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Abstract
This article investigates the stochastic stability of stochastic differential delay systems (SDDSs) with
path information and their applications in consensus control of multi-agent systems (MASs) based on the
path information feedback. Here, the integral path information and fragment-integral path information
are considered respectively. The mean square (m.s.) and almost sure (a.s.) exponential stability criteria of
the SDDSs with path integral information are established respectively according to the two types of path
information. It is shown that the fragment-integral term may work positively for stochastic stability. Moreover,
the obtained stochastic stability theorems are applied to design a distributed proportional integral/ fragment-
integral control protocol and establish consensus conditions for stochastic MASs under proportional-integral
(PI) -type controls. Finally, the effectiveness of the results is verified through two simulation examples.
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1 INTRODUCTION

Stochastic differential system is a mathematical model that encompass the combined influence of deterministic and stochastic
factors within a given system. It serves as a universal tool for comprehending the intricacies of practical problems influenced by
stochastic factors, while also facilitating the modeling of real-world systems that account for environmental noise. Nowadays,
stochastic differential systems have emerged as an intriguing field garnering widespread attention from both theoretical and
applied domains, assuming a pivotal role in system modeling and control across various disciplines such as physics, epidemiology,
economics, network science, and engineering1–4.

In general, the evolution of a dynamical system is not solely determined by its current state. In fact, its past or history may
also exert influence on its future evolution. This justifies the appearance of various types of delay or memory in models, which
further indicates that the early states of the system will impact future states 5. To describe such phenomena, path information
is modeled as an important component of the system model, and the concept of path dependence is introduced. Indeed, the
path-dependent stochastic models can not only take into account the stochastic modeling of the actual environment, but also
effectively capture the dependence of system evolution on path information. Consequently, they have garnered attention from
experts in the fields of engineering technology, economics, and social sciences6, 7. Additionally, in deterministic situations,
incorporating path information into deterministic systems may significantly improve the performance of control systems, such
as adaptive control and fully distributed control of multi-agent systems (MASs)8, 9. However, there lacks a general theory to
support research on stability in stochastic systems with path information. Therefore, investigating stability of path-dependent
stochastic systems and their applications in feedback control problems holds great significance.
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In stochastic systems, there exist multiple forms of path dependence. Firstly, if a system relies solely on a specific moment
or interval along the trajectory/path it follows, it degenerates into a stochastic differential delay systems (SDDS). SDDSs and
their applications have been extensively studied over recent decades10–12. Secondly, when considering the cumulative impact
of the entire or fragmented historical path information, the corresponding system becomes a stochastic system with integral
information of the entire or fragmented path13. Its typical applications include integral feedback problems in control systems
such as proportional-integral-derivative (PID) control, where the corresponding closed-loop system iis inherently path dependent.
PID control protocol is widely used for controller design in various engineering systems, with approximately 95% of automatic
control systems currently employing PID controllers14–16. Despite the extensive exploration of PID control for deterministic
systems in many literatures17–19, research on PID control for stochastic systems remains relatively limited due to the challenges
posed by incompletely differentiable states. In their work, reference 20 proposed a PID control term for a second-order stochastic
system by utilizing partial differentiable states of the system and provided sufficient conditions for selecting PID parameters
to reach mean square (m.s.) asymptotic convergence of the tracking error. Furthermore, reference 21 presented a specific PID
controller design method for globally stabilizing nonlinear uncertain stochastic systems with state observers, obtaining explicit
formulas for both PID controller and observer gain parameters. Reference 22 demonstrated the capability of PD control to
globally stabilize uncertain stochastic control systems in the mean square sense, where the drift and diffusion terms were
both nonlinear functions of state and control variables and the upper bound of the partial derivative of the nonlinear functions
satisfied certain algebraic inequalities. Additionally, reference 23 designed a PID controller to address the tracking problem in
coupled MASs consisting of second-order nonlinear uncertain dynamical agents. Reference 24 solved m.s. consistency issues in
directed graphs by designing a PI protocol for stochastic dynamic nonlinear MASs. The above works extend deterministic PID
control designs to stochastic systems from a control perspective. Nevertheless, it should be acknowledged that the corresponding
closed-loop stochastic systems are path dependent, and their stability criteria have not been well established yet.

