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Abstract

This work is absorbed in the neighboring mode-dependent event-triggered con-
trol scheme for Markov jump systems with unknown interconnections. A dy-
namic event-triggered mechanism composed of neighboring modes parameters
is provided to save communication resources and reduce the number of solution
parameters. Distinguished from existing version, the global operating modes
are required to be unknown for each local subsystem. Resorting to neighboring
modes information, an event-triggered state feedback controller is established
to assure system stability. The cyclic-small-gain criterion is used to tackle the
unknown interconnections so that novel stability criteria are obtained for the
closed-loop systems with H,, performance. Finally, an illustrative example is
employed to confirm the proposed method in the aspect of validity.

Keywords: Markov jump systems, neighboring mode-dependent

event-triggered control, interconnected systems

1. Introduction

Markov jump systems (MJSs) have significant advantages in describing phys-
ical models encountering abrupt environmental changes or stochastic disturbanc-

es [IL 2, B]. Therefore, many scholars are absorbed in the analysis and synthesis
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for MJSs [, B, 6] [7, 8, @]. [10] discusses the H., finite-time stabilization for
MJSs with unmeasurable state by sliding mode control approach. [I1] designs
a quantized feedback controller to assure the stability and Lo-L, performance
for the MJSs with time-varying delay. In [I2], uncertain singular MJSs are in-
vestigated for stabilization using a dynamic output feedback control strategy.
It is noted that the aforementioned results focus on centralized control strate-
gies. Interconnected systems usually have strong coupling and high dimensions.
Thus, the existing centralized control strategies are rocky to handle the syn-
thetical problems of interconnected systems. Recently, decentralized control
methods have been applied to interconnected systems and numerous research
results have emerged [I3] [14] [15]. The work in [I6] introduces a decentralized
state feedback approach aimed at ensuring the stability of Markov jump inter-
connected systems. In [I7], a decentralized tracking control method is devised
to attain finite-time stability for MJSs subject to both actuator with satura-
tion and without saturation. It should be noted that unknown uncertainties are
likely to occur between subsystems, which have a significant impact on system
performance. Hence, it is essential to explore the control problem of systems
with unknown interconnections.

Recently, some progress on Markov jump interconnected systems with uniden-
tified interconnections has been made [I8, 19} [20]. In [2I], a decentralized adap-
tive sliding mode control strategy is introduced to stabilize semi-MJSs featuring
unknown interconnections. A decentralized observer-based controller is designed
and sufficient criteria are given to stabilize MJSs with unknown time delay and
nonlinear interconnection in [20]. However, the above-decentralized control re-
sults rely on global modes, where the controller accesses the modes information
of each subsystem. The timeliness and accuracy of mode information cannot
be guaranteed in the process of transferring information. This makes it difficult
to use a global mode-dependent controller. [22] presents a decentralized con-
trol scheme depending on local modes information to relax the requirement of
global operational modes availability. Based on [22], [23] proposes a neighbor-

ing mode-dependent control method for uncertain MJSs, where each local con-
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troller accesses modes information of its neighboring subsystems. [24] studies a
neighboring mode-dependent control scheme for MJSs with measurement errors.
Compared with the global mode-dependent control approach, the neighboring
mode-dependent control mechanism eliminates the need to broadcast mode in-
formation between subsystems and saves costs. To the author’s knowledge, until
now the control methods related to neighboring modes for Markov jump inter-
connected systems with unknown interconnections have not been thoroughly
reported.

On the other hand, many needless data packets are dispatched to the commu-
nication channel, which causes a waste of communication resources. Therefore,
an event-triggered mechanism (ETM) for the control system is proposed and
developed [25] 26], 27, 28] 29]. [30] designs an event-triggered output feedback
controller to ensure stochastic stability of MJSs with external disturbances. A
memory-based adaptive event-triggered control (ETC) scheme is used to guaran-
tee the security issues of Markov jump neural networks under deception attacks
in [3I]. A method combining a PI controller with an event-triggered state feed-
back controller is proposed to control the power system with Dos attacks in
[32]. Observing that a neighboring mode-dependent ETC strategy doesn’t only
save communication resources, but also reduces costs and is easier to install.
How to design a neighboring mode-dependent ETC scheme for Markov jump
interconnected systems with unidentified interconnections is a meaningful and
challenging work, which stimulates the author’s research interest.

Inspired by previous studies, this article considers the neighboring mode-
dependent dynamic ETC scheme for Markov jump interconnected systems with
unidentified interconnections. Cyclic-small-gain conditions are used to tackle
unknown interconnections. The stability conditions are obtained. Finally, the
effectiveness of the put forward control method is verified through a digital

example. The main benefits of the proposed method are summarized as follows.

1) Different from [7, B3], where ETM is global mode-dependent, the neigh-
boring mode-dependent dynamic ETM is proposed for each subsystem
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in this work. It saves communication resources, reduces costs and easily
installed.

2) Based on the neighboring mode-dependent dynamic ETM, this work pro-
poses a neighboring mode-dependent event-triggered state feedback con-
troller. Compared with results in [19, [32], the proposed scheme avoids the
need of global mode information.

3) A cyclic-small-gain condition is utilized to address the unknown intercon-
nections in order to guarantee the stability and the H., performance of

the resultant closed-loop system.

The rest of the paper consists of five sections. Section |2 introduces the
system model and formulates the neighboring mode-dependent ETC issues. A
dynamic neighboring mode-dependent ETC design methodology and stability
analysis conditions are provided in Section[3] Section [d] provides one simulation
result to verify the theoretical result. Finally, Section [5| summarises the whole
paper.

