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Abstract

The study of the spatial point patterns in ecology, such as the records of the ob-
served locations of trees, shrubs, nests, burrows, or documented animal presence, relies
on multivariate point process models. This study aims to compare the efficacy and
applicability of two prominent multivariate point process models, the multivariate log
Gaussian Cox process (MLGCP) and the Saturated Pairwise Interaction Gibbs Point
Process model (SPIGPP) , highlighting their respective strengths and weaknesses in
various scenarios. Using synthetic and real datasets, we assessed both models based
on their predictive accuracy of the empirical K function (can we say this?). Our anal-
ysis revealed that both MLGCP and SPIGPP effectively identify and capture mild to
moderate attractions and regulations. MLGCP struggles to capture repulsive associa-
tions as they intensify. In contrast, SPIGPP can well estimates both the direction and

magnitude of interactions even when the model is miss-specified. Both models present
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unique advantages: MLGCP is particularly effective when there is a need to account
for complex, unobserved heterogeneities that vary across space, while SPIGPP is suit-
able when interactions between points are the primary focus. The choice between
these models should be guided by the specific needs of the research question and data

characteristics.

Keywords log-Gaussian Cox process, saturated pairwise interaction Gibbs point pro-

cess, semi-parametric, pair correlation function, point process, multivariate
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1 Introduction

Spatial point patterns in ecology record are a common object of study. Point Process
Models (PPMs) offer a theoretical foundation for the understanding and analysis ofthe
spatial arrangement of trees or animals. PPMs also play a crucial role in understanding
species distributions across continuous space. The majority of multivariate spatial point
process applications in ecology so far have predominantly taken descriptive approaches,
relying on cross summary statistics such as cross K, cross pair correlation, or cross J func-
tions (Baddeley et al., 2014; Cronie and van Lieshout, 2016; Mgller and Waagepetersen,
2003) if consistent estimates of the intensity functions are available. Parametric estimation
of cross associations is also possible. Jalilian et al. (2015); Waagepetersen et al. (2016)
and Choiruddin et al. (2020) used parametric models of intensity and pair correlation
functions, while Rajala et al. (2018) specified a full multivariate Markov point process
model.

To address this limitation, two primary multivariate point process models have emerged,
the Multivariate Log Gaussian Cox Process (Waagepetersen et al., 2016) and the Saturated
Pairwise Interaction Gibbs Point Process (Flint et al., 2022; Rajala et al., 2018). In a recent
development, Hessellund et al. (2022a) replaced the parametric model in Waagepetersen
et al. (2016) with a semi-parametric model from Hessellund et al. (2022b), deriving a
second-order conditional composite likelihood function for Multivariate Log Gaussian Cox
Process (MLGCP). Hessellund et al. (2022a) combines semi-parametric composite likeli-
hood with a Lasso penalization. A similar technique was applied by Choiruddin et al.
(2020) to explore least squares estimation for a MLGCP, where a full parametric model
determined the multivariate intensity function.

Cox processes struggle to model negative interactions and interactions of varying scales
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(Waagepetersen et al., 2016). In contrast, the saturated models, which are a type of Gibbs
processes, address these limitations by introducing a saturation parameter that allow them
to model either attraction or repulsion (C.J.Geyer, 1999). Rajala et al. (2018) extended
this process to the setting so as to study a larger species subset from the Barro Colorado
Island dataset.

However, Rajala et al. (2018) models interactions as being driven by step-function
potentials. To overcome this, Flint et al. (2022) introduced the Saturated Pairwise Inter-
action Gibbs Point Process (SPIGPP) model, building upon Rajala et al. (2018). This
model introduces a unified framework to model multi-species marked point patterns, by
allowing for a range of potential shapes, enabling ecologically grounded potential functions
that account for individual characteristics such as size or diameter.

While these models have seen widespread use, there has been a notable absence of
direct comparative studies between the two types of point process models of MLGCP
and SPIGPP. This may be due to their different theoretical foundations, which make
direct comparisons challenging. Our research addresses this gap by developing statistical
measures that facilitate the systematic evaluation of these two distinct types of point
process models. Through our comprehensive simulation study and the examination of real
data examples, we not only highlight the advantages and disadvantages of both models, but
also provide novel insights into where they excel and their limitations. This comparative
analysis is essential for advancing our understanding of multi-type point pattern modelling
in ecology, offering clear context-dependent guidance on selecting and comparing these
models.

The paper is organized as follows: Section 2 includes an overview of multivariate log

Gaussian Cox processes and saturated pairwise Gibbs processes and the detailed protocol
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for comparison of fitted models. Then in Sections 3 and 4 we applied the methodologies
to the simulation studies and case analyses. Section 5 includes a detailed discussion of the
results obtained from both the simulation study and the case study. Finally, Section 6

concludes with some closing remarks.

2 Materials and Methodology

In this section, we provide a brief overview of the MLGCP and SPIGPP models.

2.1 Multivariate Log Gaussian Cox Process

This section describes the theoretical underpinnings of the MLGCP as introduced by
Hessellund et al. (2022a), which builds upon the groundwork laid by Waagepetersen et al.
(2016). Choiruddin et al. (2020) and Jalilian et al. (2020) have additionally contributed
to its expansion.

Following the definition outlined in Waagepetersen et al. (2016), we denote by X =
(X1,...,X,), a multivariate spatial point process, where X; is a spatial point process on

R? (in ecology we will be using d = 2) representing points of type i = 1,...,p. The point

pattern X; for i = 1,2,...,p is modelled as a Cox process with random intensity function;
q
Ai(w) = po(w) exp(r] z(w) exp (i + D ainYe(w) + 0,Us(uw) ). (1)
k=1

A Cox process simply is a Poisson point process in which the intensity is random
because of the Gaussian filed introduced. Note that we will define and interpret the
various terms in the following paragraphs.

In the approach outlined in Hessellund et al. (2022a), a semi-parametric model is
employed. The background intensity function pg, aims to capture intricate variations

in intensity functions common to all point processes X1,...,X,. The intensity of X; is
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determined by a regression parameter vector 7y; alongside a vector of spatial covariates
denoted as z(u) at location wu.
The formulation involves independent zero-mean unit-variance Gaussian random fields

o?

