References:
[1] T. Li and P. S. Lee, “Piezoelectric Energy Harvesting
Technology: From Materials, Structures, to Applications,” Small
Structures , vol. 3, no. 3. John Wiley and Sons Inc, Mar. 01, 2022. doi:
10.1002/sstr.202100128.
[2] D. W. Kim, J. H. Lee, J. K. Kim, and U. Jeong, “Material
aspects of triboelectric energy generation and sensors,” NPG Asia
Materials , vol. 12, no. 1. Nature Research, Dec. 01, 2020. doi:
10.1038/s41427-019-0176-0.
[3] A. G. Rösch et al. , “Fully printed origami
thermoelectric generators for energy-harvesting,” npj Flexible
Electronics , vol. 5, no. 1, Dec. 2021, doi: 10.1038/s41528-020-00098-1.
[4] Y. Xu, T. Xu, J. Wang, W. Liu, and J. Wang,
“Microvessel-Assisted Environmental Thermal Energy Extraction Enabling
24-Hour Continuous Interfacial Vapor Generation,” ChemSusChem ,
vol. 13, no. 24, pp. 6635–6642, Dec. 2020, doi: 10.1002/cssc.202002238.
[5] E. A. Grubert, “Water consumption from hydroelectricity in the
United States,” Adv Water Resour , vol. 96, pp. 88–94, Oct.
2016, doi: 10.1016/j.advwatres.2016.07.004.
[6] J. Zhang, X. Lei, B. Chen, and Y. Song, “Analysis of blue water
footprint of hydropower considering allocation coefficients for
multi-purpose reservoirs,” Energy , vol. 188, Dec. 2019, doi:
10.1016/j.energy.2019.116086.
[7] Z. Zhang et al. , “Emerging hydrovoltaic technology,”Nature Nanotechnology , vol. 13, no. 12. Nature Publishing Group,
pp. 1109–1119, Dec. 01, 2018. doi: 10.1038/s41565-018-0228-6.
[8] J. Yin, J. Zhou, S. Fang, and W. Guo, “Hydrovoltaic Energy on
the Way,” 2020.
[9] X. Huangfu, Y. Guo, S. M. Mugo, and Q. Zhang, “Hydrovoltaic
Nanogenerators for Self-Powered Sweat Electrolyte Analysis,”Small , vol. 19, no. 15, Apr. 2023, doi: 10.1002/smll.202207134.
[10] S. Jiao et al. , “Graphene oxide as a versatile platform
for emerging hydrovoltaic technology,” Journal of Materials
Chemistry A , vol. 10, no. 36. Royal Society of Chemistry, pp.
18451–18469, Jul. 25, 2022. doi: 10.1039/d2ta04830b.
[11] J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou, and W. Guo,
“Generating electricity by moving a droplet of ionic liquid along
graphene,” Nat Nanotechnol , vol. 9, no. 5, pp. 378–383, 2014,
doi: 10.1038/nnano.2014.56.
[12] H. Zhong et al. , “Graphene based two dimensional hybrid
nanogenerator for concurrently harvesting energy from sunlight and water
flow,” Carbon N Y , vol. 105, pp. 199–204, Aug. 2016, doi:
10.1016/j.carbon.2016.04.030.
[13] J. Li et al. , “Electricity generation from water
droplets via capillary infiltrating,” Nano Energy , vol. 48, pp.
211–216, Jun. 2018, doi: 10.1016/j.nanoen.2018.02.061.
[14] W. Fei, C. Shen, S. Zhang, H. Chen, L. Li, and W. Guo, “Waving
potential at volt level by a pair of graphene sheets,” Nano
Energy , vol. 60, pp. 656–660, Jun. 2019, doi:
10.1016/j.nanoen.2019.04.020.
[15] J. Tan, J. Duan, Y. Zhao, B. He, and Q. Tang, “Generators to
harvest ocean wave energy through electrokinetic principle,” Nano
Energy , vol. 48, pp. 128–133, Jun. 2018, doi:
10.1016/j.nanoen.2018.03.032.
[16] Q. Hu, Y. Ma, G. Ren, B. Zhang, and S. Zhou, “Water
evaporation-induced electricity with Geobacter sulfurreducens
biofilms,” 2022. [Online]. Available: https://www.science.org
[17] X. Li, K. Zhang, A. Nilghaz, G. Chen, and J. Tian, “A green
and sustainable water evaporation-induced electricity generator with
woody biochar,” Nano Energy , vol. 112, Jul. 2023, doi:
10.1016/j.nanoen.2023.108491.
