repulsive associations as they intensify, often modeling486

them as attractions.487
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Appendix A : Comparative Simulation Study: Assessing ML-554

GCP and SPIGPP models under various scenarios555

In this section, we will delve into the simulation and fitting procedures of the comprehen-556

sive two-species simulation study discussed in Section 3.1. We will follow the same format557

as in Section 3.1 and explain the fitting procedure in two parts: 1) MLGCP Scenarios and558

2) SPIGPP Scenarios.559

textcolorred(can you describe all the simulation studies using past tense?)560

MLGCP Scenarios561

All processes under MLGCP Scenarios were confined within a unit square window, fea-562

turing a single covariate Z(.) and a background intensity ρ0(.) = 150 exp(0.5V (.)− (0.5)2

2 ).563

Here, the covariate, Z and the background intensity V , were zero-mean unit variance Gaus-564

sian random fields with exponential and Gaussian correlation functions with following pa-565

rameter choices. For all scenarios, Corr(Z(u), Z(v)) = exp(−||u−v||
0.5 ) and Corr(V (u), V (v))566

was set to exp(−
( ||u−v||

0.8

)2
).567

When fitting SPIGPP models to these MLGCP scenarios, we used two different initial568

distances for short\_range distances of 0.5 and 0.8 with exponential models. The expo-569

nential model here means that the interaction potential is given by φ(x) = exp(− log(2)x
R )570

where R was the aforementioned short_range distance. Moreover, the initial values571

min\_dummy = 4000, dummy\_factor = 5 and dummy\_distribution = ‘stratified’572

were used in all the SPIGPP fits for the scenarios. This meant that the dummy points573

were distributed as a stratified point process where each species with n number of points574

had max(5*n,4000) dummy points. The fitting\_package used was ‘glmnet’ with a575

saturation parameter of 4. In the SPIGPP fitting procedure, both the simulated covari-576
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α σ ϕ ξ

MLGCP Scenario 1

−0.1 0.5

0.1 −0.5


0.5
0.2


0.5
0.5

 0.5

MLGCP Scenario 2

−0.6 0.1

0.6 −0.1


0.8
0.6


0.5
0.1


0.5
0.1


MLGCP Scenario 3

 0.1 −0.9

−0.1 0.9


 0.5

0.02


 0.5

0.08

 0.01

MLGCP Scenario 4

−1.5 −0.4

−1.5 0.4


 0.5

0.02


0.5
0.8

 0.05

Table A.1: Initial parameter choices of scenarios when simulating with MLGCP

ate and the background intensity were regarded as covariates. The background intensity577

served as a covariate due to the absence of analogous settings in SPIGPP compared to578

MLGCP. Incorporating the background intensity allowed for the comprehensive utilisation579

of available data without any loss of information during the model fitting process. Other580

initial parameter choices for α, σ, ϕ and ξ are listed in Table A.1.581
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SPIGPP Scenarios582

Similar to the MLGCP scenarios, the SPIGPP processes are generated within a unit583

window, utilising a shared normalised covariate for both species. In SPIGPP models,584

the parameters β0 and αp jointly control the number of points generated. The expected585

number of points for each species in all scenarios is set to 100. We employ 105 steps in the586

Metropolis-Hastings algorithm for all scenarios with a saturation parameter of 2. Table587

A.2 list the initial parameter choices for the simulated SPIGPP scenarios.588

β0 β model short range αp

Scenario 1 (4.8, 4.5) (1.5, 2) exponential

0.05 0.05

0.05 0.05


0.02 0.05

0.05 0.04


Scenario 2 (3.2, 2.2) (1.5, 2) square exponential

0.05 0.05

0.05 0.05


0.4 0.6

0.6 0.9


Scenario 3 (4.8, 4.5) (1.5, 2) exponential

0.05 0.05

0.05 0.05


 0.2 −0.5

−0.5 0.4


Scenario 4 (5, 4.1) (−1, 1) square bump

0.05 0.05

0.05 0.05


−0.4 −0.1

−0.1 0.3


Scenario 5 (3.6, 3.5) (1.5, 2) exponential

0.05 0.05

0.05 0.05


 0.9 −0.5

−0.5 0.9


Table A.2: Initial parameter choices of scenarios when simulating with SPIGPP

When fitting the MLGCP models to the SPIGPP scenarios outlined in Table A.2,589

we employ the initial values specified in Table A.3 without any regularization (λ = 0).590