Indeed, when considering two types of path information, the corresponding system can be regarded as a SDDS with either
global or fragmented path integral information. In deterministic situations, as a typical application of stability problems in delay
systems with path integral information, PID control of delay systems have been partially studied25–28. However, due to the
inherent characteristics of stochastic systems, many methods applicable to deterministic systems cannot be directly applied
in stochastic situations. Currently, there is limited research on PID theory for SDDSs due to the absence of corresponding
fundamental stability theories for SDDSs with path information.

Drawing upon the aforementioned discussion, this article investigates the stability of SDDSs with path integral information,
where both the integral and fragment-integral cases are taken into account, respectively. Specifically, the m.s. and almost sure
(a.s.) exponential stability criteria of SDDSs with path integral/ fragment-integral information are established respectively as
a foundation for control of such stochastic systems. Based on the stochastic stability theorems, two PI-type controllers are
designed and sufficient conditions are proposed to reach m.s. and a.s. consensus for stochastic MASs.

The remainder of this article is structured as follows. Section 2 presents the stability analysis of semi-linear SDDSs with
integral and fragment-integral terms. In Section 3, we apply the derived stability criteria to establish consensus conditions for
stochastic MASs. In Section 4, two simulation examples are provided to illustrate our theoretical results. Section 5 concludes the
article.

2 STABILITY OF SEMI-LINEAR SDDSS WITH INTEGRAL/ FRAGMENT-INTEGRAL
TERM

Throughout this article, we use the following notations. Ra×b is the set of a×b real matrices. MT and ∥M∥ represent the transpose
and Euclidean norm of matrix M. For matrices M, M1, M2, M > 0 and M1 ≥ M2 indicate that M is positive definite and M1 – M2 is
positive semidefinite respectively. Let (Ω,F ,P) denotes a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions. For m1, m2 ∈ R, min {m1, m2}(or max {m1, m2}) is denoted by m1 ∧ m2 (or m1 ∨ m2). For continuous martingales
M1(t) and M2(t), ⟨M1, M2⟩ (t) represents their quadratic variation. For τ > 0, C([–τ , 0];Rn) denotes the space of all continuous
Rn-valued functions φ defined on [–τ , 0] with the norm ∥φ∥C = supt∈[–τ ,0] ∥φ(t)∥. IN denotes the N-dimensional identity matrix.
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2.1 Stability of semi-linear SDDSs with integral term

Consider the following semi-linear SDDS with integral term

dx(t) = [A0x(t) + A1x(t – τ1) + f (x(t), x(t – τ1)) + A2

∫ t

0
x(s)ds]dt + g(x(t), x(t – τ2))dw(t), (1)

where A0, A1, A2 ∈ Rn×n, fi, gi : Rn×Rn → Rn, τ1, τ2 ≥ 0, w(t) is standard Brownian motion defined on the complete probability
space (Ω,F ,P). Denote τ = τ1 ∨ τ2. The initial data is x(t) = φ(t) ∈ C([–τ , 0],Rn), t ∈ [–τ , 0]. fi(x) and gi(x) satisfy the
following assumption.

Assumption 1. For matrix P > 0, there exist matrices D1p, D2p, D3p, D4p ≥ 0 such that

f T (x1, x2)Pf (x1, x2) ≤ q2(xT
1 D1px1 + xT

2 D2px2), (2)

gT (x1, x2)Pg(x1, x2) ≤ xT
1 D3px1 + xT

2 D4px2,

where q ≥ 0.

Definition 1. The solution to stochastic system (1) is called m.s. exponentially stable (or a.s. exponentially stable) if for any
initial data φ ∈ C([–τ , 0],Rn), there exist C0, γ0 > 0 such that

E∥x(t)∥2 ≤ C0e–γ0t(or lim
t→∞

sup
1
t

log ∥x(t)∥ ≤ –γ0

2
, a.s.). (3)

Lemma 1 (Jensen’s Inequality). For any matrix Ω > 0, the following inequality holds:

(m1 – m2)
∫ m1

m2

ϖ(ξ)TΩvarpi(ξ)dξ ≥
[∫ m1

m2

ϖ(ξ)dξ
]T

Ω

[∫ m1

m2

ϖ(ξ)dξ
]

.