[18] G. Xue et al. , “Water-evaporation-induced electricity
with nanostructured carbon materials,” Nat Nanotechnol , vol. 12,
no. 4, pp. 317–321, May 2017, doi: 10.1038/nnano.2016.300.
[19] S. Fang, H. Lu, W. Chu, and W. Guo, “Mechanism of
water-evaporation-induced electricity beyond streaming potential,”Nano Research Energy , vol. 3, no. 2, Jun. 2024, doi:
10.26599/NRE.2024.9120108.
[20] J. Tan et al. , “Self-sustained electricity generator
driven by the compatible integration of ambient moisture adsorption and
evaporation,” Nat Commun , vol. 13, no. 1, Dec. 2022, doi:
10.1038/s41467-022-31221-7.
[21] D. Xu, M. Yan, and Y. Xie, “Energy harvesting from water
streaming at charged surface,” Electrophoresis , vol. 45, no.
3–4. John Wiley and Sons Inc, pp. 244–265, Feb. 01, 2024. doi:
10.1002/elps.202300102.
[22] K. Xiao, L. Jiang, and M. Antonietti, “Ion Transport in
Nanofluidic Devices for Energy Harvesting,” Joule , vol. 3, no.
10. Cell Press, pp. 2364–2380, Oct. 16, 2019. doi:
10.1016/j.joule.2019.09.005.
[23] Y. Liu, Y. Zheng, T. Li, D. Wang, and F. Zhou, “Water-solid
triboelectrification with self-repairable surfaces for water-flow energy
harvesting,” Nano Energy , vol. 61, pp. 454–461, Jul. 2019, doi:
10.1016/j.nanoen.2019.05.007.
[24] F. Galembeck, L. P. Santos, T. A. L. Burgo, and A. Galembeck,
“The emerging chemistry of self-electrified water interfaces,”Chemical Society Reviews , vol. 53, no. 5. Royal Society of
Chemistry, pp. 2578–2602, Feb. 02, 2024. doi: 10.1039/d3cs00763d.
[25] Y. Gao et al. , “Gradience Free Nanoinsertion of Fe3O4
into Wood for Enhanced Hydrovoltaic Energy Harvesting,” ACS
Sustain Chem Eng , vol. 11, no. 30, pp. 11099–11109, Jul. 2023, doi:
10.1021/acssuschemeng.3c01649.
[26] J. Garemark et al. , “Advancing Hydrovoltaic Energy
Harvesting from Wood through Cell Wall Nanoengineering,” Adv
Funct Mater , vol. 33, no. 4, Jan. 2023, doi: 10.1002/adfm.202208933.
[27] X. Zhou et al. , “Harvesting Electricity from Water
Evaporation through Microchannels of Natural Wood,” ACS Appl
Mater Interfaces , vol. 12, no. 9, pp. 11232–11239, Mar. 2020, doi:
10.1021/acsami.9b23380.
[28] J. Nicolás-Bermúdez et al. , “Characterization of the
hierarchical architecture and micromechanical properties of walnut shell
(Juglans regia L.),” J Mech Behav Biomed Mater , vol. 130, Jun.
2022, doi: 10.1016/j.jmbbm.2022.105190.
[29] C. A. Toles, W. E. Marshall, and M. M. Johns, “Surface
functional groups on acid-activated nutshell carbons,” 1999.
[30] S. J. Antreich, J. C. Huss, N. Xiao, A. Singh, and N.
Gierlinger, “The walnut shell network: 3D visualisation of symplastic
and apoplastic transport routes in sclerenchyma tissue,” Planta ,
vol. 256, no. 3, Sep. 2022, doi: 10.1007/s00425-022-03960-w.
[31] J. C. Huss et al. , “Topological Interlocking and
Geometric Stiffening as Complementary Strategies for Strong Plant
Shells,” Advanced Materials , vol. 32, no. 48, Dec. 2020, doi:
10.1002/adma.202004519.
[32] S. J. Antreich et al. , “The Puzzle of the Walnut Shell:
A Novel Cell Type with Interlocked Packing,” Advanced Science ,
vol. 6, no. 16, Aug. 2019, doi: 10.1002/advs.201900644.
[33] N. Xiao et al. , “Twist and lock: Nutshell structures
for high strength and energy absorption,” R Soc Open Sci , vol.
