Acknowledgement
The authors would like to extend their sincere appreciation to Oscar
Crasson and Jérémy Hermans from IDS for their contribution, including
the provision of antibodies 1M0161 and 1M0122 and kits, as well as their
assistance in the development of the affinity chromatography method.
Additionally, we would like to express our gratitude to the ”Fonds
spéciaux à la recherche de la Faculté de Médecine de l’Université de
Liège” for their financial support.
[1] Szulc, P., Bone turnover: Biology and assessment tools.Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32,
725–738.[2] Lane, N.E., Epidemiology, etiology, and diagnosis of
osteoporosis. Am. J. Obstet. Gynecol. 2006, 194.[3] Burge,
R., Dawson-Hughes, B., Solomon, D.H., Wong, J.B., et al., Incidence and
economic burden of osteoporosis-related fractures in the United States,
2005-2025. J. Bone Miner. Res. 2007, 22, 465–475.[4]
Hernlund, E., Svedbom, A., Ivergård, M., Compston, J., et al.,
Osteoporosis in the European Union: Medical management, epidemiology and
economic burden: A report prepared in collaboration with the
International Osteoporosis Foundation (IOF) and the European Federation
of Pharmaceutical Industry Associations (EFPIA). Arch.
Osteoporos. 2013, 8.[5] Bossard, M.J., Tomaszek, T.A., Thompson,
S.K., Amegadzie, B.Y., et al., Proteolytic activity of human osteoclast
cathepsin K: Expression, purification, activation, and substrate
identification. J. Biol. Chem. 1996, 271, 12517–12524.[6]
Chapurlat, R.D., Garnero, P., Brárt, G., Meunier, P.J., Delmas, P.D.,
Serum type I collagen breakdown product (serum CTX) predicts hip
fracture risk in elderly women: The EPIDOS study. Bone 2000, 27,
283–286.[7] Garnero, P., Hausherr, E., Chapuy, M.-C., Marcelli, C.,
et al., Markers of Bone Resorption Predict Hip Fracture in Elderly
Women: The EPIDOS Prospective Study 1994, 620, 2104–2107.[8]
Garnero, P., Sornay-Rendu, E., Claustrat, B., Delmas, P.D., Biochemical
Markers of Bone Turnover, Endogenous Hormones and the Risk of Fractures
in Postmenopausal Women: The OFELY Study. J. Bone Miner. Res. 2000, 15, 1526–1536.[9] Vasikaran, S., Eastell, R., Bruyère, O.,
Foldes, A.J., et al., Markers of bone turnover for the prediction of
fracture risk and monitoring of osteoporosis treatment: A need for
international reference standards. Osteoporos. Int. 2011, 22,
391–420.[10] Bruyere, O., Collette, J., Delmas, P., Rouillon, A.,
et al., Interest of biochemical markers of bone turnover for long-term
prediction of new vertebral fracture in postmenopausal osteoporotic
women. Maturitas 2003, 44, 259–265.[11] Li, M., Li, Y.,
Deng, W., Zhang, Z., et al., Chinese Bone Turnover Marker Study:
Reference ranges for C-terminal telopeptide of type i collagen and
procollagen I N-terminal peptide by age and gender. PLoS One 2014, 9, 5–11.[12] Chapurlat, R.D., Genant, H.K., in:,Endocrinol. Adult Pediatr. , vol. 1–2, Elsevier, 2015, pp.
1184–1213.[13] Kline, G., Orton, D., Sadrzadeh, H., Bone
metabolism , Elsevier Inc., 2017.[14] Medio, L. Di, in:, Adv.
Clin. Chem. , 2021, pp. 101–140.[15] Knott, L., Bailey, A.J.,
Collagen cross-links in mineralizing tissues: A review of their
chemistry, function, and clinical relevance. Bone 1998, 22,
181–187.[16] Yamauchi, M., Taga, Y., Hattori, S., Shiiba, M.,
Terajima, M., Analysis of collagen and elastin cross-links , vol.
143, Elsevier Inc., 2018.[17] Eyre, D., Collagen Cross-Linking Amino
Acids 1987, 144.[18] Sorushanova, A., Delgado, L.M., Wu, Z.,
Shologu, N., et al., The Collagen Suprafamily: From Biosynthesis to
Advanced Biomaterial Development. Adv. Mater. 2019, 31,
1–39.[19] Gamsjaeger, S., Robins, S.P., Tatakis, D.N., Klaushofer,
K., Paschalis, E.P., Identification of Pyridinoline Trivalent Collagen
Cross-Links by Raman Microspectroscopy. Calcif. Tissue Int. 2017,
100, 565–574.[20] Eyre, D.R., Paz, M.A., Gallop, P.M.,
Cross-Linking in Collagen and Elastin. Annu. Rev. Biochem. 1984,
53, 717–748.[21] Smith-Mungo, L.I., Kagan, H.M., Lysyl oxidase:
Properties, regulation and multiple functions in biology. Matrix
Biol. 1998, 16, 387–398.[22] McCudden, C.R., Kraus, V.B.,
Biochemistry of amino acid racemization and clinical application to
musculoskeletal disease. Clin. Biochem. 2006, 39,
1112–1130.[23] Robins, S.P., Bailey, A.J., The chemistry of the
collagen cross links. The mechanism of stabilization of the reducible
intermediate cross links. Biochem. J. 1975, 149,
381–385.[24] Hanson, D.A., Eyre, D.R., Molecular site specificity
of pyridinoline and pyrrole cross-links in type I collagen of human
bone. J. Biol. Chem. 1996, 271, 26508–26516.[25] Tanzer, M.,
Cross-Linking of Collagen. Science (80-. ). 1973, 180,
561–566.[26] Fujimoto, D., Moriguchi, T., Pyridinoline, a
Non-Reducible Crosslink of Collagen 1978, 83, 863–867.[27] Eriksen,
H.A., Sharp, C.A., Robins, S.P., Sassi, M.L., et al., Differently
cross-linked and uncross-linked carboxy-terminal telopeptides of type I
collagen in human mineralised bone. Bone 2004, 34,
720–727.[28] Sassi, M.L., Eriksen, H., Risteli, L., Niemi, S., et
al., Immunochemical characterization of assay for carboxyterminal
telopeptide of human type I collagen: loss of antigenicity by treatment
with cathepsin K. Bone 2000, 26, 367–373.[29] Risteli, J.,
Elomaa, I., Niemi, S., Novamo, A., Risteli, L., Radioimmunoassay for the
pyridinoline cross-linked carboxy-terminal telopeptide of type I
collagen: A new serum marker of bone collagen degradation. Clin.