Lemma 2 (29). The LMI
(

Q Ω

ΩT P

)
> 0 where Q = QT and P = PT , is equivalent to either of the following:

1)P > 0, Q – ΩP–1ΩT > 0,

2)Q > 0, P – ΩTQ–1Ω > 0.

Theorem 1. Suppose the Assumption 1 holds. The semi-linear SDDS with integral term (1) is m.s. and a.s. exponentially stable
if there exist matrice P, P1, P2 where P > 0 and P2 – P1P–1PT

1 > 0 such that(
Ξ1 Ξ3

ΞT
3 Ξ2

)
< 0, (4)

where Ξ1 = AT
2 PT

1 + P1A2 + τ1AT
2 PA2 + qP1P–1PT

1 , Ξ2 = (A0 + A1)TP + P(A0 + A1) + τ1(A0 + A1)TP(A0 + A1) + (q + 3)τ1AT
1 PA1 +

P1 + PT
1 + τ1P1P–1PT

1 + qP + q(τ1 + 2)(D1p + D2p) + D3p + D4p and Ξ3 = AT
2 P + P2 + P1(A0 + A1).

Proof. Let ϑ(t) =
∫ t

0 x(s)ds and ϱ(t) = (ϑT (t), xT (t))T . Then, (1) can be expressed as:

dϱ(t) =(L0ϱ(t) + L1ϱ(t – τ1) + F(ϱ(t), ϱ(t – τ1))dt + G(ϱ(t), ϱ(t – τ2))dw(t), (5)

where L0 =
(

0 In

A2 A0

)
, L1 =

(
0 0
0 A1

)
, F(ϱ(t), ϱ(t – τ1)) = (0, f (x(t), x(t – τ1))T )T and G(ϱ(t), ϱ(t – τ2)) = (0, g(x(t), x(t – τ2))T )T .

The initial data is {ϱ(t) = (ϑ(t), x(t))T |ϑ(0) = 0, x(t) = φ(t), t ∈ [–τ , 0]}. We choose Lyapunov functional as

V(ϱ, t) = V1(ϱ) + V2(ϱ),
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where V1(ϱ) = [ϱ(t) + L1
∫ t

t–τ1
ϱ(s)ds]T P̄[ϱ(t) + L1

∫ t
t–τ1

ϱ(s)ds], and P̄ ∈ R2n×2n, P̄ > 0. V2(ϱ) will be given later. According to the
Itô formula, it can be deduced that LV1(ϱ) has the following form:

LV1(ϱ) =ϱT (t)
[
(L0 + L1)T P̄ + P̄(L0 + L1)

]
ϱ(t) + 2ϱT (t)P̄F(ϱ(t), ϱ(t – τ1))

+ 2
∫ t

t–τ1

ϱT (s)dsLT
1 P̄(L0 + L1)ϱ(t) + 2

∫ t

t–τ1

ϱT (s)dsLT
1 P̄F(ϱ(t), ϱ(t – τ1))

+ GT (ϱ(t), ϱ(t – τ2))P̄G(ϱ(t), ϱ(t – τ2))

=:∆0 + ∆1 + ∆2 + ∆3 + ∆4.

(6)

Let P̄ =
(

P2 P1

PT
1 P

)
. Note that P̄ > 0 according to Lemma 2 since P2 – P1P–1PT

1 > 0 and P > 0. Using Lemma 1 and the

elementary inequality: 2aTΓb ≤ εaTΓa + 1
εbTΓb, for a, b ∈ Rn, Γ > 0 and ε > 0, ones get 1) ∆1 = 2ϑT (t)P1f (x(t), x(t – τ1))+

2xT (t)Pf (x(t), x(t – τ1)) ≤ qϑT (t)P1P–1PT
1ϑ(t) + qxT (t)(P + 2D1p)x(t) + 2qxT (t – τ1)D2px(t – τ1), 2) ∆2 = 2