Notations: In this work, For a matrix A, A~ and AT denote its inverse and
transpose , respectively. He (M) = M7T 4+ M. P, (-) is the probability measure
and € () denotes the mathematical expectation operator. The symbol * denotes

the symmetric structure.

2. Problem statement and preliminaries

2.1. System description

Explore the following Markov jump interconnected systems with N subsys-

tems, where i-th subsystem is characterized as:

i (1) =Ai (ri (1) i () + Bi (ri (1) i () + Di (ri (1)) wi (1)

(
Hi (ri (1)) @i (y (1)),
Xi *
(
(

zi (1) =Ci (ri (1)) @i (8) + Gi (rs () wi (2)
)i (1),

yi (t) =FE; (r; (t
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in which i € M = {1,..., N}, z; (t) € R™ depicts the system state; u; (t) € R™
denotes the control input; y; (t) € R™ stands for output; w; (t) € L2 ]0,00)
describes the exogenous disturbance; A; (r; (t)), B; (r; (1)), D; (r; (1)), E; (r; (1)),
Ci(ri (1), Gi (r; (t)) and H; (r; (t)) represent known matrices; @; () : R — R™

is the unknown interconnection and is met as follows:
@7 (y (1) i (y (1) < djy" (H)y (1), (2)

where r =Y N o,y (¢) = [yf (1),93 (t), ...,y (t)]T and d; > 0;r; (t) € M; =
{1,2,3, ..., M;} represents the local Markov process. The vector [r; (t) r2 (), ...,
rn (t)] represents a global Markov process and assumes it belonging to a set M;
with M elements. Then, we denote M; £ {1,..., M} and a bijective function
©: M — M; with ¢ = ¢ ([gl,gg,...gN}T), where ¢ € M, ¢; € M;. Let p~*
: M; — M, be the inverse function given by ¢! (<) = [¢1, 2, vt Tt s
similar to the work of [23] and [24]. Hence, ¢; = ¢! (). From these, we can
know the association between the local modes and the global modes.

Denote 7 (t) £ ¢ ([7"1 (t),ra(t), e (t)]T> The transition probability of
{r(t)} is expressed by the following:

TewV +0(V), v
Pr{r(t+v)=o|r(t) =¢} = v 7 (3)

1+ 7,V +0(V), v=g,

where V > 0 and limy_,¢ (0(V)) /V =0, m¢, > 0 shows the transition rate and

— M
Tee = — E v:l,v;ﬁuﬂ-gv'

2.2. The event-triggered control scheme

To address an issue in which global modes information may be unavailable to
each subsystem, we consider an event-triggered state feedback controller asso-
ciated with adjacent modes. We first define a binary matrix E = [e;;] € RV*V|
e;; = 1, indicating that the modes information of the j-th subsystem can be used
for the i-th local controller, otherwise e;; = 0. Thus, the adjacent modes infor-
mation for each subsystem can be described as [e;171 (t) , €272 (t) , ..., &;NTN (t)]T.

Assume it belonging to a set M;; with M,; elements and indicate Myg; =
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{1,2,...,My}. Describe a bijective mapping v; : M; — My with ; =

0; ([eilq, €252, ..., eiNgN]T) and ¢; € Mg;. It can be seen that 1; = v; (diag [e;1,

eizs o ein] @1 (6)). Let & (1) 2 ¢ ([em (1), eiar (L), ooy einTN (t)]T>, we use
the following novel ETM:

0i ([ (KT) = s (t)]" 2 (& (1) [ws (WT) — s (8T)])

> 01 (= (& (1) @i (WT)" 25 (& (1)) @i (KT)) + hs (KT)

where g; > 0, g; (& (t)) € [0,1) is the detection threshold; £2; (&; (¢)) > 0 stands

(4)

for weighting matrix; x; (kT') denotes the current sampled state; x; (£xT") means
the latest transmitted data; h; (¢) is the dynamic variable and supposed to

satisfied
hi (8) = —mihs (£) + &3 (& (8) @ (KT)T 2, (& (1)) @i (KT) 5)
— [ (RT) — @ (0,T)]" 2 (& (1)) [ (KT) — @i (0T)].
with the initial conditions h; (0) > 0 and n; > 0.
According to [7], defining the time-varying as 7 (t) = ¢ — t;T — ¢T with a
maximum value of 7p;. The sampling instant from ¢;7" to tx417can be expressed

as sy T = t;, T + cT', the ETM is described as:
0i (eF (k) 2 (& (D) e (31T) Z o1 (= (& (1) @i (51T) 24 (& () i (4T
+hi (1),

(6)
where h; (t) meets iLl (t) = —mshi (t) + &5 (& () 23 (sxT)" 025 (& (8)) 2 (s1.T) —
el (siT) 2; (& () e (skT), txT and tx1T are used to represent the current
sampling moment and the next sampling moment, respectively, e; (sxT) =
xT; (SkT) — X; (tkT)

The neighboring-mode dependent event-triggered state feedback controller

is designed as follows:
u; (1) = K (& (1) zi (86T, (7)

where ¢ € [t;T + 7, tks1T + 7oy, ), and K; (& (t)) represents the controller

gain.



105

110

115

120

Remark 1. Compared with the global mode-dependent ETM in [32)], this paper
puts forward the ETM related to neighboring modes and designs the neighboring
mode-dependent ETC scheme @ The modes information accessed by the neigh-
boring mode-dependent event-triggered controllers is determined by local modes
and neighboring modes. This approach relieves the need for all subsystems to

have accessible modes of operation.

