References:

[1] T. Li and P. S. Lee, “Piezoelectric Energy Harvesting Technology: From Materials, Structures, to Applications,” Small Structures , vol. 3, no. 3. John Wiley and Sons Inc, Mar. 01, 2022. doi: 10.1002/sstr.202100128. [2] D. W. Kim, J. H. Lee, J. K. Kim, and U. Jeong, “Material aspects of triboelectric energy generation and sensors,” NPG Asia Materials , vol. 12, no. 1. Nature Research, Dec. 01, 2020. doi: 10.1038/s41427-019-0176-0. [3] A. G. Rösch et al. , “Fully printed origami thermoelectric generators for energy-harvesting,” npj Flexible Electronics , vol. 5, no. 1, Dec. 2021, doi: 10.1038/s41528-020-00098-1. [4] Y. Xu, T. Xu, J. Wang, W. Liu, and J. Wang, “Microvessel-Assisted Environmental Thermal Energy Extraction Enabling 24-Hour Continuous Interfacial Vapor Generation,” ChemSusChem , vol. 13, no. 24, pp. 6635–6642, Dec. 2020, doi: 10.1002/cssc.202002238. [5] E. A. Grubert, “Water consumption from hydroelectricity in the United States,” Adv Water Resour , vol. 96, pp. 88–94, Oct. 2016, doi: 10.1016/j.advwatres.2016.07.004. [6] J. Zhang, X. Lei, B. Chen, and Y. Song, “Analysis of blue water footprint of hydropower considering allocation coefficients for multi-purpose reservoirs,” Energy , vol. 188, Dec. 2019, doi: 10.1016/j.energy.2019.116086. [7] Z. Zhang et al. , “Emerging hydrovoltaic technology,”Nature Nanotechnology , vol. 13, no. 12. Nature Publishing Group, pp. 1109–1119, Dec. 01, 2018. doi: 10.1038/s41565-018-0228-6. [8] J. Yin, J. Zhou, S. Fang, and W. Guo, “Hydrovoltaic Energy on the Way,” 2020. [9] X. Huangfu, Y. Guo, S. M. Mugo, and Q. Zhang, “Hydrovoltaic Nanogenerators for Self-Powered Sweat Electrolyte Analysis,”Small , vol. 19, no. 15, Apr. 2023, doi: 10.1002/smll.202207134. [10] S. Jiao et al. , “Graphene oxide as a versatile platform for emerging hydrovoltaic technology,” Journal of Materials Chemistry A , vol. 10, no. 36. Royal Society of Chemistry, pp. 18451–18469, Jul. 25, 2022. doi: 10.1039/d2ta04830b. [11] J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou, and W. Guo, “Generating electricity by moving a droplet of ionic liquid along graphene,” Nat Nanotechnol , vol. 9, no. 5, pp. 378–383, 2014, doi: 10.1038/nnano.2014.56. [12] H. Zhong et al. , “Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow,” Carbon N Y , vol. 105, pp. 199–204, Aug. 2016, doi: 10.1016/j.carbon.2016.04.030. [13] J. Li et al. , “Electricity generation from water droplets via capillary infiltrating,” Nano Energy , vol. 48, pp. 211–216, Jun. 2018, doi: 10.1016/j.nanoen.2018.02.061. [14] W. Fei, C. Shen, S. Zhang, H. Chen, L. Li, and W. Guo, “Waving potential at volt level by a pair of graphene sheets,” Nano Energy , vol. 60, pp. 656–660, Jun. 2019, doi: 10.1016/j.nanoen.2019.04.020. [15] J. Tan, J. Duan, Y. Zhao, B. He, and Q. Tang, “Generators to harvest ocean wave energy through electrokinetic principle,” Nano Energy , vol. 48, pp. 128–133, Jun. 2018, doi: 10.1016/j.nanoen.2018.03.032. [16] Q. Hu, Y. Ma, G. Ren, B. Zhang, and S. Zhou, “Water evaporation-induced electricity with Geobacter sulfurreducens biofilms,” 2022. [Online]. Available: https://www.science.org [17] X. Li, K. Zhang, A. Nilghaz, G. Chen, and J. Tian, “A green and