∫ t
t–τ1

xT (s)dsAT
1 PA2ϑ(t) +

2
∫ t

t–τ1
xT (s)dsAT

1 PT
1 x(t) + 2

∫ t
t–τ1

xT (s)dsAT
1 P(A0 + A1)x(t) ≤ 3

∫ t
t–τ1

xT (s)AT
1 PA1x(s)ds + τ1xT (t)P1P–1PT

1 x(t) + τ1ϑ
T (t)AT

2 PA2ϑ(t) +
τ1xT (t)(A0 + A1)TP(A0 + A1)x(t), 3) ∆3 = 2

∫ t
t–τ1

xT (s)dsAT
1 Pf (x(t), x(t – τ1)) ≤ qτ1xT (t)D1px(t) + qτ1xT (t – τ1)D2px(t – τ1) +

q
∫ t

t–τ1
xT (s)AT

1 PA1x(s)ds and 4) ∆4 = gT (x(t), x(t – τ2))Pg(x(t), x(t – τ2)) ≤ xT (t)D3px(t) + xT (t – τ2)D4px(t – τ2). Substituting the
above inequalities into previous formula (6) yields

LV1(ϱ) ≤ ϱT (t)
[
(L0 + L1)T P̄ + P̄(L0 + L1)

]
ϱ(t) + qϑT (t)P1P–1PT

1ϑ(t) + τ1ϑ
T (t)AT

2 PA2ϑ(t)

+ τ1xT (t)P1P–1PT
1 x(t) + xT (t)D3px(t) + qxT (t)(P + τ1D1p + 2D1p)x(t)

+ τ1xT (t)(A0 + A1)TP(A0 + A1)x(t) + qxT (t – τ1)(τ1D2p + 2D2p)x(t – τ1)

+ (q + 3)
∫ t

t–τ1

xT (s)AT
1 PA1x(s)ds + xT (t – τ2)D4px(t – τ2).

Let V2(ϱ) = (q + 3)
∫ 0

–τ1

∫ t
t+s ϱ

T (θ)LT
1 P̄L1ϱ(θ)dθds. According to the Itô formula and the definition of V2(ϱ), we can get

LV2(ϱ) =(q + 3)τ1xT (t)AT
1 PA1x(t) – (q + 3)

∫ t

t–τ1

xT (s)AT
1 PA1x(s)ds. (7)

Combining with the estimation of LV1(ϱ), we obtain

LV(ϱ) ≤ϱT (t)S1ϱ(t) + ϑT (t)S2ϑ(t) + xT (t)S3x(t) + q(τ1 + 2)xT (t – τ1)D2px(t – τ1)

+ xT (t – τ2)D4px(t – τ2),

where S1 = (L0 + L1)T P̄ + P̄(L0 + L1), S2 = τ1AT
2 PA2 + qP1P–1PT

1 and S3 = τ1(A0 + A1)TP(A0 + A1) + (q + 3)τ1AT
1 PA1 + qP +

q(τ1 + 2)D1p + D3p + τ1P1P–1PT
1 . Then, we get dV(ϱ) = LV(ϱ)dt + dM(t), where M(t) = 2

∫ t
0 ϱ

T (s)P̄G(ϱ(s), ϱ(s – τ2), s)dw(s) =∫ t
0 2xT (s)Pg(x(s), x(s – τ2), s)dw(s). Futhermore, it can be inferred dV(ϱ) = ϱT (t)S4ϱ(t)dt + H1(t – τ1)dt + H2(t – τ2)dt + dM(t),

where S4 =
(
Ξ1 Ξ3

ΞT
3 Ξ2

)
, Ξ1 = AT

2 PT
1 + P1A2 + τ1AT

2 PA2 + qP1P–1PT
1 , Ξ2 = (A0 + A1)TP + P(A0 + A1) + τ1(A0 + A1)TP(A0 +

A1) + (q + 3)τ1AT
1 PA1 + P1 + PT

1 + τ1P1P–1PT
1 + qP + q(τ1 + 2)D1p + D3p, Ξ3 = AT

2 P + P2 + P1(A0 + A1), H1(t) = ϱT (t)D̄2pϱ(t),

H2(t) = ϱT (t)D̄4pϱ(t), D̄2p =
(

0 0
0 q(τ1 + 2)D2p

)
and D̄4p =

(
0 0
0 D4p

)
. Applying the Itô formula to eγtV(ϱ), for any γ > 0 yields

d
[
eγtV(ϱ)