8, no. 8, Aug. 2021, doi: 10.1098/rsos.210399.
[34] F. Brleković, K. Mužina, and S. Kurajica, “The Influence of
Alkaline Pretreatment of Waste Nutshell for Use in Particulate
Biocomposites,” Journal of Composites Science , vol. 8, no. 1,
Jan. 2024, doi: 10.3390/jcs8010026.
[35] X. Li, Y. Liu, J. Hao, and W. Wang, “Study of almond shell
characteristics,” Materials , vol. 11, no. 9, Sep. 2018, doi:
10.3390/ma11091782.
[36] R. Md Salim, J. Asik, and M. S. Sarjadi, “Chemical functional
groups of extractives, cellulose and lignin extracted from native
Leucaena leucocephala bark,” Wood Sci Technol , vol. 55, no. 2,
pp. 295–313, Mar. 2021, doi: 10.1007/s00226-020-01258-2.
[37] M. Zhang et al. , “Lignocellulosic materials for energy
storage devices,” Ind Crops Prod , vol. 203, Nov. 2023, doi:
10.1016/j.indcrop.2023.117174.
[38] C. M. Popescu, M. C. Popescu, and C. Vasile, “Structural
analysis of photodegraded lime wood by means of FT-IR and 2D IR
correlation spectroscopy,” Int J Biol Macromol , vol. 48, no. 4,
pp. 667–675, 2011, doi: 10.1016/j.ijbiomac.2011.02.009.
[39] F. Kačík, J. Luptáková, P. Šmíra, A. Nasswettrová, D. Kačíková,
and V. Vacek, “Chemical alterations of pine wood lignin during heat
sterilization,” Bioresources , vol. 11, no. 2, pp. 3442–3452,
May 2016, doi: 10.15376/biores.11.2.3442-3452.
[40] Z. Shugang, W. Jing, W. Hongxia, Z. Zhihua, and L. Xibo,
“Changes in Lignin Content and Activity of Related Enzymes in the
Endocarp During the Walnut Shell Development Period,” Hortic
Plant J , vol. 2, pp. 141–146, 2016, doi:
10.16420/j.issn.0513-353x.2015-0261.
[41] J. Zhang, Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B.
H. Shanks, “Cellulose-hemicellulose and cellulose-lignin interactions
during fast pyrolysis,” ACS Sustain Chem Eng , vol. 3, no. 2, pp.
293–301, Feb. 2015, doi: 10.1021/sc500664h.
[42] W. Ying, Z. Shi, H. Yang, G. Xu, Z. Zheng, and J. Yang,
“Effect of alkaline lignin modification on cellulase-lignin
interactions and enzymatic saccharification yield,” Biotechnol
Biofuels , vol. 11, no. 1, Aug. 2018, doi: 10.1186/s13068-018-1217-6.
[43] J. Lin et al. , “All Wood-Based Water
Evaporation-Induced Electricity Generator,” Adv Funct Mater ,
2024, doi: 10.1002/adfm.202314231.
[44] J. Nicolás-Bermúdez et al. , “Characterization of the
hierarchical architecture and micromechanical properties of walnut shell
(Juglans regia L.),” J Mech Behav Biomed Mater , vol. 130, Jun.
2022, doi: 10.1016/j.jmbbm.2022.105190.
[45] S. R. *, G. C. , F. S. , C. A. C. , G. C. , G. L. , L. B. , A.
S. , M. B. Aurora Modicaa et al. , “Solid state 13C-NMR
methodology for the cellulose composition studies of the shells of
Prunus dulcis and their derived cellulosic materials,” Carbohydr
Polym , vol. 240, Jul. 2020, doi: 10.1016/j.carbpol.2020.116290.
[46] M. Erfani Jazi et al. , “Structure, chemistry and
physicochemistry of lignin for material functionalization,” SN
Applied Sciences , vol. 1, no. 9. Springer Nature, Sep. 01, 2019. doi:
10.1007/s42452-019-1126-8.
[47] R. Wan, C. Wang, X. Lei, G. Zhou, and H. Fang, “Enhancement of
Water Evaporation on Solid Surfaces with Nanoscale
Hydrophobic-Hydrophilic Patterns,” Phys Rev Lett , vol. 115, no.
19, Nov. 2015, doi: 10.1103/PhysRevLett.115.195901.
[48] “S1385894723015693 (1)”.