Y and U; with p; = —>°F_, =k —

eEY

. Y, acts as a latent factor influencing all point
types, potentially creating correlations among different types due to their simultaneous
dependence on Y. Conversely, each Uj; is a type-specific factor exclusively impacting the
1th point type, modeling clustering within X;. The parameter g, representing the number
of latent common fields, governs the model’s complexity.

When Y, is observed (i.e., non-random), constraints such as a, =0 or Y 0_; a; =0,
l=1,...,q are necessary for identifiability. With unobserved Y} and less information, a
sum-to-zero constraint, Zle a; = 0,1 =1,...,q, ensures symmetrical treatment across
all X;. The cross pair correlation function (pcf) of X; and X; are given by (Hessellund
et al., 2022a);

q
gij(r;0) = exp [Zaikajk exp <;—:> +1fi = j]o’i2 exp (_j)] , (2)
k=1

where 6 is the concatenation of o , = (aqg, - - -, apk)T (k=1,....,9),¢= (&,... ,fq)T, 0% =
(02, .. .,UI%)T and ¥ = (P1,..., )" . If S0 agpap exp (g—;“) is positive (negative), it
indicates positive (negative) spatial correlation between points from X; and X at distance
r. The parameters & and 1); are the exponential correlation scale parameters of Y and
U;, respectively.

In Hessellund et al. (2022a), §;, the coefficients of the covariates are estimated first
using the first order conditional likelihood as used in Hessellund et al. (2022b). Then, esti-
mating 0 is done by maximizing the second-order conditional composite likelihood function
in equation (7) in Hessellund et al. (2022a). The cross Pair Correlation Functions (PCF's)

in equation 2 and the second-order conditional composite likelihood function (equation
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(7) in Hessellund et al. (2022a)) remain invariant to specific transformations, as noted
by Hessellund et al. (2022a). The lack of identifiability isn’t a significant concern, given
the focus on the correlation structure rather than individual o;;’s. Further optimization

details can be found in Sections 3.1 and 3.2 of Hessellund et al. (2022a).

2.2 Saturated Pairwise Interaction Gibbs Point Process

This section recall the definition of the Saturated Pairwise Interaction Gibbs Point Process

(SPIGPP) as introduced in Flint et al. (2022). The model is specified by its density

JX)=Cexp| > (Boi+t Y BixZk(z))

(z,i,m)eX
p p
Yt DY Y e (X {z}m] .
=1 z=(z1,i1,m1)€X =1 z=(z1,i1,m1)€X

3)
In the equation above, X is a spatial pattern and C > 0 is a normalization constant

and the other parameters are interpreted as (Flint et al., 2022):

(a) An intercept vector (B1.0,/532,0,-.- Bp0)] € RP, representing the log-intensities of

distinct species in the absence of interactions.
(b) Environmental covariates Z1,..., Zk, assumed to have bounded values.

(c) For1 <i<pand1<k<K, coefficients 3; , indicating the response of species 7 to

environmental covariate k.

(d) A function u(z, (X \ {2z}):,) modeling short-range interactions between species iy in

X and an individual z = (z,41, m) of species i1 with mark m at location x.

(e) A function v(z, (X \ {z})i, )representing medium-range interactions between species

i? in X and an individual z as in (d).
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(f) Coefficients ap,, ., for 1 < iy,4i9 < p, denoting the magnitude of short-range inter-
actions between species i1 and i9. Positive values signify attraction, while negative

values denote repulsion. The assumption of symmetry holds (ay, , =y, ;).

(g) Symmetric coefficients 7;, 4, for 1 < i1,ip < p, representing the magnitude of
medium-range interactions between each pair of species i1 and io. Similar to (f),

the sign of 7;, 4, indicates attraction or repulsion.

The Papangelou conditional intensity « is directly derived from equation 3 using the
formula: w((z,i,m),X) := j(X U (z,i,m))/j(X) for (x,i,m) € X. Furthermore, the
definitions of short, medium and long range interactions distances can be found equations

2 — 5 of Flint et al. (2022).

2.3 Protocol/Algorithm for Comparison of fitted PPMs

The primary objective of this study is to compare the performance of different point
process models. However, due to the different nature of MLGCP and SPIGPP models,
direct comparison is not feasible. To allow for their comparison, we propose a step-by-step
procedure.

As discussed earlier, the pair correlation function of a MLGCP (equation 2) has a
closed form whereas in SPIGPP there exists only a series of expansion which is difficult to
compute in practice. Therefore, a comparison of the two methods using the theoretical pair
correlations functions is not feasible. However, estimates of summary statistics of both
SPIGPP and MLGCP can be computed through using Monte-Carlo (MC) simulations. In
the following we focus on the K function which can be estimated more reliably by this MC
procedure than alternatives.

Therefore, we propose simulating N samples from the fitted model, and subsequently
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computing MC estimates of the K function. This process can be easily implemented
with the ‘spatstat’ R package. Using this method, the K functions will be comparable
across models, regardless of the model used. As a further step, we compute the mean
Integrated Squared Errors (MISE) (Hessellund et al., 2022a) aggregated over all cross-

type K functions, that is;

—

0.1
/0 (Kij(r; 0i5) — Kij(r; 055))dr|. (4)

MISEbetween<é) = Z E
.01

1<j

Where for any pair of types ¢ and j, the multitype K-function K;;(r, ), also called the
bivariate or cross- type K-function (Baddeley et al., 2016). We also extend this definition
to MISE.thin and MISFE,;,;, which are similar to M IS Epetypeen, but with summation
over i = j or ¢ < j. It is important to note that this proposed method is applicable to
any summary statistic, including cross pair correlation functions, cross J functions, cross
L functions, cross F functions, as well as cross K functions. As mentioned previously,
we have used cross-type K functions due to their stable nature, which facilitates clearer

interpretation.

3 Simulation Study

In this section, we describe the framework of our simulation study. In the first subsection,
we discuss the thorough analysis of the SPIGPP (Flint et al., 2022) and MLGCP models
(Hessellund et al., 2022a) under various scenarios with two species.

In the Appendix A, we expand on the simulation study introduced in Waagepetersen
et al. (2016) and revisited in Hessellund et al. (2022a). We have also assessed the SPIGPP
model fit performance when data are simulated from MLGCP, extending beyond the bi-

variate case using this simulation study given in the Appdenix B.