]
=γeγtV(ϱ)dt + eγtdV(ϱ)

≤γeγtV(ϱ)dt + eγtϱT (t)S4ϱ(t)dt + eγtdM(t) + eγtH1(t – τ1)dt + eγtH2(t – τ2)dt.
(8)

Integrating the above inequality (8) and taking expectation, we can obtain

eγtEV(ϱ) ≤EV(ϱ0) +
∫ t

0
γeγsEV(ϱs)ds + E

∫ t

0
eγsϱT (s)S4ϱ(s)ds

+ E
∫ t

0
eγsH1(s – τ1)ds + E

∫ t

0
eγsH2(s – τ2)ds.
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Note that
∫ t

0 eγsH1(s–τ1)ds ≤ eγτ1
∫ 0

–τ1
H1(s)ds+eγτ1

∫ t
0 eγsH1(s)ds and

∫ t
0 eγsH2(s–τ2)ds ≤ eγτ2

∫ 0
–τ2

H2(s)ds+eγτ2
∫ t

0 eγsH2(s)ds.
Then, it can be inferred that

eγtEV(ϱ) ≤C1(γ) +
∫ t

0
γeγsEV(ϱs)ds + E

∫ t

0
eγsϱT (s)S5(γ)ϱ(s)ds, (9)

where S5(γ) = S4 + eγτ1 D̄2p + eγτ2 D̄4p and C1(γ) = EV(ϱ0) + eγτ1
∫ 0

–τ1
H1(s)ds + eγτ2

∫ 0
–τ2

H2(s)ds. According to the definition of
the Lyapunov functional V(ϱ) and the elementary inequality (a + b)TO(a + b) ≤ 2aTOa + 2bTOb, for a, b ∈ Rn and O > 0, we
can obtain V(ϱs) ≤ C2

∫ s
s–τ1

∥ϱ(θ)∥2dθ + 2∥P̄∥∥ϱ(s)∥2, where C2 = (q + 5)τ1∥L1∥2∥P̄∥. Substituting this inequality into previous
formula (9) yields

eγtEV(ϱ) ≤2∥P∥
∫ t

0
γeγsE∥ϱ(s)∥2ds + C1(γ) + E

∫ t

0
eγsϱT (s)S5(γ)ϱ(s)ds

+ C2

∫ t

0
γeγs

∫ s

s–τ1

E∥ϱ(θ)∥2dθds.

Note that
∫ t

0eγs
∫ s

s–τ1
E∥ϱ(θ)∥2dθds ≤

∫ 0
–τ1

E∥ϱ(θ)∥2
∫ θ+τ1

θ
eγsdsdθ +

∫ t
0 E∥ϱ(θ)∥2

∫ θ+τ1

θ
eγsdsdθ ≤ τ1eγτ1

∫ t
0eγθE∥ϱ(θ)∥2dθ +

τ 2
1e

γτ1∥φ∥2
C. Hence, we can get

eγtEV(ϱ) ≤C3(γ) + E
∫ t

0
eγsϱT (s)S5(γ)ϱ(s)ds + C4(γ)γ

∫ t

0
eγsE∥ϱ(s)∥2ds

≤C3(γ) + E
∫ t

0
eγsϱT (s)S6(γ)ϱ(s)ds,

(10)

where C3(γ) = C1(γ) + C2γτ
2
1 eγτ1∥φ∥2

C, C4(γ) = C2τ1eγτ1 + 2∥P̄∥ and S6(γ) = S5(γ) + γC4(γ)In. Considering S6 as a function
of γ, we can see that S6(0) < 0 under condition (4). Therefore, if condition (4) holds, then there exists a γ̄ > 0 such that for
any γ < γ̄, S6(γ) = S5(γ) + γC4(γ)In = S4 + eγτ1 D̄2p + eγτ2 D̄4p + γC4(γ)In < 0. This, together with inequality (10), can lead to
E
∫ t

0 eγsϱT (s)(–S6(γ))ϱ(s)ds < C3(γ), which implies E∥ϱ(t)∥2 ≤ C0e–γ0t. Therefore, this proof is completed.