[49] S. Fang, H. Lu, W. Chu, and W. Guo, “Mechanism of
water-evaporation-induced electricity beyond streaming potential,”Nano Research Energy , vol. 3, no. 2, Jun. 2024, doi:
10.26599/NRE.2024.9120108.
[50] M. F. Sanad, A. E. Shalan, S. O. Abdellatif, E. S. A. Serea, M.
S. Adly, and M. A. Ahsan, “Thermoelectric Energy Harvesters: A Review
of Recent Developments in Materials and Devices for Different Potential
Applications,” Topics in Current Chemistry , vol. 378, no. 6.
Springer Science and Business Media Deutschland GmbH, Dec. 01, 2020.
doi: 10.1007/s41061-020-00310-w.
[51] C. Wang, S. Tang, B. Li, J. Fan, and J. Zhou, “Construction of
hierarchical and porous cellulosic wood with high mechanical strength
towards directional Evaporation-driven electrical generation,”Chemical Engineering Journal , vol. 455, Jan. 2023, doi:
10.1016/j.cej.2022.140568.
[52] Y. Yang et al. , “Fourier-transform infrared
spectroscopy analysis of the changes in chemical composition of wooden
components in the ancient building of xichuan guild hall,” For
Prod J , vol. 70, no. 4, pp. 448–452, 2020, doi:
10.13073/FPJ-D-20-00028.
[53] B. A. Salazar-Cruz, M. Y. Chávez-Cinco, A. B. Morales-Cepeda,
C. E. Ramos-Galván, and J. L. Rivera-Armenta, “Evaluation of Thermal
Properties of Composites Prepared from Pistachio Shell Particles Treated
Chemically and Polypropylene,” Molecules , vol. 27, no. 2, Jan.
2022, doi: 10.3390/molecules27020426.
[54] H. Albatrni, H. Qiblawey, and M. J. Al-Marri, “Walnut shell
based adsorbents: A review study on preparation, mechanism, and
application,” Journal of Water Process Engineering , vol. 45.
Elsevier Ltd, Feb. 01, 2022. doi: 10.1016/j.jwpe.2021.102527.
[55] C. S. V. G. Esteves, E. Brännvall, S. Östlund, and O.
Sevastyanova, “Evaluating the Potential to Modify Pulp and Paper
Properties through Oxygen Delignification,” ACS Omega , vol. 5,
no. 23, pp. 13703–13711, Jun. 2020, doi: 10.1021/acsomega.0c00869.
[56] T. Tabrizizadeh, J. Wang, R. Kumar, S. Chaurasia, K.
Stamplecoskie, and G. Liu, “Water-Evaporation-Induced Electric
Generator Built from Carbonized Electrospun Polyacrylonitrile Nanofiber
Mats,” ACS Appl Mater Interfaces , vol. 13, no. 43, pp.
50900–50910, Nov. 2021, doi: 10.1021/acsami.1c13487.
[57] S. J. Shin et al. , “On the importance of the electric
double layer structure in aqueous electrocatalysis,” Nat Commun ,
vol. 13, no. 1, Dec. 2022, doi: 10.1038/s41467-021-27909-x.
[58] T. G. Yun, J. Bae, A. Rothschild, and I. D. Kim,
“Transpiration Driven Electrokinetic Power Generator,” ACS
Nano , vol. 13, no. 11, pp. 12703–12709, Nov. 2019, doi:
10.1021/acsnano.9b04375.
[59] P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré,Capillarity and Wetting Phenomena . Springer New York, 2004. doi:
10.1007/978-0-387-21656-0.
[60] C. Wang, S. Tang, B. Li, J. Fan, and J. Zhou, “Construction of
hierarchical and porous cellulosic wood with high mechanical strength
towards directional Evaporation-driven electrical generation,”Chemical Engineering Journal , vol. 455, Jan. 2023, doi:
10.1016/j.cej.2022.140568.
[61] H. Wang et al. , “Bilayer of polyelectrolyte films for
spontaneous power generation in air up to an integrated 1,000 V
output,” Nat Nanotechnol , vol. 16, no. 7, pp. 811–819, Jul.
2021, doi: 10.1038/s41565-021-00903-6.
[62] X. Zhou et al. , “Harvesting Electricity from Water
Evaporation through Microchannels of Natural Wood,” ACS Appl
Mater Interfaces , vol. 12, no. 9, pp. 11232–11239, Mar. 2020, doi:
10.1021/acsami.9b23380.