10
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To carry out this investigation, we used R (version 4.3.1) statistical software, and the

packages ‘Multilogreg’, ‘randomField’, ‘spatstat’, ‘ppjsdm’, and ‘ggplot2’.

3.1 Comparative Simulation Study: Assessing MLGCP and SPIGPP

Models Under Various Scenarios

In this section, we describe the comprehensive simulation study, utilising both MLGCP
and SPIGPP models with two species. The main objective here is to discern the strengths
and weaknesses of each model across various scenarios. The simulation study is organized
into two parts: 1) MLGCP Scenarios and 2) SPIGPP Scenarios. Subsequent discussions
address each part separately, providing a detailed exploration of the performance of each

model under diverse conditions.

3.1.1 MLGCP Scenarios

In each part of the simulation, we explored the association between two different species in
various ways, focusing on both within and between species associations. When generating
MLGCP scenarios, our emphasis was on understanding the underlying model behaviour.
Given that MLGCP cannot model repulsion within a species, we design four distinct
scenarios in this section, including mild to strong attractions between and within species

as well as mild to strong repulsion between species. The scenarios were defined as follows:

1. MLGCP Scenario 1 - Mild-moderate attraction between and within species (mild

“+” b/w species)

2. MLGCP Scenario 2 - Strong attraction between and within species (strong “+” b/w

species)

11
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3. MLGCP Scenario 3 - mild-moderate repulsion between and mild to moderate at-

tractions within species (mild “-” b & mild “4+” w)

4. MLGCP Scenario 4 - Strong repulsion between and strong attractions within species

(strong “-” b & mild “4+” w)

As the initial step of our analysis, we simulated 100 MLGCP processes following the
principles outlined in Hessellund et al. (2022a) using the parameters specified in Table A.1
in Appendix A. We then fitted these MLGCP scenarios using SPIGPP to evaluate the fit of
SPIGPP when used for mis-specified models (A detailed description of the simulation and
fitting procedure can be found in Appendix A). To assess the model fit, we compared the
empirical K functions with the fitted K functions, along with their respective confidence
bands. Retrieving the model parameters for the MLGCP models was not emphasized,
given the identifiability issues discussed in Hessellund et al. (2022a); Jalilian et al. (2020);
Choiruddin et al. (2020). Therefore, our primary focus was on the K functions when
evaluating the model performance.

In the Figure 1, we compare the fitted and empirical K functions against the baseline
K function (given in red), representing the value of K for a homogeneous Poisson point
process, defined as K (r) = 7 -r2. If the empirical K function deviates above (below) from
this baseline K function, it indicates attraction (repulsion) within/between species.

The K functions from scenario 1, featuring mild-moderate attractions between and
within species, are depicted on the top row of Figure 1. The fitted SPIGPP model performs
admirably in this scenario, with the fitted K functions (blue) closely aligning with all
empirical MLGCP K functions (green) and falling well within the estimated confidence
bands. We expect differences in the curve shapes of MLGCP and SPIGPP K functions, as

they originate from two distinct underlying processes and are not anticipated to overlap.

12
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Figure 1: Comparison of K functions across simulated MLGCP scenarios using SPIGPP models.
The red line represents the baseline K function (7r-2), while the blue and green lines represent the
estimated SPIGPP K function and the empirical K function derived from the simulated MLGCP
data, respectively. Each row in the figure correslp%nds to a distinct scenario, labelled from 1 to 4,

showcasing variations across different simulation setups.
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The two bottom rows in Figure 1 depict MLGCP scenarios 3 and 4 respectively, involv-
ing between-species repulsion and within-species attractions ranging from mild-moderate
to strong. SPIGPP adeptly captures the mild-moderate repulsion between species (middle
graph in third row from top of Figure 1) as well as the moderate attraction within the
species (left and right graphs in third row from top). In MLGCP scenarios 4 (bottom row
of Figure 1), characterized by strong between-species repulsive associations and strong
within-species attractions, the SPIGPP model effectively captures the between-species re-
pulsive associations. It appropriately captures the strong within-species attractions at
longer distances, although at shorter distances the SPIGPP fit slightly falls outside the
confidence bounds.

However, MLGCP scenarios 2 (given in the second row from top of Figure 1), char-
acterized by strong attractions within and between species, present a different challenge.
The point patterns exhibit notable instability, with a fluctuating number of points for each
species during simulation from MLGCP under this scenario. In a lot of cases, SPIGPP
underestimated the fitted «,. Even so, a SPIGPP with mild to large «a; values (i.e.,
interaction coefficients) is difficult to simulate from. Indeed, the Metropolis-Hastings al-
gorithms in this case regularly fails to converge, with one species dying out and never
reappearing. Filtering out some of the samples was thus required. To address this issue,
we generated 150 samples of MLGCP processes under these scenarios and removed 50
troublesome samples to obtain a final set of 100 samples. These refined samples were
then used to fit SPIGPP models. However, even with this pre-processing, the number of
points for each species still varied significantly within the 100 samples, making inference

challenging for the SPIGPP.
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3.1.2 SPIGPP Scenarios

Here, we once again consider two different species, focusing on both within and between
species associations. Since SPIGPP models can handle repulsion within species, we create
five distinct scenarios in this section, covering mild to strong attractions and repulsive

associations within and between species. The scenarios are defined as follows:

1. SPIGPP Scenario 1 - mild-moderate attraction between and within species (mild

CL+77 b/W)

2. SPIGPP Scenario 2 - strong attraction between and within species (strong “+” b/w)

3. SPIGPP Scenario 3 - mild repulsion between species and mild-moderate attractions

within species (mild “” b & mild “+” w)

4. SPIGPP Scenario 4 - mild-moderate repulsion between species and mild-moderate
attractions within species (2,2) and mild repulsion within species (1,1) (mild “-”

w/b & mild “+” w)

5. SPIGPP Scenario 5 - Strong repulsion between and strong attractions within species

(strong “-” b & strong “4” w)

A detailed description of the simulation and fitting procedure is given in Appendix
A. Consistent with the approach outlined in the previous section, we assessed the model
performance of MLGCP fit in mis-specified scenarios by comparing the empirical and fitted
K functions along with the respective confidence bands.