Remark 1. A delay-dependent stability criterion for the semi-linear SDDS with integral term (1) is provided inTheorem 1 . In
condition (4), the stability condition does not involve time delay τ2. This implies that the stability of semi-linear SDDSs with
integral term is independent of delay in the diffusion term, which is in consistent with our previous work 30.

Note that if the integral term vanishes, i.e. A2 = 0, the stochastic system (1) degenerates to the first-order case:

dx(t) = [A0x(t) + A1x(t – τ1) + f (x(t), x(t – τ1), t)]dt + g(x(t), x(t – τ2), t)dw(t). (11)

Then, P1, P2 vanish in condition (4) and the following corollary can be obtained, which is consistent with Theorem 4.4 in 30.

Corollary 1. If there exist matrix P > 0 such that

(A0 + A1)TP + P(A0 + A1) + τ1(A0 + A1)TP(A0 + A1) + (q + 3)τ1AT
1 PA1

+ qP + q(τ1 + 2)(D1p + D1p) + D3p + D4p < 0,
(12)

then the semi-linear SDDS (11) is m.s. and a.s. exponentially stable.

In addition, for the case f = 0, that is, consider the following SDDS with integral term, Theorem 1 can directly lead to the
following corollary.

dx(t) =
[

A0x(t) + A1x(t – τ1) + A2

∫ t

0
x(s)ds

]
dt + g(x(t), x(t – τ2))dw(t). (13)

Corollary 2. Suppose Assumption 1 holds. If there exist matrice P, P1, P2 where P > 0 and P2 – P1P–1PT
1 > 0 such that(

Ξ1 Ξ3

ΞT
3 Ξ2

)
< 0, (14)
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where Ξ1 = AT
2 PT

1 +P1A2+τ1AT
2 PA2, Ξ2 = (A0+A1)TP+P(A0+A1)+τ1(A0+A1)TP(A0+A1)+3τ1AT

1 PA1+P1+PT
1 +τ1P1P–1PT

1 +D3p+D4p

and Ξ3 = AT
2 P + P2 + P1(A0 + A1), then the SDDS with integral term (13) is m.s. and a.s. exponentially stable.

The previous theorem gives a stability criterion in the form of matrix inequality. For the scalar case, we can further obtain an
explicit condition of the stability criterion. Let A0 = a0, A1 = a1, A2 = a2 and g = σx(t – τ2). Consider the following linear scalar
stochastic system

dx(t) = (a0x(t) + a1x(t – τ1) + a2

∫ t

0
x(s)ds)dt + σx(t – τ2)dw(t). (15)

Corollary 3. The linear scalar SDDS with integral term (15) is m.s. and a.s. exponentially stable if there exist constants µ, θ
which satisfy µ – θ2 > 0 such that a2θ + 2a2

2τ1 < 0 and ξ1ξ2 – ξ2
3 > 0 hold, where ξ1 = 2a2θ + a2

2τ1, ξ2 = 2(a0 + a1) + τ1(a0 + a1)2 +
3τ1a2

1 + 2θ + τ1θ
2 + σ2and ξ3 = µ + (a0 + a1)θ + a2.

Proof. Let P2 = µ, P1 = θ, P = 1 in Theorem 1. Then, we can obtain the desired result.

Remark 2. Corollary 3 provides stability criteria for a scalar linear stochastic system with integral term. If τ1, τ2 = 0 in (15), then
the linear scalar delay-free stochastic system is m.s. and a.s. exponentially stable if there exist constants µ, θ satisfying µ – θ2 > 0
such that η1 < 0 and η1η2 – η2

3 > 0, where η1 = 2θa2, η2 = 2(a0 + a1) + 2θ + σ2, η3 = a2 + µ + θ(a0 + a1). Let µ = –a2 – θ(a0 + a1) ,
then the above inequalities can be reduced to a2 + θ(a0 + a1) + θ2 < 0, θa2 < 0, and 2(a0 + a1) + 2θ + σ2 < 0. Let θ ∈ (0, θ̄), where

θ̄ = –a0–a1+
√

(a0+a1)2–4a2

2 ∧ –a0 – a1 – 1
2σ

2. If a2 < 0 and a0 + a1 + 1
2σ

2 < 0, then the above three inequalities hold, that is, the linear
scalar delay-free stochastic system is m.s. and a.s. exponentially stable, which is consistent with Theorem 1 in 20.