sustainable water evaporation-induced electricity generator with woody biochar,” Nano Energy , vol. 112, Jul. 2023, doi: 10.1016/j.nanoen.2023.108491. [18] G. Xue et al. , “Water-evaporation-induced electricity with nanostructured carbon materials,” Nat Nanotechnol , vol. 12, no. 4, pp. 317–321, May 2017, doi: 10.1038/nnano.2016.300. [19] S. Fang, H. Lu, W. Chu, and W. Guo, “Mechanism of water-evaporation-induced electricity beyond streaming potential,”Nano Research Energy , vol. 3, no. 2, Jun. 2024, doi: 10.26599/NRE.2024.9120108. [20] J. Tan et al. , “Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation,” Nat Commun , vol. 13, no. 1, Dec. 2022, doi: 10.1038/s41467-022-31221-7. [21] D. Xu, M. Yan, and Y. Xie, “Energy harvesting from water streaming at charged surface,” Electrophoresis , vol. 45, no. 3–4. John Wiley and Sons Inc, pp. 244–265, Feb. 01, 2024. doi: 10.1002/elps.202300102. [22] K. Xiao, L. Jiang, and M. Antonietti, “Ion Transport in Nanofluidic Devices for Energy Harvesting,” Joule , vol. 3, no. 10. Cell Press, pp. 2364–2380, Oct. 16, 2019. doi: 10.1016/j.joule.2019.09.005. [23] Y. Liu, Y. Zheng, T. Li, D. Wang, and F. Zhou, “Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting,” Nano Energy , vol. 61, pp. 454–461, Jul. 2019, doi: 10.1016/j.nanoen.2019.05.007. [24] F. Galembeck, L. P. Santos, T. A. L. Burgo, and A. Galembeck, “The emerging chemistry of self-electrified water interfaces,”Chemical Society Reviews , vol. 53, no. 5. Royal Society of Chemistry, pp. 2578–2602, Feb. 02, 2024. doi: 10.1039/d3cs00763d. [25] Y. Gao et al. , “Gradience Free Nanoinsertion of Fe3O4 into Wood for Enhanced Hydrovoltaic Energy Harvesting,” ACS Sustain Chem Eng , vol. 11, no. 30, pp. 11099–11109, Jul. 2023, doi: 10.1021/acssuschemeng.3c01649. [26] J. Garemark et al. , “Advancing Hydrovoltaic Energy Harvesting from Wood through Cell Wall Nanoengineering,” Adv Funct Mater , vol. 33, no. 4, Jan. 2023, doi: 10.1002/adfm.202208933. [27] X. Zhou et al. , “Harvesting Electricity from Water Evaporation through Microchannels of Natural Wood,” ACS Appl Mater Interfaces , vol. 12, no. 9, pp. 11232–11239, Mar. 2020, doi: 10.1021/acsami.9b23380. [28] J. Nicolás-Bermúdez et al. , “Characterization of the hierarchical architecture and micromechanical properties of walnut shell (Juglans regia L.),” J Mech Behav Biomed Mater , vol. 130, Jun. 2022, doi: 10.1016/j.jmbbm.2022.105190. [29] C. A. Toles, W. E. Marshall, and M. M. Johns, “Surface functional groups on acid-activated nutshell carbons,” 1999. [30] S. J. Antreich, J. C. Huss, N. Xiao, A. Singh, and N. Gierlinger, “The walnut shell network: 3D visualisation of symplastic and apoplastic transport routes in sclerenchyma tissue,” Planta , vol. 256, no. 3, Sep. 2022, doi: 10.1007/s00425-022-03960-w. [31] J. C. Huss et al. , “Topological Interlocking and Geometric Stiffening as Complementary Strategies for Strong Plant Shells,” Advanced Materials , vol. 32, no. 48, Dec. 2020, doi: 10.1002/adma.202004519. [32] S. J. Antreich et al. , “The Puzzle of the Walnut Shell: A Novel Cell Type with Interlocked Packing,” Advanced Science , vol. 6, no. 16, Aug. 2019, doi: 10.1002/advs.201900644. [33] N. Xiao et al. , “Twist and