The top row in Figure 2 shows the comparison of K functions for the SPIGPP scenario
1, where there was mild-moderate attractions within and between the two species. The

K functions on the top row of Figure 2 show that the MLGCP model captured the mild

15
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Figure 2: Comparison of K functions across simulated MLGCP scenarios using SPIGPP models.
The red line represents the baseline K function (772), while the blue and green lines represent
the estimated SPIGPP K function and the empirical K function derived from the the simulated
MLGCP data, respectively. Each row in the figure corresponds to a distinct scenario, labelled from

1 to 3 and 5, showcasing variations across differ&fit simulation setups.
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Figure 3: Comparison of K functions across simulated MLGCP scenarios using SPIGPP models.
The red line represents the baseline K function (772), while the blue and green lines represent
the estimated SPIGPP K function and the empirical K function derived from the the simulated
MLGCP data, respectively for scenario 4 where there is mild repulsion within species and mild

attraction and repulsion within species.

to moderate within-species attractions in the SPIGPP scenario well (the left and right
graphs display the empirical K function in blue within the estimated confidence bands).
However, the top middle plot, representing the between-species interaction, showed the
empirical K function at the upper bound of the confidence band, indicating that the fit
was not, very accurate.

It was observed that the stronger the attractions generated by SPIGPP, the more
challenging it became for the MLGCP fit to achieve the required magnitude of attraction
both within and between, even though it captured the presence of an attraction in the
scenario (second row of Figure 2). This was similar to what we observed in the previous
section with MLGCP scenarios.

In the third row in Figure 2, we observed mild to moderate repulsion between species
and moderate attractions within each species (SPIGPP scenario 3). The MLGCP fit
performed well when the attraction was mild, as seen in the left graph in third row plots

of Figure 2, and it also accurately estimated the attraction within the second species (right

17
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graph in third row) at short distances. While it identified the repulsion between species
at shorter distances, it was challenging for the MLGCP fit to accurately estimate the
magnitude of the moderate repulsion.

Similarly, in scenarios with strong repulsion between species and strong attractions
within each species (bottom row of Figure 2), such as Scenario 5, the MLGCP fit struggled
to identify the repulsion. It also found it challenging to accurately model the magnitude
of the attractions as well as the repulsive associations in this scenario.

In Figure 3, we observed the K functions generated for SPIGPP scenario 4, which
featured a moderate attraction within species 2, mild repulsion within species 1, and
strong repulsion between species (1,2) (represented by the blue solid line). The right plot
in Figure 3 indicates a good fit for species 2, as the blue and green solid lines closely
align and within the confidence bands. However, this accuracy was not observed in the
other two K functions (left and middle plots in Figure 3), where the repulsion between
the two species and within species 1 are inaccurately modeled as attractions by MLGCP
model. While it was expected that the MLGCP fit may struggle to capture within-species
repulsion, it should theoretically identify between-species repulsion, which was not the

case in this scenario.

4 Case Study

In this section, we revisit the South Carolina Savannah river site study conducted in Flint
et al. (2022). Studying the spatial patterns of plants is of significant interest to ecologists
as it provides a better understanding of the community structure.

Seven different plots of South Carolina Savannah river site were originally created by

Bill Good (Good and Whipple, 1982) and several analyses have been conducted thereafter
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(Good and Whipple, 1982; Jones et al., 1994; Dixon, 2002; Flint et al., 2022). In this
study, we study one of the plots from the original experiment (Figure 4). The dataset
can be obtained using the R language (R Core Team, 2019) as ecespa: :swamp from the
ecespa package available on CRAN.

The dataset, as shown in Table C.1 in Appendix C, contains four species of trees and
another (OT) group of eight additional tree species with their arrangement shown in the
Figure 4. There are no known environmental covariates related to this dataset, however
the (unmeasured) water level is thought to be important for the spatial distribution.
Therefore, we have introduced an artificial horizontal covariate that is proportional to
water level for this analysis (Flint et al., 2022).
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Figure 4: Trees in the Savannah River South Carolina, USA

We also utilise the K functions approximations computed through standard cross K
functions methods provided in the ‘spatstat’ R package (Baddeley et al., 2016), where all
the effects of covariates and the intensity function are included. This approach enables
us to compare the performance of MLGCP and SPIGPP fits using these functions as
explained in Section 2.3. The fitting procedure used in the analysis is explained in detail
in Appendix C.

The parameters ¢ and o govern the volatility of the Gaussian random fields in the

MLGCP (Table C.3 in Appendix C). The estimates of ¢; for tree species are small, with
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Short-range interaction coefficients for Potenti

Carolina Ash having the smallest value and Bald Cypress the largest. The estimates
for o; are generally small to large depending on the tree species. For example, there is
important clustering within Carolina Ash and the other tree category, while the clustering

within Swamp Tupelo is the smallest. All other tree species exhibit moderate clustering.
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Figure 5: Estimated Short range interaction coefficients for the Tree types of SPIGPP

fitted model.

The coefficients and their significance for estimated short-range interactions in the
SPIGPP are presented in Figure 5. Notably, most of the coefficients of the short-range
interactions () are found to be statistically significant at 0.05 level of significance. In-
teraction coefficients for within species are given in the right hand side while the left side
shows the between species interaction coefficients. Within species interactions of Bald Cy-
press, between species interactions of Bald Cypress and Other tree species, Water Tupelo
and other species as well as Carolina Ash and Bald Cypress, are the interaction coefficients
that were not found to be statistically significant.

The within-species short-range interaction coefficients other than Bald Cypress are all
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positive, and larger than that of between interaction coefficients, while all between tree
species interactions are negative. The smallest repulsion (negative) is between in Carolina
Ash and Other tree species (—0.301) and largest between Carolina Ash and Bald Cypress
(—0.038). This suggests that similar species of trees tend to occur together more frequently
than different species of trees occurring together. Similar findings were reported in the
analysis by Flint et al. (2022).

The response to the background intensity estimated from the data is statistically sig-
nificant for almost all (except for Water Tupelo) of the tree species. It is always positive

and this is expected since it captures the general area where trees occur.

FX NS NX oT TD
Intercept —4.60 —3.88 —4.93 —5.64 —5.42
Water level —0.88 % xx —0.22 —0.43 %% —0.88**x —0.57*x
Background Intensity 0.20% 0.04  0.23%xx  0.44 % %%  0.52 % *x

Table 1: Significance of covariates in SPIGPP Model

Log-Papangelou conditional intensities (Baddeley et al., 2016; Daley and Vere-Jones,
2003) of a given species in the SPIGPP model, conditional on all other species, are given
in Figure C.2 in Appendix C.