Definition 1. [Z]|] The system with w; (t) =0 and w; (t) =0 is steady if

under incipient conditions xo = [z{ (0), 23 (0),...,z% (O)]T and ro = [r{ (0),

T (0),...,r% (0)]".

2.3. Neighboring mode-dependent control problem

This article considers Markov jump interconnected systems and designs
neighboring mode-dependent event-triggered state feedback controller such that
(i) The resultant closed-loop system is stochastically stable when w; (¢) = 0.
(ii) For given v > 0 and 7; > 0, the inequality
SN [0 )z ary <e {0 [ gl (8w (1)t

holds for any nonzero w; (t) € L2 under the zero initial conditions.

3. Design method

Our goal is to design event-triggered state feedback controllers related to

neighboring modes. Firstly, introduce an auxiliary MJS y; :

where 4; (s) = Ai (i), Bi(s) = Bi(s:), Di(s) = D;(s;), Hi(s) = H; (),
Ci(s) = Ci(si), Ei(s) = Ei (), and G; (s) = G;(s;), for all ¢ € M;, s =
o' () e M and ||@; (5 (1)) < di || (1)]-
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In addition, the ETM and controller are constructed as follows:

0i (7 (58T) 2 (r (1) & (s4T)) > (i (r () @ (6T 2 (r (1) @ (54T o)
+ Bl (t) ,

ui (t) = Ki (r (8)) zi (4:T) , (10)

Where h; (t) meeets i_L(t) = —nih (t) + & (& (1) T (skT)T 02, (r () z; (sgT) —
el (sxT) 2; (r (t)) é; (sxT) and p; > 0. Specially, we have K, (¢) = K;(s) +
AK; (s) and £2; () = £2; () + A82; (5), where K; () and £2; () indicate the gain
of the controller and weighting matrices, respectively, AK; (¢) and Af2; () are

variations with the following from:

AK; () = [AKiab ()], sem, » [AKiap (S)] < Okian (), d = 1,2, ...,m,b=1,2,...,n;,

AL (s) = [ALiay ()]0, xm, » 1ARia6 ()| < bian (), ds b= 1,2, ..., ;.

Augmenting (8] with yields as:

Zi (t) =A; () Z; (t) + Bi (¢) Ki () &; (t — 7 (t)) + D () w; (t)
— Bi (§) K; (5) & (s T) + H; () P (3 (1)),

() zi (t) + Gi (S)wi (1),

I\
AN
—
~
N
I
~

Remark 2. Since system depends on r; (t), ETM @ and controller (@
depends on &; (t), this controller cannot be designed directly. To solve the above
problem, we propose the auxiliary system (@) that relies on r (t). According to
the bijective function ¢; = ¢;* (s) and 1; = ; (diag [ei1, €iz, .. ein] ™1 (<)), it
can be found that the auxiliary system (@ includes the system . Therefore,
a controller that is effective for the system @ 1s also useful for the system .
The controller (@ s given that can be used to derive the neighboring mode-
dependent the controller (@
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8.1. Stability Analysis

Below we will give the conditions for system stability and give the
strategy for designing the neighboring mode-dependent event-triggered state
feedback controller (7).

Lemma 1. For g; >0, & (r (t)) € [0,1) and h; (0) > 0, h; (t) satisfies
hi(t) =0 (12)
Proof: Inspired by [34)], from inequality (@, we can know

hi (8) +mihi (t) = — &7 (si.T) i (r (1)) & (s.T)
& (r (1) T (s6T)" 2 (r (1)) T (s4T)

1.
>— —h; (t
o (t)

with h; (0) > 0. Then, get the following:
i (t) > by (0) e (430!
Thus, inequality (@ hold. This completes the proof.

Remark 3. To facilitate the design, ETM (@ is designed for the auziliary
system (@, where ETM relies on r(t). According to the bijective function
6 = ;1 (s), we can see that h; (t) is a special form of h; (t). So if h; (t) >0,
then h; (t) > 0.

Lemma 2. [35] For all W = WT, if A exists, the following statement is
equivalent:

(1): 2TW2 <0, forall 2 #0, /2 =0;

2): LT WAL <o0;

(3): Existence of & to W+ He (FA) <0

Lemma 3. [30] Let matrices A = AT, L and a compact subset of real matrices
M be given. Then the sentences listed below are equal:

(1) For M € M, ¢TAE <0 such that MLE =0 for all £ # 0;

(2) Exists N = N7 such that A+ L"NL < 0, N};NNH >0, forall M € M.



Lemma 4. [37] For 7 (t) € [0, 7], any real symmetric matrices F > 0 and G

F G
which satisfy > 0, the following inequality holds:
F

— 1 QT () Fr (t)dt < €7 (t) Z€ (1),

where & (t) = col {z (t),x (t — 7 (t)),x (t — )}, and

—F F-G G
Z=| % —2F+HelG] F-G
* * -F

Lemma 5. For given scalars v, A\; and a;, if there exist 0 < ¢; < 1, d; >
0, P,(u) >0, Q;(u) >0, R;k >0, Q >0 and 2;(u) > 0 of appropriate
dimensions such that the following - are satisfied

R; M;
) (13)
011 b2 bz Oia Oiis Oie Oirr
* O Oiog Oipa 0 0 0
* * 9,‘33 0 0 0 0
I (u) = | * * % Oua Ous 0O 0 | <0, (14)
* * * x  Oiss 0 Ois7
* * * * * Oi66 0
* * * * * * 077
M
D Qi (1) — Qi <0, (15)
v=1

where

M
Oi11 = Zﬂ—qvpi () +He [Pi (s) A; (§)} + Qi (s) + d?Pi (<) H; (<) HZT (S) Pi(s),