lock: Nutshell structures for high strength and energy absorption,” R Soc Open Sci , vol. 8, no. 8, Aug. 2021, doi: 10.1098/rsos.210399. [34] F. Brleković, K. Mužina, and S. Kurajica, “The Influence of Alkaline Pretreatment of Waste Nutshell for Use in Particulate Biocomposites,” Journal of Composites Science , vol. 8, no. 1, Jan. 2024, doi: 10.3390/jcs8010026. [35] X. Li, Y. Liu, J. Hao, and W. Wang, “Study of almond shell characteristics,” Materials , vol. 11, no. 9, Sep. 2018, doi: 10.3390/ma11091782. [36] R. Md Salim, J. Asik, and M. S. Sarjadi, “Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark,” Wood Sci Technol , vol. 55, no. 2, pp. 295–313, Mar. 2021, doi: 10.1007/s00226-020-01258-2. [37] M. Zhang et al. , “Lignocellulosic materials for energy storage devices,” Ind Crops Prod , vol. 203, Nov. 2023, doi: 10.1016/j.indcrop.2023.117174. [38] C. M. Popescu, M. C. Popescu, and C. Vasile, “Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy,” Int J Biol Macromol , vol. 48, no. 4, pp. 667–675, 2011, doi: 10.1016/j.ijbiomac.2011.02.009. [39] F. Kačík, J. Luptáková, P. Šmíra, A. Nasswettrová, D. Kačíková, and V. Vacek, “Chemical alterations of pine wood lignin during heat sterilization,” Bioresources , vol. 11, no. 2, pp. 3442–3452, May 2016, doi: 10.15376/biores.11.2.3442-3452. [40] Z. Shugang, W. Jing, W. Hongxia, Z. Zhihua, and L. Xibo, “Changes in Lignin Content and Activity of Related Enzymes in the Endocarp During the Walnut Shell Development Period,” Hortic Plant J , vol. 2, pp. 141–146, 2016, doi: 10.16420/j.issn.0513-353x.2015-0261. [41] J. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks, “Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis,” ACS Sustain Chem Eng , vol. 3, no. 2, pp. 293–301, Feb. 2015, doi: 10.1021/sc500664h. [42] W. Ying, Z. Shi, H. Yang, G. Xu, Z. Zheng, and J. Yang, “Effect of alkaline lignin modification on cellulase-lignin interactions and enzymatic saccharification yield,” Biotechnol Biofuels , vol. 11, no. 1, Aug. 2018, doi: 10.1186/s13068-018-1217-6. [43] J. Lin et al. , “All Wood-Based Water Evaporation-Induced Electricity Generator,” Adv Funct Mater , 2024, doi: 10.1002/adfm.202314231. [44] J. Nicolás-Bermúdez et al. , “Characterization of the hierarchical architecture and micromechanical properties of walnut shell (Juglans regia L.),” J Mech Behav Biomed Mater , vol. 130, Jun. 2022, doi: 10.1016/j.jmbbm.2022.105190. [45] S. R. *, G. C. , F. S. , C. A. C. , G. C. , G. L. , L. B. , A. S. , M. B. Aurora Modicaa et al. , “Solid state 13C-NMR methodology for the cellulose composition studies of the shells of Prunus dulcis and their derived cellulosic materials,” Carbohydr Polym , vol. 240, Jul. 2020, doi: 10.1016/j.carbpol.2020.116290. [46] M. Erfani Jazi et al. , “Structure, chemistry and physicochemistry of lignin for material functionalization,” SN Applied Sciences , vol. 1, no. 9. Springer Nature, Sep. 01, 2019. doi: 10.1007/s42452-019-1126-8. [47] R. Wan, C. Wang, X. Lei, G. Zhou, and H. Fang, “Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns,” Phys Rev Lett , vol. 115, no. 19, Nov. 2015, doi: 10.1103/PhysRevLett.115.195901. [48] “S1385894723015693 (1)”. [49] S. Fang, H. Lu, W. Chu, and