The fitted model has effectively captured the spatial inhomogeneity, with its condi-
tional intensity appropriately delineating the area into regions of high and low tree density.
The clustering within the points as given in the conditional predictions show similar re-
sults as given by 7; of the MLGCP model. The rather large corresponding AUC values for
these species [Carolina Ash (0.703), Swamp Tupelo (0.605), Water Tupelo (0.609), Other

tree species (0.728) and Bald Cypress (0.679)] corroborate this result.
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Figures 6 - 7 display the respective K functions for the fitted models: MLGCP (green)
and SPIGPP (blue). We computed the envelopes of the K-function based on simulations
from the fitted models of MLGGP and SPIGPP, and they are given in light green and
light blue respectively . Additionally, the empirical (purple) and base K (red) functions
are shown for comparison.

In Figure 6, we display all the within associations of the five tree species, which show
attractions (positive associations). For Carolina Ash (top left) and Other tree species
(bottom left) both SPIGPP and MLGCP fit the data well at shorter distances (< 4m).
However, at longer distances (4m - 12m), SPIGPP continues to capture species interactions
effectively, while MLGCP fails to do so. For Bald Cypress (bottom right), the SPIGPP
model gives a better fit compared to the MLGCP model. For Bald Cypress (bottom right),
the empirical (purple) K function is zero up until 2m, as trees closer than 2m to each other
had been cut down by people at the time of measurement. Unfortunately, none of the
models have been able to accurately capture this change in the K functions. However, the
SPIGPP is able to well capture the intra-species interaction beyond distance of 2m. For
Swamp Tupelo (top middle), the MLGCP model shows a slightly better fit. Both MLGCP
and SPIGPP models perform exceptionally well at modeling Water Tupelo (top right).

In Figures 7, the between species associations are presented. Here, we observe that the
SPIGPP model provides a better fit than the MLGCP model for most of the between tree
associations shown in Figure 7. Most of the repulsive associations/negative associations
(top middle, top right graphs, third row graphs, second row middle and right graphs) are
either estimated as attractions/positive associations by the MLGCP model or are not ac-
curately identified, defaulting to the baseline K function, while SPIGPP accurately models

them. For the top left graph of association between Carolina Ash and Swamp Tupelo for
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Figure 6: Comparison of fitted estimated K functions of the models using SPIGPP (blue)
and MLGCP (green) for the Savannah river study. The empirical K function is given in
orange while the red solid line indicates the baseline K function of 772, K11 represents the
estimated K function of FX and similarly, K22, K33, K44 and K55 represent the estimated

K functions of NS, NX, OT and TD respectively.
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(blue) and MLGCP (green) for the Savannah River study. The empirical K function
is given in orange while the red solid line indicates the baseline K function of 7r2. K12,
K13, K14, K15, K23, K24, K25, K34 and K45 represent the estimated K functions be-
tween (FX,NS), (FX,NX), (FX,0T), (FX,TD),(NS,NX), (NS,0T), (NS,TD), (NX,0T),

(NX,TD) and (OT,TD) respectively.
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which both MLGCP and SPIGPP fails to capture the maginitude of the repulsion accu-
rately. For the positive associations between Carolina Ash and Bald Cypress (second row
left) and Other tree species and Bald Cypress (bottom), the MLGCP model does identify
the attraction accurately but fails to estimate the magnitude effectively while SPIGPP
accurately estimates the associations.

As shown in Table 2, the MISEs for SPIGPP are much smaller for both within and
between species interactions. SPIGPP performs much better at modeling both between
and within tree species associations. While the MLGCP models do a fair job of modeling
within species associations compared to the baseline, they are not as effective as SPIGPP.
As a summary, our findings indicate that the SPIGPP offers a superior fit for the K
function compared to the MLGCP model in this case study. Specifically, the Gibbs process
more accurately captures the spatial interactions and dependencies present in the data,
leading to more reliable and interpret-able results. This improved fit is evident across
various distances, highlighting the robustness of the Gibbs process in modeling spatial

point patterns.

SPIPP MLGCP Base

MISEoa 715.76  3861.69  13012.67
MISEiihin  1448.38 8841.47  43036.64

MISEyepween, 316.15  1145.44  1003.09

Table 2: MISE of fitted SPIPP and MLGCP models for the Savannah Trees
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v 5 Discussion

308 In this paper, we specifically focus on the Log Gaussian Cox process proposed by Waagepetersen
309 et al. (2016) and Hessellund et al. (2022a) and the saturated pairwise interaction Gibbs
a0 Point process model introduced by Flint et al. (2022). This study is the first comparison
a1 of these two models through extensive simulation studies and an illustrative case study,
a2 aiming to identify the conditions under which the models excel or fall short.

403 Based on our simulation study outlined in Sections 3.1, we observe that MLGCP
a4 models perform well in scenarios involving mild attractions between and within species.
a5 Additionally, MLGCP models maintain a good fit for scenarios with moderate and strong
w6 attractions between and within species as well. MLGCP correctly detect positive associ-
a7 ations even though they sometimes fail to precisely model the magnitude of attractions.
a8 These models excel in cases of mild to moderate repulsive associations between species
a0 coupled with mild to moderate attractions within species. However, their performance
a0 diminishes in capturing true repulsion when confronted with strong to extremely strong
a1 repulsion between species, accompanied by strong attractions within species. Furthermore,
a2 MLGCP models can not identify within-species repulsion, as the model is inherently not
a3 designed for this aspect.

414 In contrast, SPIGPP models perform well in scenarios with mild to moderate attrac-
a5 tions and/or repulsion between species, along with mild to moderate attractions within
a6 species. They particularly excel in modeling repulsive associations between species, span-
a7 ning from mild to extremely strong. Challenges arise for SPIGPP models when confronted
a8 with strong to extremely strong attractions within and between species. Notably, the
a0 strong or extremely strong attractions between and/or within species generated from the

20 MLGCPS show considerable fluctuations in the number of points for each species across
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different realizations. The SPIGPP, however, is designed to model a roughly constant
number of points between samples, making it challenging to handle such situations (Bad-
deley et al., 2016). Thus, SPIGPP models have difficulty in accurately fitting processes
with strong and extremely strong attractions between and within species. In spite of this,
the SPIGPP models are able to consistently identify the direction of attractions and/or
repulsion accurately. A summary of these findings is provided in Table 3, which evaluates
the situations in which each model (SPIGPP and/or MLGCP) should be used, considering

inter- and intra-species interactions (within and between) and the ground truth.