+7mQi + (L +a;7%) (L4 87" EF () Ei (s) + B 6,1 — Ry,
0i12 =P; () B; () K; () + Ry — M;, 013 = M;,0;14 = AT (5) Pi (s),

015 =P; () D; (s) ,0:16 = —P; (s) Bi (s) Ki (s) , 017 = CF (),

10



Oi20 =&; () 2; (s) — Ry + He [M;], 0403 = Ri — M;, 0504 = K[ (<) B () P (<),
0i33 = — Qi () — Ri, 0sua = T Ry — 2N P, () + NaZdi P (s) Hy () HY () P; (),
0ia5 =\iP; () D; (s) , 0146 = —NiP; ($) By () K; (5) ,0is5 = —*1,0i57 = GT (s),

Oice = — 2, (<) ,0i77 = —1

Then, we have

v (16)

4
Vi= Vir+hi(t), (17)
k=1
where
Vir =} (t) P (u) x; (t)
¢
Vig = / x? (8) Qi (u) z; (s)ds,
t—Tm
0 t
Vis :/ / zl (s) Qixi (s) dsd,
—Tm Jt+6
0 t
Via = / z¥ (s) Ryz; (s) dsdb),
—Tm Jt+60
and define

of (t) = [z} (t), 3] (t—7(),%] (t—7m), 2] (), 0] (), (sxT)],
one has

E‘/il :2.’13? (t) Pi (u) .Z"i (t) + $? (t) Z ngPi (1}) ZT; (t) 5

LViy =l (t) Qi (u) wi (t) — & (t — Tm) Qi (w) s (t = Tn)
M

t
+ /tT :c? (s) ; T Qi (V) z; (8)ds,

t
LVi3 :Tm%T (t) Qiz; (t) — / x? () Qiz; (s)ds,
t—Tm
t

LV :TmI? (t) Rix; (t) — / x? (s) Rix; (s)ds.

t—Tm

11



Combining Lemmal[3, it follows that

_ /t 2T (s) Riw; (s)ds < €7 (1) 53 (1),

—Tm

where & (t) = col {Z; (), Z; (t — 7 (1)), %; (t — Tp)}, and

“Ri R~ M, M,
* * —Ri

Taking (@ into account, we have
LV; 22] (8) Pi (<) (Ai () &i () + Bi (¢) Ki () & (¢ — 7 (¢

— Bi(s )K'( )éi(SkT)+D‘( )w; (t) + H; () ¢i

~—
~—

+ & (¢) T (skT) 2, () z; (siT) + :L' Z e Py (0) Z; (¢

- j? (t = Tm) Qi (¢) Ty (t — Tm) —€ (SkT) 2; ( ) €i (SkT) - 77ihi (t)
+2] () Qi () Ti (t) — 7w (t)w; () + & (t) Si&i (t)

(
)

+2a] (£) (\eP; (<)) (Ai () @ () + By (€) Ki () i (t = 7 (1))
Di ()

+& WO Z&G M)+ (L+a72) 7" ()7 t) + ) (1) Qi (2)
+d7x] (t) Py (<) Hi (<) H (<) Py (<) @i (t) + mmZ] (t) Ri; (1)

+Xaidi T (8) Py (<) Hi (6) H} (<) Pi(s) i (t) -

K2 ’L K3 Z

12



From inequality and (@, it follows that

LV; <= B toa] ()2 (1) — (1+a;7°) B (6) 3 (1)
N
+(1+a?) D g @0)g ).

j=1j#i

This completes the proof.

Lemma 6. Combined with the conditions provided in Lemma [5 if the cyclic-

small-gain condition (@

N-1
i Y BuBuBun<l (18)

J=1 18 <o <o <djt1

holds and (@ can ensure that the following formula is solvable,

—(1+a7?) (14a3?) B -+ (1+ay’)Bn K1 -1

(1+a1‘2)61 —(1+a2_2) (1+QE2)5N Ko 1
X = 9

(1+ar®)pr (1+a%) e - —(1+ay) N =

then there exist positive scalars \;, a;, and B;, such that

d (& t
© {dt <Z (kafs (& (1) i (w) 72 () + /ti z; (s) Qi (u) Z; (t)ds

—Tm Jt+0

1=1
0 t 0 t
+ / / 7 (s) QqZ; (t) dsdh + / / z1 (s) Riz; (t) dsdf
—Tm Jt+60 t

2T () 7 () — w8 wi (1))}

N N
<= wibEl Oz (O + Y ri(L+a;%) (—5" )5 (1)
i=1 i=1
and k; 1s solved to
H;‘V:Lj;éi (1+5)

>0. (19)

Ki =
' (1 + a;2) (1 - ;_\7:711‘] Z 1<i1<i2<-~~<ij+1<Nﬁi16i2 T 6ij+1)

s Proof: This proof refers to the Lemma 2 in [38].

Based on Lemma [5| and Lemma @ the stability of the system under
ETM @D is analyzed.

13
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Theorem 1. For given scalars 7y, Tm, i, ai, and B; satisfying the condition
(19), the system (11) is stable and has Hy performance if 0 < ¢ < 1, 6; >
0, k; > 0 are existent, and matrices P;(s) > 0, Q;(s) > 0, R; > 0, Q; >
0, £2; (¢) > 0 with appropriate dimensions, such that the inequalities —
hold.