W. Guo, “Mechanism of water-evaporation-induced electricity beyond streaming potential,”Nano Research Energy , vol. 3, no. 2, Jun. 2024, doi: 10.26599/NRE.2024.9120108. [50] M. F. Sanad, A. E. Shalan, S. O. Abdellatif, E. S. A. Serea, M. S. Adly, and M. A. Ahsan, “Thermoelectric Energy Harvesters: A Review of Recent Developments in Materials and Devices for Different Potential Applications,” Topics in Current Chemistry , vol. 378, no. 6. Springer Science and Business Media Deutschland GmbH, Dec. 01, 2020. doi: 10.1007/s41061-020-00310-w. [51] C. Wang, S. Tang, B. Li, J. Fan, and J. Zhou, “Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional Evaporation-driven electrical generation,”Chemical Engineering Journal , vol. 455, Jan. 2023, doi: 10.1016/j.cej.2022.140568. [52] Y. Yang et al. , “Fourier-transform infrared spectroscopy analysis of the changes in chemical composition of wooden components in the ancient building of xichuan guild hall,” For Prod J , vol. 70, no. 4, pp. 448–452, 2020, doi: 10.13073/FPJ-D-20-00028. [53] B. A. Salazar-Cruz, M. Y. Chávez-Cinco, A. B. Morales-Cepeda, C. E. Ramos-Galván, and J. L. Rivera-Armenta, “Evaluation of Thermal Properties of Composites Prepared from Pistachio Shell Particles Treated Chemically and Polypropylene,” Molecules , vol. 27, no. 2, Jan. 2022, doi: 10.3390/molecules27020426. [54] H. Albatrni, H. Qiblawey, and M. J. Al-Marri, “Walnut shell based adsorbents: A review study on preparation, mechanism, and application,” Journal of Water Process Engineering , vol. 45. Elsevier Ltd, Feb. 01, 2022. doi: 10.1016/j.jwpe.2021.102527. [55] C. S. V. G. Esteves, E. Brännvall, S. Östlund, and O. Sevastyanova, “Evaluating the Potential to Modify Pulp and Paper Properties through Oxygen Delignification,” ACS Omega , vol. 5, no. 23, pp. 13703–13711, Jun. 2020, doi: 10.1021/acsomega.0c00869. [56] T. Tabrizizadeh, J. Wang, R. Kumar, S. Chaurasia, K. Stamplecoskie, and G. Liu, “Water-Evaporation-Induced Electric Generator Built from Carbonized Electrospun Polyacrylonitrile Nanofiber Mats,” ACS Appl Mater Interfaces , vol. 13, no. 43, pp. 50900–50910, Nov. 2021, doi: 10.1021/acsami.1c13487. [57] S. J. Shin et al. , “On the importance of the electric double layer structure in aqueous electrocatalysis,” Nat Commun , vol. 13, no. 1, Dec. 2022, doi: 10.1038/s41467-021-27909-x. [58] T. G. Yun, J. Bae, A. Rothschild, and I. D. Kim, “Transpiration Driven Electrokinetic Power Generator,” ACS Nano , vol. 13, no. 11, pp. 12703–12709, Nov. 2019, doi: 10.1021/acsnano.9b04375. [59] P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré,Capillarity and Wetting Phenomena . Springer New York, 2004. doi: 10.1007/978-0-387-21656-0. [60] C. Wang, S. Tang, B. Li, J. Fan, and J. Zhou, “Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional Evaporation-driven electrical generation,”Chemical Engineering Journal , vol. 455, Jan. 2023, doi: 10.1016/j.cej.2022.140568. [61] H. Wang et al. , “Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output,” Nat Nanotechnol , vol. 16, no. 7, pp. 811–819, Jul. 2021, doi: 10.1038/s41565-021-00903-6. [62] X. Zhou et al. , “Harvesting Electricity from Water Evaporation through Microchannels of Natural Wood,” ACS