Scenarios Fit with MLGCP Fit with SPIGPP

within between | within between
mild “+” b/w good good good good
strong “+” b/w poor poor poor poor
mild “” b/w & mild “+” w | good (attraction) poor good good

- - good (repulsion) -
mild “-” b & mild “+” w good good good good

strong “-” b & strong“+” w | poor poor good good

Table 3: Summary of comparative simulation study.

Furthermore, based on our investigation into the five-variate LGCP simulation (in
Appendix B), we observe that the SPIGPP model accurately identifies attractions and
repulsive associations when there are no transitions from attraction to repulsion or vice
versa within a single species. However, when there are fluctuations with distance be-
tween attractions and/or repulsive associations, the SPIGPP model effectively captures

the interaction in short ranges but struggles to accurately represent the transitions in the
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interaction, while MLGCP tends to capture the attractions at the longer distances. This
limitation in SPIGPP may arise from the disparities in the underlying Cox and Gibbs
processes between MLGCP and SPIGPP models. We may be able to get a better fit by
using medium_range and/or long_range in SPIGPP.

In our examination of real data, we observe that while the MLGCP models yield
adequate results for the within-species associations, they are unable to accurately model
the between-species associations. In contrast, the SPIGPP models perform admirably in
fitting the data, as evidenced by the low MISE values as well as the estimated conditional
predictions shown in Figure C.2 in Appendix C.

When deciding on the use of SPIGPP and MLGCP for fitting data, we can take the

following into consideration.

e Gibbs model is suitable when interactions between points are the primary focus. If
the intensity of points varies significantly over space and this variation is crucial
to your analysis, MLGCPs provide a natural framework for incorporating complex

unobserved heterogeneities.

e Gibbs processes often offer more direct interpretability regarding interaction terms.
In contrast, MLGCPs, while more flexible and capable of capturing more complex
patterns, can sometimes offer less direct interpretability due to the latent Gaussian

field.

e Both MLGCP and SPIGPP effectively identify and capture mild to moderate attrac-
tions and repulsive associations. MLGCP struggles to capture repulsive associations
as they intensify. In contrast, SPIGPP can well estimates both the direction and
magnitude of interactions generated by MLGCP. A limitation of SPIGPP, however,

is its difficulty in modeling fluctuating interactions that transition between attrac-
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tions and repulsive associations. (This may be addressed by fitting more advanced

SPIGPP models.)

SPIGPP is highly effective in handling many species and points, accommodating
approximately hundreds of species and up to ~ 100,000 points. Such a scale is
challenging for MLGCP models, particularly when species has complex correlation
structure involving within-species repulsion and attractions/repulsive associations at

various distances.

It is also worthwhile to remember that Rajala et al. (2018) says “For longer spatial
scales the log-Gaussian Cox process is a well-suited modelling framework, but it is
not a good framework for studying small-scale interactions. Instead we shall use
the multivariate Gibbs point process model to discover small scale point-to-point

interactions...”

Ultimately, the choice between models depends on the setting of the scenario. For
instance, if there is an expectation of a missing unmeasured covariate distributed
as an approximate Gaussian field, MLGCP models are more reliable for inferring
missing covariates and explaining clustering as a result of the covariate. In contrast,
if interactions between points are not important, SPIGPP would be the preferable

option.

6 Conclusions

This paper demonstrates that both MLGCP and SPIGPP excel within their own distinct
contexts, despite their unique underlying character. The performance of each model is

comparable when dealing with mild to moderate attractions/repulsive associations, as
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both are proficient in identifying and appropriately capturing these patterns. Notably,
SPIGPP models are better at identifying and modeling repulsive associations compared
to MLGCP models, while MLGCP models excel at capturing strong attractions. SPIGPP
models consistently identify the direction of the interaction type accurately, even when
faced with challenges in modeling their magnitude appropriately. A limitation of MLGCP
models is their inability to identify repulsive associations as they intensify, often modeling

them as attractions.
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Appendix A : Comparative Simulation Study: Assessing ML-

GCP and SPIGPP models under various scenarios

In this section, we will delve into the simulation and fitting procedures of the comprehen-
sive two-species simulation study discussed in Section 3.1. We will follow the same format
as in Section 3.1 and explain the fitting procedure in two parts: 1) MLGCP Scenarios and
2) SPIGPP Scenarios.

textcolorred(can you describe all the simulation studies using past tense?)

MLGCP Scenarios

All processes under MLGCP Scenarios were confined within a unit square window, fea-

(0.5)? ).

turing a single covariate Z(.) and a background intensity po(.) = 150 exp(0.5V (.) — =5

Here, the covariate, Z and the background intensity V', were zero-mean unit variance Gaus-
sian random fields with exponential and Gaussian correlation functions with following pa-

rameter choices. For all scenarios, Corr(Z(u), Z(v)) = exp(%) and Corr(V(u),V(v))

was set to exp(—(w)%‘

When fitting SPIGPP models to these MLGCP scenarios, we used two different initial
distances for short\_range distances of 0.5 and 0.8 with exponential models. The expo-

nential model here means that the interaction potential is given by ¢(x) = exp(_lo}%@)x)

where R was the aforementioned short_range distance. Moreover, the initial values
min\_dummy = 4000, dummy\_factor = 5 and dummy\_distribution = ‘stratified’
were used in all the SPIGPP fits for the scenarios. This meant that the dummy points
were distributed as a stratified point process where each species with n number of points
had max(5%n,4000) dummy points. The fitting\_package used was ‘glmnet’ with a

saturation parameter of 4. In the SPIGPP fitting procedure, both the simulated covari-
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581

o ¢ 3
—-0.1 0.5 0.5 0.5
MLGCP Scenario 1 0.5
0.1 -0.5 0.2 0.5
—-0.6 0.1 0.8 0.5 0.5
MLGCP Scenario 2
0.6 —-0.1 0.6 0.1 0.1
0.1 -0.9 0.5 0.5
MLGCP Scenario 3 0.01
—-0.1 0.9 0.02 0.08
—-15 —-04 0.5 0.5
MLGCP Scenario 4 0.05
—-1.5 04 0.02 0.8

Table A.1: Initial parameter choices of scenarios when simulating with MLGCP

ate and the background intensity were regarded as covariates. The background intensity
served as a covariate due to the absence of analogous settings in SPIGPP compared to
MLGCP. Incorporating the background intensity allowed for the comprehensive utilisation

of available data without any loss of information during the model fitting process. Other

initial parameter choices for «, o, ¢ and £ are listed in Table A.1.
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SPIGPP Scenarios

Similar to the MLGCP scenarios, the SPIGPP processes are generated within a unit
window, utilising a shared normalised covariate for both species. In SPIGPP models,
the parameters By and o, jointly control the number of points generated. The expected
number of points for each species in all scenarios is set to 100. We employ 10° steps in the
Metropolis-Hastings algorithm for all scenarios with a saturation parameter of 2. Table

A.2 list the initial parameter choices for the simulated SPIGPP scenarios.