Chem. 1993, 39, 635–640.[30] Chubb, S.A.P., Measurement of
C-terminal telopeptide of type I collagen (CTX) in serum. Clin.
Biochem. 2012, 45, 928–935.[31] Koivula, M.K., Risteli, L.,
Risteli, J., Measurement of aminoterminal propeptide of type I
procollagen (PINP) in serum. Clin. Biochem. 2012, 45,
920–927.[32] Fledelius, C., Johnsen, A.H., Cloos, P.A.C., Bonde,
M., Qvist, P., Characterization of Urinary Degradation Products Derived
from Type I Collagen. J. Biol. Chem. 1997, 272,
9755–9763.[33] Garnero, P., Ferreras, M., Karsdal, M.A.,
Nicamhlaoibh, R., et al., The Type I Collagen Fragments ICTP and CTX
Reveal Distinct Enzymatic Pathways of Bone Collagen Degradation.J. Bone Miner. Res. 2003, 18, 859–867.[34] Szulc, P.,
Naylor, K., Hoyle, N.R., Eastell, R., Leary, E.T., Use of CTX-I and PINP
as bone turnover markers: National Bone Health Alliance recommendations
to standardize sample handling and patient preparation to reduce
pre-analytical variability. Osteoporos. Int. 2017, 28,
2541–2556.[35] Vasikaran, S., Cooper, C., Eastell, R., Griesmacher,
A., et al., International Osteoporosis Foundation and International
Federation of Clinical Chemistry and Laboratory Medicine Position on
bone marker standards in osteoporosis. Clin. Chem. Lab. Med. 2011, 49, 1271–1274.[36] Demeuse, J., Massonnet, P., Schoumacher,
M., Grifnée, E., et al., Innovative workflow for the identification of
cathepsin K cleavage sites in type I collagen. J. Chromatogr. B
Anal. Technol. Biomed. Life Sci. 2023, 1228.[37] Götze, M.,
Pettelkau, J., Schaks, S., Bosse, K., et al., StavroX-A software for
analyzing crosslinked products in protein interaction studies. J.
Am. Soc. Mass Spectrom. 2012, 23, 76–87.[38] Gjaltema, R.A.F.,
Bank, R.A., Molecular insights into prolyl and lysyl hydroxylation of
fibrillar collagens in health and disease. Crit. Rev. Biochem.
Mol. Biol. 2017, 52, 74–95.[39] Rappu, P., Salo, A.M., Myllyharju,
J., Heino, J., Role of prolyl hydroxylation in the molecular
interactions of collagens. Essays Biochem. 2019, 63,
325–335.[40] Gistelinck, C., Weis, M.A., Rai, J., Schwarze, U., et
al., Abnormal Bone Collagen Cross-Linking in Osteogenesis
Imperfecta/Bruck Syndrome Caused by Compound Heterozygous PLOD2
Mutations. JBMR Plus 2021, 5, 1–15.[41] Pace, C.N.,
Grimsley, G.R., Scholtz, J.M., Protein ionizable groups: pK values and
their contribution to protein stability and solubility. J. Biol.
Chem. 2009, 284, 13285–13289.[42] Liigand, P., Kaupmees, K.,
Kruve, A., Influence of the amino acid composition on the ionization
efficiencies of small peptides. J. Mass Spectrom. 2019, 54,
481–487.[43] Bhattoa, H.P., Cavalier, E., Eastell, R., Heijboer,
A.C., et al., Analytical considerations and plans to standardize or
harmonize assays for the reference bone turnover markers PINP and β-CTX
in blood. Clin. Chim. Acta 2021, 515, 16–20.[44] Cavalier,
E., Eastell, R., Jørgensen, N.R., Makris, K., et al., A Multicenter
Study to Evaluate Harmonization of Assays for C-Terminal Telopeptides of
Type I Collagen (ß-CTX): A Report from the IFCC-IOF Committee for Bone
Metabolism (C-BM). Calcif. Tissue Int. 2021, 108,
785–797.[45] Vasikaran, S.D., Miura, M., Pikner, R., Bhattoa, H.P.,
Cavalier, E., Practical Considerations for the Clinical Application of
Bone Turnover Markers in Osteoporosis. Calcif. Tissue Int. 2023,
112, 148–157.
Table 1. List of the identified peptides containing a lysine known to be
involved in the pyridinoline crosslinks.