Appl Mater Interfaces , vol. 12, no. 9, pp. 11232–11239, Mar. 2020, doi: 10.1021/acsami.9b23380. [63] X. Liu et al. , “Microbial biofilms for electricity generation from water evaporation and power to wearables,” Nat Commun , vol. 13, no. 1, Dec. 2022, doi: 10.1038/s41467-022-32105-6. [64] X. Li, K. Zhang, A. Nilghaz, G. Chen, and J. Tian, “A green and sustainable water evaporation-induced electricity generator with woody biochar,” Nano Energy , vol. 112, Jul. 2023, doi: 10.1016/j.nanoen.2023.108491. [65] Y. J. Ma, G. P. Ren, Y. R. Qiu, S. G. Zhou, and Q. C. Hu, “Electricity generation from Geobacter sulfurreducens biofilm and its sensing application,” Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica , vol. 52, no. 11, pp. 1669–1678, 2022, doi: 10.1360/SST-2022-0062. [66] J. Sun et al. , “Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation,” Nano Energy , vol. 57, pp. 269–278, Mar. 2019, doi: 10.1016/j.nanoen.2018.12.042. [67] Q. Liu et al. , “A Continuous Gradient Chemical Reduction Strategy of Graphene Oxide for Highly Efficient Evaporation-Driven Electricity Generation,” Small Methods , vol. 7, no. 9, Sep. 2023, doi: 10.1002/smtd.202300304. [68] C. Li, Z. Tian, L. Liang, S. Yin, and P. K. Shen, “Electricity Generation from Capillary-Driven Ionic Solution Flow in a Three-Dimensional Graphene Membrane,” ACS Appl Mater Interfaces , vol. 11, no. 5, pp. 4922–4929, Feb. 2019, doi: 10.1021/acsami.8b16529. [69] D. He et al. , “Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture,” Nano Energy , vol. 81, Mar. 2021, doi: 10.1016/j.nanoen.2020.105630. [70] P. Xiao et al. , “Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy,” Nano Energy , vol. 68, Feb. 2020, doi: 10.1016/j.nanoen.2019.104385. [71] X. Zhang, Y. Wang, X. Zhang, C. W. Lou, J. H. Lin, and T. T. Li, “Preparation and study of bark-like MXene based high output power hydroelectric generator,” Chemical Engineering Journal , vol. 465, Jun. 2023, doi: 10.1016/j.cej.2023.142582. [72] T. Xu et al. , “Electric Power Generation through the Direct Interaction of Pristine Graphene-Oxide with Water Molecules,”Small , vol. 14, no. 14, Apr. 2018, doi: 10.1002/smll.201704473. [73] X. Liu et al. , “Power generation from ambient humidity using protein nanowires,” Nature , vol. 578, no. 7796, pp. 550–554, Feb. 2020, doi: 10.1038/s41586-020-2010-9. [74] S. Chaurasia, R. Kumar, T. Tabrizizadeh, G. Liu, and K. Stamplecoskie, “All-Weather-Compatible Hydrovoltaic Cells Based on Al2O3 TLC Plates,” ACS Omega , vol. 7, no. 3, pp. 2618–2623, Jan. 2022, doi: 10.1021/acsomega.1c04751. [75] X. Gao et al. , “Electric power generation using paper materials,” J Mater Chem A Mater , vol. 7, no. 36, pp. 20574–20578, 2019, doi: 10.1039/c9ta08264f. [76] B. Shao et al. , “Bioinspired Hierarchical Nanofabric Electrode for Silicon Hydrovoltaic Device with Record Power Output,”ACS Nano , vol. 15, no. 4, pp. 7472–7481, Apr. 2021, doi: 10.1021/acsnano.1c00891. [77] K. Radotić, A. Kalauzi, D. Djikanović, M. Jeremić, R. M. Leblanc, and Z. G. Cerović, “Component analysis of the fluorescence spectra of a lignin model compound,” J Photochem Photobiol B , vol. 83, no. 1, pp. 1–10, Apr. 2006, doi: 10.1016/j.jphotobiol.2005.12.001.