We also estimate the background intensity (ρ0) from data using the approach stated in591

Hessellund et al. (2022a). Then, we move on to compare the fitted models as discussed in592

37



section 3.1.593

Scenarios ξ σ ϕ latent

Scenarios 1/2 (0.05, 0.01) (1, 0.01) (0.05, 0.01) 1

Scenarios 2 (0.03, 0.01) (0.8, 0.1) (0.03, 0.01) 1

Scenario 5 (0.03, 0.01) (0.8, 0.1) (0.03, 0.01) 2

Table A.3: Initial values chosen to fit the generated SPIGPP processes with MLGCP

models
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Appendix B : Evaluating SPIGPP model performance on594

Five-variate LGCP595

This segment of our simulation follows the study conducted in Waagepetersen et al. (2016),596

later revisited by Choiruddin et al. (2020); Jalilian et al. (2020), and extensively explored597

in Hessellund et al. (2022a). Our objective in this phase is to utilise these simulations to598

gain a comprehensive understanding of the joint performance of SPIGPP models when599

used with mis-specified models. Additionally, we opt to compare the performance of600

the SPIGPP fit with the second-order conditional composite likelihood, as outlined in601

Hessellund et al. (2022a).602

We generated a five-variant point process, denoted as X = (X1, X2, X3, X4, X5)
T , over603

the spatial domain W = [0, 1]2. This simulation is based on two distinct settings, where604

X is modeled as a multivariate LGCP. We also generate a single covariate Z(.) and a605

background intensity ρ0(.) = 400 exp(0.5V (.)− 0.52

2 ), where Z and V represent zero-mean606

unit-variance Gaussian random fields with exponential and Gaussian correlation functions,607

respectively, as employed in Hessellund et al. (2022a). The realizations of Z and ρ0 are608

illustrated in Figure B.1, and these realizations remain constant throughout the entire609

simulation study.610

Table B.1 provides the values used for the intensity function regression parameters611

γ, along with the standard deviation σ and correlation scale parameters ϕ for the type-612

specific latent fields Z and V . We set q = 2, and ξ1 = 0.02 and ξ2 = 0.03, with α =613 0.5 0.5 −1 0 0

−1 0 0 0.5 0.5


T

. In this case, a positive spatial dependence exists between X1614

and X2, and between X4 and X5, while negative spatial dependence is observed between615

X3 and (X1, X2) and between X1 and (X4, X5).616
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(a) simulated covariate (b) simulated ρ0

Figure B.1: Realizations of covariate and ρ0 for the simulated five-variant MLGCP

X γ0 γ1 σ ϕ

X1 0.1 −0.1 0.71 0.02

X2 0.2 −0.2 0.71 0.02

X3 0.3 0 0.71 0.03

X4 0.4 0.1 0.71 0.03

X5 0.5 0.2 0.71 0.04

Table B.1: Simulation settings for X in each setup q = 0, 2 (excluding α and ξ)
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Subsequently, we applied SPIGPP models to the simulated samples from MLGCP,617

utilising a Rectangle\_window(c(0,1),c(0,1)) with initial values for the model set618

to dummy\_factor = 5, min\_dummy = 1000, dummy\_distribution = ‘‘stratified",619

and saturation = 5. We also use a fitting\_package of ‘‘glmnet" and two potentials620

for model and short\_range interaction distances as given in Table B.2. As detailed621

previously, our focus lies on using the K functions to assess the model performance. Ad-622

ditionally, we evaluate the performance of each selected model using the mean integrated623

squared error (MISE) computed based on the K functions.624

model short range

Potential 1 “exponential” matrix(0.05, nrow=5,ncol=5)