Proof: Construct Lyapunov function under a Markov process as:
N
V(t)=> riBiVi, (20)
i=1

where k;, a; and [3; satisfy the conditions and . Based on Lemma [5|,

we obtain

d (& N o -
5 {dt (Z_Zl :‘%ﬁz%) + Z:ZI KiBi (ZZT (t) Zi (t) _ ’72wi (t) W; (t))} <0.
Thus, we can derive that
N
5{ ; <; Hiﬁi%)} <0,

o N

&‘Q‘

when w; (t) =0, and

with initial condition. Thus, we obtain that the system is steady and meets

H, performance index ~y, which finishes the proof.

Remark 4. A state feedback control scheme for Markov jump interconnected
systems is proposed in [10]. However, the interconnections are assumed to be
known. Theorem 1 of this article analyzes the stability of systems with uniden-
tified interconnections based on the cyclic-small-gain condition (@, which is

more realistic.

Theorem [I] provides stability criteria for the global mode-dependent system
(8). Then, we have the theorem

14



175

180

185

Theorem 2. If controller gain K; (-) and weighting matriz £2; () are selected

to meet

| Kian (t5) — Kiav ()| < Skian (<) ,

| Qi (41) = iay ()| < a2ian (),

(21)

for s € Mj, 1; =1; (diag e, €52, ..., ein] 071 (5)) € My,

where [Kiap (4i)], wn, = Ki (1), [Kiav ()] = Ki (1), [Qiav ()], 0, =
2; (1), and [(_Zidb (Li)]nixni = §2; (1;). Then the neighboring mode—dependent
controllers (@ stabilize system .

Mg XNy

Proof: Define AK;qp (s) = Kiap (t;) — Kiap (s) and A, (S) = 2iap (1:) —
Qiap (), inequality implies |AK;ap (<)| < Orian (<) and [A2;qp ()| < dian (<)
We can obtain that

K (r(t) + AK; (r (t)) = Ki (r (1)) + Ki (& (1)) — Ki (r (1)) = Ki (& (1)),

Qi (r (1)) + A; (r (1) = Qi (r (1) + 2 (& (1) = 2 (r (1)) = 25 (& (1))

Thus, by (§), (9) and modeling of the auxiliary system contains by (),
(6) and (7)) modeling system. If the controller can achieve the stability of the

system , it also guarantees the stability of the system . This accomplishes
the proof.

Remark 5. Theorem @ offers the relationship between the ETM (@ and the
controller (@) dependent on &; (t) and the ETM (@ and the controller (@ the
dependent on r (t) by introducing a gain variation of A -; () and giving bounds
0-igp (). Based on this, we can get the event-triggered controller associated with

adjacent modes.

3.2. Controller design

Non-convex form cannot be directly designed in Theorem [} Theorem [3] is
given to obtain controller . Firstly, we denote ¢;1 = n? + n;m; + r;m;,

15



lio = mi+m;+14, lis = n? +nimi+ring, Lig =n? +n; +my, b = i1 + ;4 and

Si1 (s) = [Sin1 () Sinz2 (s9) -..Site; (5)],
Si2 (§) = [Si21 (§) ; Si22 (S) 5 -3 Siae, ()], (22)
A; (¢) = diag [Aj1 (5) , Az (6) - Aig, (9)],

where
_ T T
Sitk, (§) = [(TZB’L (§) Vi (§> Cd) OniX(Zqum,)} )
Sizk, (¢) = [Onani gl? On, s _gl? On, ><€i4] )
Aig, (6) = AKap () , k1 = (d— 1) m; + b,
_ \T T T
81'191 (C) - [anxnl (sicd) OniX€i1:| 7812.(21 (g) - [Onlxnl gb Omxé“] )
A, () = Aiap (s), 1 = ni + (d — 1) n; + b,

_ T T
Sitk, (S) = [Omx&-g (riB; () Vi(s)ca)” Opyxr miVi (s) Omx(&-rm)}

Sizk, () = [On,xn, 95 Onixen] s
Ay (6) = AKiap (6) ke =1 + (d — 1) m; + b,

_ 7 T
Sitks (8) = [Ononta (riBi (6) Vi () €a)” Ot

T
12k3 S)= [Oan(£13+n1) gb 0n.;><€.;4]7

Siin, (s

Sizks (<)

Ay (6) = AKap (6) , k3 = nd + (d+ 1) m; + b,
() = [On,x(eusmo), €a” Onixea]
(c)=10

T
8i2_(l2 S |: niX(Zi4+ni)i gb OniXZM:I )

Ain, (§) = ALiay (5) , 20 = TL;1 +(d—1)n; +0,

T T
Si1k4 (g) = |:07L1><(2117n1) (TZ‘/; <g> Cd) OniXZiSiI 5
Si2k4 (g) = I:Onix(eiér‘rni) gg OTWX@%] )
Aik, (() = AKia (C) yky = n? +(d+ 1) m; + b,

¢ and g are the column vector where the kth element is equal to 0.