In what follows, a more concise stability criterion than Theorem 1 is proposed to facilitate the application of stability theorem
to feedback control design.

Theorem 2. Suppose the Assumptions 1 holds. The semi-linear SDDS with integral term (1) is m.s. and a.s. exponentially stable
if A2 < 0 and there is P > 0 such that ℧P < 0 holds and A2P = PA2, where ℧P = (A0 + A1)TP + P(A0 + A1) + τ1(A0 + A1)TP(A0 +
A1) + (q + 3)τ1AT

1 PA1 + qP + q(τ1 + 2)(D1p + D2p) + D3p + D4p < 0.

Proof. Note that condition ℧P < 0 implies that the system matrix A0 + A1 must be Hurwitz. In condition (4), we can choose
P1 = –(A2P + P2)(A0 + A1)–1, and then Ξ3 = 0. Moreover, –A2P is positive definite since PA2 = A2P and A2 < 0. Now, let
P2 = –(1 – α)A2P with α ∈ (0, 1), and then P1 = –αA2P(A0 + A1)–1. One can see that for any α ∈ (0,α1),

P2 – P1P–1PT
1 = –(1 – α)A2P – α2A2PĀPA2

≥ –(1 – α)A2P – α2(A2P)2λmaxĀ
≥ λmin(–A2P)(1 – α)In – λ2

max(–A2P)λmaxĀα2In > 0, (16)

where Ā = (A0 + A1)–1P–1((A0 + A1)–1)T , α1 < –λmin(–A2P)+
√

λ2
min(–A2P)+4λmin(–A2P)λmax(–A2P)2λmaxĀ

2λ2
max(–A2P)λmaxĀ .Note that ℧P = (A0 + A1)TP + P(A0 +

A1) + τ1(A0 + A1)TP(A0 + A1) + (q + 3)τ1AT
1 PA1 + qP + q(τ1 + 2)(D1p + D2p) + D3p + D4p < 0 and

PT
1 + P1 = –α[A2P(A0 + A1)–1 + ((A0 + A1)–1)TPA2]. (17)

Then, there is a small α2 > 0 such that for α < α2

Ξ2 = ℧P + PT
1 + P1 + τ1P1P–1PT

1
= ℧P – α[A2P(A0 + A1)–1 + ((A0 + A1)–1)TPA2] + τ1α

2A2PĀPA2 < 0. (18)

Moreover, since (A0 + A1)TP + P(A0 + A1) < 0,

Ξ1 = AT
2 PT

1 + P1A2 + τ1AT
2 PA2 + qP1P–1PT

1
= αA2((A0 + A1)–1)T ((A0 + A1)TP + P(A0 + A1))(A0 + A1)–1A2 + qα2A2PĀPA2 + τ1AT

2 PA2

≤ –αa + α2b + c, (19)

where a = λmin(A2((A0 + A1)–1)T (–(A0 + A1)TP – P(A0 + A1))(A0 + A1)–1A2), b = qλmax(A2PĀPA2) and c = τ1λmax(AT
2 PA2). Then,

we can obtain Ξ2 < 0, for a small τ1 and α < α3 := a
b . That is, choosing P1 = –(A2P + P2)(A0 + A1)–1 and P2 = –(1 – α)A2P with

α < α1 ∧ α2 ∧ α3 yields (4). Therefore, the desired result follows from Theorem 1.
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Remark 3. Theorem 2 provides a relatively conservative stability condition since A2 < 0 and A2P = PA2 are required in Theorem
2, while A2 does not need to be symmetric and negatively definite in Theorem 1. However, the dimension and complexity of the
matrix inequality in Theorem 2 is lower than the matrix inequality (4), indicating that the stability condition in Theorem 2 is
more concise and easier to calculate than Theorem 1. Therefore, Theorem 2 is more applicable to controller design in feedback
control problems, which will be shown in Section 3.