Potential 2 “exponential” matrix(0.2, nrow=5,ncol=5)

Table B.2: Initial Potentials chosen for SPIGPP model parameters of 5 species MLGCP

simulation

The empirical and fitted K functions from MLGCP and SPIGPP models for the within-625

species associations with respective confidence bands are presented in Figure B.2. Out of626

the five species, the K function of the MLGCP fit (green), and the SPIGPP fit (blue)627

closely follows that of the empirical K function in purple in species 1, 2 and 5. Both628

MLGCP and SPIGPP fits show similar deviations from the empirical K functions for629

species 3 and 4, which is interesting as it is expected for the MLGCP to perform better630

since the scenario is simulated from MLGCP.631

Similar observations apply to the between-species attractions depicted by the cross K632

functions in Figure B.4. Empirically, these inter-species attractions are relatively smaller633

compared to the intra-species attractions discussed earlier. The blue solid lines in the634
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figure illustrate that the SPIGPP model adequately captures most of the between-species635

attractions, denoted as (1, 2), (2, 5), (3, 4), (3, 5), (4, 5), despite being a mis-specified model636

while MLGCP fits them better. Notably, between-species attraction (2, 4) stand out as637

slightly larger than the others and SPIGPP fails to capture the magnitude of the attraction638

accurately, similarly for MLGCP fitting algorithm proposed by (Hessellund et al., 2022b).639

The interactions between species (1, 3), (1, 4), (1, 5), and (2, 3) exhibit empirical K640

functions showcasing repulsion initially, transitioning into attraction around r = 0.1. In641

Figure B.3, we demonstrate the close alignment of the SPIGPP model with these empirical642

dynamics. The blue solid line representing the SPIGPP fit closely overlays the empirical643

(purple) K functions during the repulsion phase at the beginning as can be seen in Figure644

B.3, while MLGCP only captures (over-estimates) the attraction between them and is645

unable to identify the repulsive associations at the beginning.646
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Figure B.2: Comparison of within K functions across simulated five species simulation

study. The red line represents the baseline K function (πr2), while the blue and green lines

represent the estimated SPIGPP and MLGCP K functions respectively. The empirical K

function derived from the the simulated MLGCP data, is given in purple.
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Figure B.3: Comparison of between K functions across simulated five species simulation

study. The red line represents the baseline K function (πr2), while the blue and green lines

represent the estimated SPIGPP and MLGCP K functions respectively. The empirical K

function derived from the the simulated MLGCP data, is given in purple.
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Figure B.4: Comparison of between K functions across simulated five species simulation

study. The red line represents the baseline K function (πr2), while the blue and green lines

represent the estimated SPIGPP and MLGCP K functions respectively. The empirical K

function derived from the the simulated MLGCP data, is given in purple.
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Appendix C: Case Study - Fitting Procedure647

In this section, we delve into the details of the fitting procedure used in the case study648

discussed in Section 3.2.649

As displayed in section 3.2, and Table C.1, we can see that the dataset contains four650

types of trees and another (OT) for a group of eight additional tree species.651

Trees Number

FX - Carolina ash (Fraxinus caroliniana) 156

NS - Swamp tupelo (Nyssa sylvatica) 205

NX - Water tupelo (Nyssa aquatica) 215

OT - stems of 8 additional species 60

TD - Bald cypress (Taxodium distichum) 98

Table C.1: Trees in a plot in the Savannah River South Carolina, USA.