[63] X. Liu et al. , “Microbial biofilms for electricity
generation from water evaporation and power to wearables,” Nat
Commun , vol. 13, no. 1, Dec. 2022, doi: 10.1038/s41467-022-32105-6.
[64] X. Li, K. Zhang, A. Nilghaz, G. Chen, and J. Tian, “A green
and sustainable water evaporation-induced electricity generator with
woody biochar,” Nano Energy , vol. 112, Jul. 2023, doi:
10.1016/j.nanoen.2023.108491.
[65] Y. J. Ma, G. P. Ren, Y. R. Qiu, S. G. Zhou, and Q. C. Hu,
“Electricity generation from Geobacter sulfurreducens biofilm and its
sensing application,” Zhongguo Kexue Jishu Kexue/Scientia Sinica
Technologica , vol. 52, no. 11, pp. 1669–1678, 2022, doi:
10.1360/SST-2022-0062.
[66] J. Sun et al. , “Electricity generation from a Ni-Al
layered double hydroxide-based flexible generator driven by natural
water evaporation,” Nano Energy , vol. 57, pp. 269–278, Mar.
2019, doi: 10.1016/j.nanoen.2018.12.042.
[67] Q. Liu et al. , “A Continuous Gradient Chemical
Reduction Strategy of Graphene Oxide for Highly Efficient
Evaporation-Driven Electricity Generation,” Small Methods , vol.
7, no. 9, Sep. 2023, doi: 10.1002/smtd.202300304.
[68] C. Li, Z. Tian, L. Liang, S. Yin, and P. K. Shen, “Electricity
Generation from Capillary-Driven Ionic Solution Flow in a
Three-Dimensional Graphene Membrane,” ACS Appl Mater Interfaces ,
vol. 11, no. 5, pp. 4922–4929, Feb. 2019, doi: 10.1021/acsami.8b16529.
[69] D. He et al. , “Electricity generation from
phase-engineered flexible MoS2 nanosheets under moisture,” Nano
Energy , vol. 81, Mar. 2021, doi: 10.1016/j.nanoen.2020.105630.
[70] P. Xiao et al. , “Exploring interface confined water
flow and evaporation enables solar-thermal-electro integration towards
clean water and electricity harvest via asymmetric functionalization
strategy,” Nano Energy , vol. 68, Feb. 2020, doi:
10.1016/j.nanoen.2019.104385.
[71] X. Zhang, Y. Wang, X. Zhang, C. W. Lou, J. H. Lin, and T. T.
Li, “Preparation and study of bark-like MXene based high output power
hydroelectric generator,” Chemical Engineering Journal , vol.
465, Jun. 2023, doi: 10.1016/j.cej.2023.142582.
[72] T. Xu et al. , “Electric Power Generation through the
Direct Interaction of Pristine Graphene-Oxide with Water Molecules,”Small , vol. 14, no. 14, Apr. 2018, doi: 10.1002/smll.201704473.
[73] X. Liu et al. , “Power generation from ambient humidity
using protein nanowires,” Nature , vol. 578, no. 7796, pp.
550–554, Feb. 2020, doi: 10.1038/s41586-020-2010-9.
[74] S. Chaurasia, R. Kumar, T. Tabrizizadeh, G. Liu, and K.
Stamplecoskie, “All-Weather-Compatible Hydrovoltaic Cells Based on
Al2O3 TLC Plates,” ACS Omega , vol. 7, no. 3, pp. 2618–2623,
Jan. 2022, doi: 10.1021/acsomega.1c04751.
[75] X. Gao et al. , “Electric power generation using paper
materials,” J Mater Chem A Mater , vol. 7, no. 36, pp.
20574–20578, 2019, doi: 10.1039/c9ta08264f.
[76] B. Shao et al. , “Bioinspired Hierarchical Nanofabric
Electrode for Silicon Hydrovoltaic Device with Record Power Output,”ACS Nano , vol. 15, no. 4, pp. 7472–7481, Apr. 2021, doi:
10.1021/acsnano.1c00891.
[77] K. Radotić, A. Kalauzi, D. Djikanović, M. Jeremić, R. M.
Leblanc, and Z. G. Cerović, “Component analysis of the fluorescence
spectra of a lignin model compound,” J Photochem Photobiol B ,
vol. 83, no. 1, pp. 1–10, Apr. 2006, doi:
10.1016/j.jphotobiol.2005.12.001.