Theorem 3. For given positive scalars 7y, \;, a;, k; and B; satisfying the cyclic-

small-gain conditions (@ and (@), the system is steady and has H

16



performance, if there are matriz ©;(s), and Q; > 0, Qi(s) > 0, R; > 0,

R, M;
R;
and (24)) hold,

*

i1 () + He (042 (s) Ai () + Ai () Ouz () Ai (<)

where
01 Oi1o
* 9i22
* *
* *
* *
7, (s) =
* *
* *
* *
* *
* *
with
M
v=1
+

Oi13 0iia G5 O

Oios 0Oioa 0 0

91433 0 0 0
* §i44 5145 9_1'46
* x5 0
* * * éisg
* * * *
* * * *
* * * *
* * * *

Oi17
0
0
0

;57
0

Oi77

*

Vi () + S5 (6)Oi1 (6) Siz (s)  Si1 (s) + 8L () Oua ()
O3 (<)

> 0, matriz V; with appropriate dimensions such that inequalities

<0,  (23)
>0, (24)
Oi1s  Bio 0
s 0 0
0 0 0
fiss 0 Buo
0 0 0
Oics 0 0
0 0 0
biss 0 0
*  Biog 0
* * §i1010_

Y B () E; (¢) — Ry + 871601,

+ R — M;, 013 = M;, 014 = MAT (6) Pi (<),

i5 = P (s) Di (s), 016 = —1:B; (s) Xi (s) , 07 = CF (),
0itg = —P; () By (s) +1:B; () Vi (s) , 0510 = P; (s) H; (s),
Oina = &; (s) £2; (¢) + He [M;] — R;,0;03 = R; — M;,

Oi24 = (riBi (<) X; (C))T Oios =1 X7 (<), 033

Oiaa = =20 P; () + T Ry, 0345 = NiP; () D; (s)

17
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Oi16 = —1:iB; () X; (s),0is5 = =721, 057 = GT (s),
Oic6 = —$2; (<), 068 = —1 X} (s),0p77 = —1,

Oiss = —He [r;V; (5)],0ig0 = —d21,0:1010 = —); 2a; 2d31.

Proof: II; () in can be written as
1, (§) = NY T IT; (o) N+, (25)

where (/\AfJ‘)T = [I NL}T and

with
NL:{O Ki() 0 0 0 —K;(c) 0 —I.

Applying Lemma [2| to , we can get

II; () = 1I, (s) + He [FN] < 0, (26)

where N = [NL —I],

T
f:[FT 00 FT 0 0 0 (rVi(s)"

with F' = —P; (s) B; (s) + 7:B; (<) Vi (). Using the Schuler complement to in-
equality and denoting X; (s) = V; () K; (), then the following equation is
obtained.

11, (<) + He [AJL- (()} <0, (27)

where

18



o Ay 0 0 0 -Ay 0 0 0 0
% & () Aigp(s) 0 AL 0 0 0 AL 0 0
* * 0O 0 0 0 0 0 00
* * £ 0 0 -Ad1 0 0 00
AR () = * * x o« 0 0 0 0 0 0
* * * ox ok —Afg, () 0 AL 0 0
* * * * * * 0 0 0 0
* * * * * * * 0 0 0
* * * * * * * * 0 0
* * * * * * * * * 0

with Aéil = ’I‘iBi (§) Vi (§) AKiqp (§)> AazQ =7 V; (§) AK; (§)
From , it follows that

W (s)+ He[Si1(s) Ai () Siz (s)] <0 (28)

Then, inequality is described as
] G <0, G =Ly, (29)

where U; are nonzero vectors and L7 = [I (A; () Sia (g))T:| We can easily
find that %; L;(; = 0 is established, if given

where éz’l = diag [@iu (§) ,Bi12 (€) s Oitg, (§)], éiQ = diag [9i21 (§) , B2 (§) ,

vy @420, ()] and O3 = diag [@i31 (), Oi32 (<), ..., Oise, (s)]. Applying Lemma
190 if the inequality holds, it can be concluded that conditions(23) and

are achieved for all A;. (<) € [=d;. (<), ;. (¢)] ;s € M. The proof is completed.

19
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200

205

Remark 6. Theorem @ eliminates the coupling between the matriz P; (¢) and
the system matriz. By introducing the relazation matriz ©; () and using Lemma

[3, the stability conditions of the system are obtained in terms of LMIs.

After that, the design process is introduced for acquiring desired the event-
triggered state feedback controller related to neighboring modes.

Algorithm 1.
S1: Initialize ;. () to proper values;

S2: Process the optimization question

min v  subject to , .

Then, the event-triggered state feedback controller gain associated with the

global mode is decided by

S3:  Check whether there exist solutions K; (1;) and 2; (¢;) satisfying condi-
tion . If that is solvable, choose viable solutions under these conditions,

otherwise, add the value of d;. (<) and keep on S2.

Remark 7. When ;. (¢) are immovable, the matriz inequalities , and
turn into LMIs. Therefore, the global mode—dependent event-triggered state

feedback controllers are obtained in S2. Afterwards, the neighboring mode—dependent

event-triggered state feedback controller is obtained in S3.

When r; (t), & (t) and 7 (t) are equal and AK; (¢) = Af2; () = 0, where
7(t)=<€ M and M = {1, ceny M}, the problems addressed in this article will
come down to global mode-dependent situation in [32]. Augment system

20



with @[) and ,then, the closed-loop system can be obtained as:

i -

Zi (t) =Ai (§) @i (t) + Bi (§) Ky () i (t — 7 (1)) — Bi () Ki (S) e (sxT)

+ D; () wi (t) + Hi () Pi (y (1)),
zi (1) =Ci () i (8) + Gi () wi (1),

7 (1) =E; () x4 (1) -

Then, from Theorem [3] the corollary [[] is derived.