In the MLGCP fitting process, we set q = 2 and a regularization parameter λ =652

2.5. For the second-order composite likelihood, a distance parameter of R = 200 meters653

was used with the covariate for water level. Both models assume a rectangle window of654

(0, 200)× (0, 50) around the area where the points were distributed.655

When fitting SPIGPP models, the covariate for water level and the estimated back-656

ground intensity ρ0 was used as covariates to ensure a fair comparison with the MLGCP657

models fitted. We also use the parameter choices provided in Table C.2.658

To estimate ρ0, we employ the semi-parametric kernel estimator outlined in Section 5659

of the supplementary documents in Hessellund et al. (2022a). This involves sub-setting660

the dataset for each tree type and fitting regression models, incorporating an intercept661

and the covariate (water level), utilising the function ppm in spatstat package in R statis-662

46



model

short_range matrix(5, 5, 5)

model square_exponential

dummy_factor 1

min_dummy 5000

dummy_distribution stratified

fitting_package glm

saturation 2

Table C.2: SPIGPP models’ initial value choices

Figure C.1: Estimated background intensity (ρ0)
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tical software. Then the intensity at each tree location is predicted using the intensity663

function. Following this, the density for each tree is computed, incorporating the intensity664

as weights in the density function. In this step, we select the bandwidth based on the665

criterion inspired by Cronie and van Lieshout (2018), implemented through the bw.CvL.666

Finally, the density across all tree types are averaged to obtain the estimated background667

intensity, ρ0 and is shown in Figure C.1.668

The estimates derived from the MLGCP model using (q, λ) = (2, 2.5) are summarized669

in Table C.3. The correlation scale parameter estimates for the common latent fields,670

denoted as ξ, are reported as (1.44, 21.05). Lasso regularization has driven the estimates671

of the Y1 latent field, α̂.1, to 0, similar to the results derived in Hessellund et al. (2022a)672

while the latent field Y2 exhibits fluctuations in α̂.2 from moderate to large. Swamp673

Tupelo and Water Tupelo respond negatively to Y2, and they are negatively correlated674

with Carolina Ash, Bald Cypress and Other tree species.675

Tree type α̂.2 σ̂ ϕ̂

Carolina Ash 0.565 2.236 0.668

Swamp Tupelo −0.645 0.660 3.891

Water Tupelo −0.356 1.401 2.295

Other 0.230 2.0327 1.999

Bald Cypress 0.205 1.091 5.659

Table C.3: MLGCP Parameter estimates for each Tree type for (q, λ) = (2, 2.5)

The below, αp matrix supports the result given in Figure 5 in section 3.2. In the676

estimated αp matrix, we observed repulsive associations between all species. However,677

when computing the K functions, we also find a few attractions. These attractions occur678
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between the tree species Carolina Ash and Bald Cypress, and between Other species and679

Bald Cypress. These K functions show attractions, due to the fact that they were not680

significant at the 0.05 level of significance when estimating the short range αp matrix.681

αp =



FX NS NX OT TD

FX 0.735 −0.130 −0.208 −0.301 −0.0380

NS −0.130 0.465 −0.172 −0.172 −0.184

NX −0.208 −0.172 0.805 −0.130 −0.216

OT −0.301 −0.172 −0.130 0.529 −0.114

TD −0.038 −0.184 −0.216 −0.114 −0.027


682

Figure C.2 displays the log-papangelou conditional intensities (Flint et al., 2022) of683

the tree species in the fitted SPIGPP model (Which is explained in section 3.2).684

For the comparison of the two methods, we compute the K functions. To derive these685

K functions, we simulated 100 fitted MLGCPs using the estimated parameters such as686

α, σ, ξ, ϕ, estimated βs, and log(ρ̂0) . These simulated fitted MLGCP samples are then687

used to compute the MLGCP K functions. Similarly, utilising the fitted parameters from688

each model, we simulated 100 fitted SPIGPP samples to generate the fitted approximate689

K functions for the SPIGPP models. We then compared the K functions of the fitted690

models (MLGCP and SPIGPP) with the empirical K function computed from the data.691
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Figure C.2: SPIGPP fitted model - Conditional predictions
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