5o 15} model short_range ap
0.05 0.05 0.02 0.05
Scenario 1 (4.8,4.5) (1.5,2) exponential
0.05 0.05 0.05 0.04
0.05 0.05 0.4 0.6
Scenario 2 (3.2,2.2) (1.5,2) square_exponential
0.05 0.05 0.6 0.9
0.05 0.05 02 -0.5
Scenario 3 (4.8,4.5) (1.5,2) exponential
0.05 0.05 —-0.5 04
0.05 0.05 -04 -0.1
Scenario 4 (5,4.1) (—1,1) square_bump
0.05 0.05 -0.1 0.3
0.05 0.05 0.9 -0.5
Scenario 5 (3.6,3.5) (1.5,2) exponential
0.05 0.05 -0.5 0.9

Table A.2: Initial parameter choices of scenarios when simulating with SPIGPP

When fitting the MLGCP models to the SPIGPP scenarios outlined in Table A.2,
we employ the initial values specified in Table A.3 without any regularization (A = 0).
We also estimate the background intensity (pg) from data using the approach stated in

Hessellund et al. (2022a). Then, we move on to compare the fitted models as discussed in

37



503 section 3.1.

Scenarios 13 o [0} latent

Scenarios 1/2 (0.05,0.01) (1,0.01) (0.05,0.01) 1
Scenarios 2 (0.03,0.01) (0.8,0.1) (0.03,0.01) 1

Scenario 5 (0.03,0.01) (0.8,0.1) (0.03,0.01) 2

Table A.3: Initial values chosen to fit the generated SPIGPP processes with MLGCP

models
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Appendix B : Evaluating SPIGPP model performance on

Five-variate LGCP

This segment of our simulation follows the study conducted in Waagepetersen et al. (2016),
later revisited by Choiruddin et al. (2020); Jalilian et al. (2020), and extensively explored
in Hessellund et al. (2022a). Our objective in this phase is to utilise these simulations to
gain a comprehensive understanding of the joint performance of SPIGPP models when
used with mis-specified models. Additionally, we opt to compare the performance of
the SPIGPP fit with the second-order conditional composite likelihood, as outlined in
Hessellund et al. (2022a).

We generated a five-variant point process, denoted as X = (X1, X2, X3, X4, X5)7, over
the spatial domain W = [0, 1]?. This simulation is based on two distinct settings, where
X is modeled as a multivariate LGCP. We also generate a single covariate Z(.) and a
background intensity pg(.) = 400 exp(0.5V(.) — %), where Z and V represent zero-mean
unit-variance Gaussian random fields with exponential and Gaussian correlation functions,
respectively, as employed in Hessellund et al. (2022a). The realizations of Z and pg are
illustrated in Figure B.1, and these realizations remain constant throughout the entire
simulation study.

Table B.1 provides the values used for the intensity function regression parameters
v, along with the standard deviation ¢ and correlation scale parameters ¢ for the type-

specific latent fields Z and V. We set ¢ = 2, and & = 0.02 and & = 0.03, with o =
T

05 05 -1 0 O
. In this case, a positive spatial dependence exists between X

-1 0 0 05 0.5

and Xo, and between X4 and X5, while negative spatial dependence is observed between

X3 and (X7, X2) and between X; and (X4, X5).
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(a) simulated covariate (b) simulated pg

Figure B.1: Realizations of covariate and pg for the simulated five-variant MLGCP

X % m o ¢

X; 01 -01 071 0.02
Xy 02 -0.2 071 0.02
X3 0.3 0 0.71 0.03
X4 04 01 071 0.03

Xs 05 02 071 0.04

Table B.1: Simulation settings for X in each setup ¢ = 0,2 (excluding o and &)
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Subsequently, we applied SPIGPP models to the simulated samples from MLGCP,
utilising a Rectangle\_window(c(0,1),c(0,1)) with initial values for the model set
to dummy\_factor = 5, min\_dummy = 1000, dummy\_distribution = ‘‘stratified",
and saturation = 5. We also use a fitting\_package of ‘ ‘glmnet" and two potentials
for model and short\_range interaction distances as given in Table B.2. As detailed
previously, our focus lies on using the K functions to assess the model performance. Ad-
ditionally, we evaluate the performance of each selected model using the mean integrated

squared error (MISE) computed based on the K functions.

model short_range

Potential 1  “exponential” matrix(0.05, nrow=5,ncol=5)

Potential 2 “exponential” matrix(0.2, nrow=5,ncol=5)

Table B.2: Initial Potentials chosen for SPIGPP model parameters of 5 species MLGCP

simulation

The empirical and fitted K functions from MLGCP and SPIGPP models for the within-
species associations with respective confidence bands are presented in Figure B.2. Out of
the five species, the K function of the MLGCP fit (green), and the SPIGPP fit (blue)
closely follows that of the empirical K function in purple in species 1, 2 and 5. Both
MLGCP and SPIGPP fits show similar deviations from the empirical K functions for
species 3 and 4, which is interesting as it is expected for the MLGCP to perform better
since the scenario is simulated from MLGCP.

Similar observations apply to the between-species attractions depicted by the cross K
functions in Figure B.4. Empirically, these inter-species attractions are relatively smaller

compared to the intra-species attractions discussed earlier. The blue solid lines in the
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figure illustrate that the SPIGPP model adequately captures most of the between-species
attractions, denoted as (1,2),(2,5),(3,4),(3,5), (4,5), despite being a mis-specified model
while MLGCP fits them better. Notably, between-species attraction (2,4) stand out as
slightly larger than the others and SPIGPP fails to capture the magnitude of the attraction
accurately, similarly for MLGCP fitting algorithm proposed by (Hessellund et al., 2022b).