(30)

Corollary 1. Given positive scalars v, N\;, ki, a;, and 3; satisfying the modi-

fied small-gain conditions (@ and @), system (@) is stable and meets Ho

performance, if there exist matrices @Q; > 0, Q; (<), R; > 0 and matriz V; with

appropriate dimensions such that

i1 Oz Ops Ops Ons 06 Oz Ous Giro 0
£ 02 Oz Oiza O 0 0 fios O 0
% « 633 0 0 0O 0 0 0 0
* * % O Ous Oug 0 Ous 0 o
7, () = * * * *  Oiss ~O 0,57 ~0 0 0
* * * * ¥ Bigg 0 BOigg O 0
* * * * * x Oz 0 0 0
* * * * * * * éiSS 0 0
* * * * * * * * éigg 0
* * * * * * * * * gilOlO

where

M
01 =Y meoPi (S)+ He [P () Ai (9] + Qi (§) + Qi + T Ri
v=1

+ (1 +0a;?) (148" Ef Q) Ei (&) — Ri + B 6l
012 =1 B; (§) X; (§) + Ry — My, 0513 = My, 0,10 = M AT () P (3),
0i15 =P; () D; (S) , 0416 = —1:Bi () Xi (S) , 017 = CF (),

Oiis =— P ($) B () +7:B; () Vi () ,6i10 = P () Hi (<) ,

21
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020 =€; () 2; () + He[M;] — R, fi23 = R; — M;,

Oi2a = (r:Bi () X ()7, 0ias = ri X[ (), 0iz3 = —Q: (&) — Ry,

Oias = — 20 P; (§) + TRy, Oias = NP () D; (<), Oiag = —1:B; () X (<€),
Oiss = — V21, 0557 = GT (&), 0i66 = —92; (<), Bi6s = —1: X (),

Oirr = — 1,018 = —He [r;Vi (S)], 0100 = —dZ T, 01010 = —A; 2a; °d; 1.

20 Proof: Similar to Theorem[3

4. Simulation examples

The advantages of the proposed results are demonstrated by a numerical
study. Consider a Markov jump interconnected system with 3 subsystems. Each
subsystem exists two modes. The data of the subsystem is displayed as follows:

25 Subsystem 1:

0 1 0 —01 0 —0.1
A (1) = ;A1 (2) = ,Bi(1) =
0.5 —0.3 ~1.02 —0.1 0 0.1
0 —0.2 0O 0 0 0 0 0
B1(2) = JHy (1) =
0 0.1 003 0 0.02 002 0 0.01

0 0 0 0 0 0
0.03 0 0.01 001 0 0.01

Hy (2) =

C1 (1) = €1 (2) = 0.1 eye (2),G1 (1) = Gi (2) = eye (2),

0.1 0
Dy (1) = Dy (2) = 0.1 eye (2), By (1) = By (2) = ,
0.1 0
Subsystem 2:
0 0.3 0 0.3 0 —0.12
Ay (1) = ;A2 (2) = B2 (1) =
—-0.21 —-0.11 —-1.23 —-0.11 0 0.12
0 —0.21 0o 0 0 0o 0 0
B, (2) = ,Hy (1) =
0 0.11 0.03 0 0.01 0.02 0 0.01

22



0 0 0 0 0 0
H, (2) =
0.03 0 0.02 001 0 0.01

C2 (1) =C2(2) =0.1xeye(2),G2 (1) = G2 (2) = eye (2),

0.1 0
Dy (1) =D3(2) =0.1%xeye(2),Fy (1) = Ey (2) =
0.1 0
Subsystem 3:
0 0.1 0 0.1 0 —1.2
A3 (1) = A3 (2) = ,Bs (1) =
—-1.05 -0.3 —-1.05 —-0.8 0 05
0 —1.2 0O 0 O 0 0 O
B3 (2) = ,Hs (1) =
0 03 0.05 0 0.02 0.03 0 0.01
0 0 O 0O 0 O
Hj3(2) =
0.06 0 0.02 0.03 0 0.01

O3 (1) = G5 (2) = 0.1 x eye (2), G (1) = G (2) = eye (2),

01 0
0.1 0

D5 (1) = D3 (2) = 0.1 eye (2), B3 (1) = B3 (2) =

As in the work of [22], the global mode information is expressed through
r(t)=¢€e{1,1,1],[1,1,2],[1,2,2],[2,1,2]}. Then, the TR matrix is described

as
-08 02 04 02

01 -06 03 02

03 04 —-08 0.1

01 02 04 -07
To demonstrate the effectiveness of the proposed strategy, giving 3; = 0.8,
A = 0.01, d; = 0.05, e1 =0.02, g2 = 0.15, e3 = 0.01, 73 = 3 = 8.1, 7o =
85, Tm1 = Tmz = 0.02, 72 = 0.01, 0y, , = 0.6, Ox,, = O, = 1.3, and

60, = 1.2 for ¢ = 1,2,3. The global mode-dependent controller gains and

iqp

the event-triggered parameters are obtained in the Appendix. The neighbor-

ing mode—dependent controller gains and the event-triggered parameters are
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220

225

obtained as follows:

0.3578 —0.1479 0.4070 —0.1968
Ki(1) = K (2) =
0.0547 —0.3151 0.1052 —0.3653
0.9405 —0.0815 0.6445 —0.4663
K1 (3) = Ko (1) =
0.5245 —0.3712 —0.1934  0.0062
1.4712 —0.3839 1.5161 —0.0916
K3 (2) = K3 (1) = ;
0.0521 —0.0413 0.2736 —0.0794
0.4070 —0.0270 4.0715 —0.0261
K;3(2) = K5 (3) = )
3.9891 —-0.1361 3.9874 —0.1350
6 2.827799 0.028799 6 2.8244 0.0287
Ql (1) =10 x 1 2) = X
0.028799 2.636799 0.0287 2.634
6 2.7677 0.0891 5 6.183992 0.174792
21 (3) = 10° x L2 (1) = 10° x :
0.0891 2.634 0.174792  5.846592
5 5.9598 0.3335 6 1.3652 1.6183
25 (2) = 10° x 25 (1) = 10° x
0.3335 5.9091 1.6183 3.2606
6 1.5535 1.0323 6 1.553301 1.032001
25 (2) = 108 x 025 (3) = 10° x
1.0323  3.2943 1.032001  3.294001
In this simulation, the initial conditions are given as 7 (0) = [0.1, —0.5],

22 (0) = [0.1,0.3], and x3(0) = [—1,2]. The external disturbances are estab-
lished as w; (t) = |0.1e75 sin (67t) 0.2e75sin (67rt)}T and wq (1) = ws (t)
= [e—ﬁt cos (5mt) 0.le~% sin (67‘[‘t)] T. Figure |1| shows the system jump modes.
Under the action of the neighboring mode—dependent event-triggered controllers,
the state responses of the subsystems are shown in Figures It can be seen
that the neighboring mode—dependent event-triggered control method proposed
in this paper can effectively solve the robust problem of the interconnected sys-
tem. The event-triggered intervals of the three subsystems are depicted in Fig-
ures which indicate that the neighboring mode-dependent dynamic event-

triggered strategy is more effective in saving communication resources compared

with static event-triggered [7]. Table [1f also supports this result.
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To further illustrate the advantages of the proposed method, the results

are compared with the results in Corollary The number of controllers and

20 event detectors associated with global modes is Ny = Ngo = 12. The number
of controllers and event detectors associated with adjacent modes ais N, =
N, = 8. Table [2] also shows the number of needed controllers and event
detectors under the two approaches, where N and N, denote the number of
controllers and event detectors, respectively. They indicate that the proposed

235 approach reduces the need for designing the number of controllers and event
detectors without the need for each controller to access the mode of the entire

System.

Time(s)

Figure 1: The jumping mode of the system.
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Figure 5: Dynamic ETM used in subsystem 1 of this paper and static ETM in [7]
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Table 2: Controllers and event detectors numbers under different approaches.

Approach Ni Nq
Corollary 12 12
Theorem 8 8

Table 1: Triggering numbers for different ETMs.

System Triggering numbers in [7] Triggering numbers in this paper
subsystem 1 474 211

subsystem 2 96 55

subsystem 3 700 189

5. Conclusion

This work studies the issue of neighboring mode-dependent state feedback
control for MJSs with unknown interconnections. We focus on the neighbor-
ing mode-dependent dynamic ETM, which enhances the utilization of network
bandwidth in subsystems and minimizes the need for weighted matrix solu-
tions. Assuming that the global mode information of each subsystem cannot be
accessed by the local controller, which can be solved by the neighboring mode-
dependent event-triggered state feedback controller used in this paper. Criteria
for the system to be asymptotically steady and meet H., performance under
neighboring mode-dependent ETM are given by introducing the cyclic-small-
gain conditions. The non-convex form of the matrix cannot be tackled using
the LMI toolbox, so it is transformed into a convex condition using Fessler’s
Lemma. The availability of the obtained results is ultimately confirmed through

a numerical demonstration.
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APPENDIX

_ 0.4078

Ky (1) = K1 (2) = ;
0.1047 —0.3651 0.1051 —0.3652
_ 0.4070 —0.1968 _ 0.9405 —0.0815
Ky (3) = K (4) = ;
0.1052 —0.3653 0.5245 —-0.3712
7 (1) 0.6545 —0.4763 _ 0.6448 —0.4602
2 p— =
—0.2034 0.0162 —0.1955 0.0162
_ 1.4712 —0.3839 _ 0.6459 —0.4618
K (3) = , Ko (4) =
0.0521 —0.0413 —0.1975 0.0184
_ 1.5161 —0.0916 _ 4.0719 —-0.0260
K3 (1) = , K3 (2) = )
0.2736 —0.0794 3.9881 —0.1351
_ 4.0715 —0.0261 _ 4.0738 —0.0260
K;(3) = K3 (4) = )
3.9874 —0.1350 3.9920 —0.1354
_ 6 2.8278 0.0288 _ 6 2.8250 0.0287
Ql (1) = 10" x ,Ql (2) =10
0.0288 2.6368 0.0287 2.6345
_ 6 2.8244 0.0287| _ 6 2.7677 0.0891
21 (3)=10 21 (4) =10
0.0287 2.6340 0.0891 2.6743
_ - 6.1840 0.1748 _ 5 6.1718 0.1741
2, (1) = 10° L2 (2) =10
0.1748 5.8466 0.1741 5.8890
_ 5 5.9598 0.3335 _ 5 6.1821 0.1745
2, (3) =10 L2 (4) = 10
0.3335 5.9091 0.1745 5.8978
6 1.3652 1.6183 6 1.5535 1.0323
25 (1) =10 ,25(2) =10
1.6183 3.2606 1.0323 3.2943
6 1.5533 1.0320 6 1.5545 1.0329
25(3) =10 L2 (4) =10 .
1.0320 3.2940 1.0329 3.2955

—-0.1979 | _

0.4071

36

—0.1970




	Introduction
	Problem statement and preliminaries
	System description
	The event-triggered control scheme
	Neighboring mode-dependent control problem

	Design method
	Stability Analysis
	Controller design

	Simulation examples
	Conclusion