The interactions between species (1,3), (1,4), (1,5), and (2,3) exhibit empirical K
functions showcasing repulsion initially, transitioning into attraction around r = 0.1. In
Figure B.3, we demonstrate the close alignment of the SPIGPP model with these empirical
dynamics. The blue solid line representing the SPIGPP fit closely overlays the empirical
(purple) K functions during the repulsion phase at the beginning as can be seen in Figure
B.3, while MLGCP only captures (over-estimates) the attraction between them and is

unable to identify the repulsive associations at the beginning.
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Figure B.2: Comparison of within K functions across simulated five species simulation
study. The red line represents the baseline K function (772), while the blue and green lines
represent the estimated SPIGPP and MLGCP K functions respectively. The empirical K

function derived from the the simulated MLGCP data, is given in purple.
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Figure B.3: Comparison of between K functions across simulated five species simulation
study. The red line represents the baseline K function (772), while the blue and green lines
represent the estimated SPIGPP and MLGCP K functions respectively. The empirical K

function derived from the the simulated MLGCP data, is given in purple.
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Figure B.4: Comparison of between K functions across simulated five species simulation
study. The red line represents the baseline K function (772), while the blue and green lines
represent the estimated SPIGPP and MLGCP K functions respectively. The empirical K

function derived from the the simulated MLGCP data, is given in purple.
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Appendix C: Case Study - Fitting Procedure

In this section, we delve into the details of the fitting procedure used in the case study
discussed in Section 3.2.
As displayed in section 3.2, and Table C.1, we can see that the dataset contains four

types of trees and another (OT) for a group of eight additional tree species.

Trees Number
FX - Carolina ash (Fraxinus caroliniana) 156
NS - Swamp tupelo (Nyssa sylvatica) 205
NX - Water tupelo (Nyssa aquatica) 215
OT - stems of 8 additional species 60

TD - Bald cypress (Taxodium distichum) 98

Table C.1: Trees in a plot in the Savannah River South Carolina, USA.

In the MLGCP fitting process, we set ¢ = 2 and a regularization parameter A\ =
2.5. For the second-order composite likelihood, a distance parameter of R = 200 meters
was used with the covariate for water level. Both models assume a rectangle window of
(0,200) x (0,50) around the area where the points were distributed.

When fitting SPIGPP models, the covariate for water level and the estimated back-
ground intensity pg was used as covariates to ensure a fair comparison with the MLGCP
models fitted. We also use the parameter choices provided in Table C.2.

To estimate pg, we employ the semi-parametric kernel estimator outlined in Section 5
of the supplementary documents in Hessellund et al. (2022a). This involves sub-setting
the dataset for each tree type and fitting regression models, incorporating an intercept

and the covariate (water level), utilising the function ppm in spatstat package in R statis-
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model

short_range matrix(5, 5, 5)
model square_exponential
dummy_factor 1

min_dummy 5000

dummy_distribution stratified
fitting_package glm

saturation 2

Table C.2: SPIGPP models’ initial value choices

Figure C.1: Estimated background intensity (pg)
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tical software. Then the intensity at each tree location is predicted using the intensity
function. Following this, the density for each tree is computed, incorporating the intensity
as weights in the density function. In this step, we select the bandwidth based on the
criterion inspired by Cronie and van Lieshout (2018), implemented through the bw.CvL.
Finally, the density across all tree types are averaged to obtain the estimated background
intensity, pp and is shown in Figure C.1.

The estimates derived from the MLGCP model using (¢, \) = (2,2.5) are summarized
in Table C.3. The correlation scale parameter estimates for the common latent fields,
denoted as £, are reported as (1.44,21.05). Lasso regularization has driven the estimates
of the Y7 latent field, a1, to 0, similar to the results derived in Hessellund et al. (2022a)
while the latent field Y5 exhibits fluctuations in &5 from moderate to large. Swamp
Tupelo and Water Tupelo respond negatively to Y3, and they are negatively correlated
with Carolina Ash, Bald Cypress and Other tree species.

A~
P

Tree type Qs o 10)

Carolina Ash 0.565  2.236 0.668
Swamp Tupelo —0.645 0.660 3.891
Water Tupelo —0.356  1.401 2.295
Other 0.230 2.0327 1.999

Bald Cypress 0.205 1.091 5.659

Table C.3: MLGCP Parameter estimates for each Tree type for (¢, \) = (2,2.5)

The below, a, matrix supports the result given in Figure 5 in section 3.2. In the
estimated «ay, matrix, we observed repulsive associations between all species. However,

when computing the K functions, we also find a few attractions. These attractions occur
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679 between the tree species Carolina Ash and Bald Cypress, and between Other species and
es0 Bald Cypress. These K functions show attractions, due to the fact that they were not

es1 significant at the 0.05 level of significance when estimating the short_range «;, matrix.

FX NS NX or TD
FX | 073 —-0.130 —-0.208 —-0.301 —0.0380
NS| —-0.130 0.465 —0.172 —-0.172 —0.184
682 ap = NX|-0.208 -0.172 0.805 —0.130 -0.216

oT| -0.301 —-0.172 —-0.130 0.529 —0.114

TD\-0.038 —0.184 -0.216 —-0.114 —0.027
683 Figure C.2 displays the log-papangelou conditional intensities (Flint et al., 2022) of

4 the tree species in the fitted SPIGPP model (Which is explained in section 3.2).

685 For the comparison of the two methods, we compute the K functions. To derive these
ess K functions, we simulated 100 fitted MLGCPs using the estimated parameters such as
71 «, 0, &, ¢, estimated fs, and log(pp) . These simulated fitted MLGCP samples are then
ess  used to compute the MLGCP K functions. Similarly, utilising the fitted parameters from
es0 each model, we simulated 100 fitted SPIGPP samples to generate the fitted approximate
s00 K functions for the SPIGPP models. We then compared the K functions of the fitted

o1 models (MLGCP and SPIGPP) with the empirical K function computed from the data.
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Figure C.2: SPIGPP fitted model - Conditional predictions
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