2.2 Stability of semi-linear SDDSs with fragment-integral term

In this subsection, we will investigate the stability of SDDSs with fragment-integral term. In fact, fragment-integral term, also
namely the distributed delay term, has been addressed in many previous studies. This subsection aims to investigate the specific
role of this term in the stability of SDDSs and provide a more concise stability theorem for the feedback control and applications.
The specific content is as follows.

Consider the semi-linear SDDS with fragment-integral term

dx(t) = [A0x(t) + A1x(t – τ1) + f (x(t), x(t – τ1)) + A2

∫ t

t–h
x(s)ds]dt + g(x(t), x(t – τ2))dw(t), (20)

where A0, A1, A2 ∈ Rn×n, τ1, τ2, h ≥ 0, f , g : Rn → Rn, w(t) is the independent Brownian motion defined on the complete
probability space (Ω,F ,P). Denote τ = τ1 ∨ τ2 ∨ h. The initial data is x(t) = φ(t) ∈ C([–τ , 0],Rn) , t ∈ [–τ , 0]. f (x) and g(x)
satisfy Assumption 1.

Theorem 3. Suppose Assumptions 1 holds. If there exists a matrix P > 0 such that

(A0 + A1 + hA2)TP + P(A0 + A1 + hA2) + τ1(A0 + A1 + hA2)TP(A0 + A1 + hA2)

+ h(A0 + A1 + hA2)TP(A0 + A1 + hA2) + (q + 1)τ1(A1 + hA2)TP(A1 + hA2)

+
1
3

(q + 1)h3AT
2 PA2 + qP + (q + τ1q + hq)(D1p + D2p) + D3p + D4p < 0,

(21)

then the semi-linear SDDS with fragment-integral term (20) is m.s. and a.s. exponentially stable.

Proof. We choose the Lyapunov functional
V(x) = V1(x) + V2(x)

with V1(x) = ϖT (x)Pϖ(x) and V2(x) = (q + 1)
∫ 0

–h

∫ t
t+s(s + h)2xT (θ – τ1)AT

2 PA2x(θ – τ1)dθds + (q + 1)
∫ 0

–τ1

∫ t
t+s xT (θ)(A1 + hA2)TP(A1 +

hA2)x(θ)dθds, where ϖ(x) = x(t) + (A1 + hA2)
∫ t

t–τ1
x(s)ds + A2

∫ t
t–h(s – t + h)x(s – τ1)ds. Using the Itô formula, we get

dV1(x) = xT (t)
[
(A0 + A1 + hA2)TP + P(A0 + A1 + hA2)

]
x(t)dt + 2xT (t)Pf (x(t), x(t – τ1))dt

+ 2
∫ t

t–τ1

xT (s)ds(A1 + hA2)TP(A0 + A1 + hA2)x(t)dt + 2
∫ t

t–τ1

xT (s)ds(A1 + hA2)TPf (x(t), x(t – τ1))dt

+ 2
∫ t

t–h
(s – t + h)xT (s – τ1)dsAT

2 P(A0 + A1 + hA2)x(t)dt + 2
∫ t

t–h
(s – t + h)xT (s – τ1)dsAT

2 Pf (x(t), x(t – τ1))dt

+ dM1(t) + d ⟨M, PM⟩ (t)

=: ∆̃0 + ∆̃1 + ∆̃2 + ∆̃3 + ∆̃4 + ∆̃5 + dM1(t) + d ⟨M, PM⟩ (t),

(22)

where ⟨M, PM⟩ (t) =
∫ t

0 gT (x(s), x(s – τ2))Pg(x(s), x(s – τ2))ds, M1(t) = 2
∫ t

0 [x(s) + (A1 + hA2)
∫ s

s–τ1
x(θ)dθ + A2

∫ s
s–h(θ – s + h)x(θ –

τ1)dθ]TPdM(s) and M(t) =
∫ t

0 g(x(s), x(s – τ2))dw(s). By Lemma 1 and the elementary inequality: 2aTΓb ≤ εaTΓa + 1
εbTΓb,

for a, b ∈ Rn, Γ > 0 and ε > 0, it can be deduced that 1) ∆̃1 ≤ qxT (t)Px(t) + qxT (t)D1px(t) + qxT (t – τ1)D2px(t – τ1), 2)
∆̃2 ≤ τ1xT (t)(A0 +A1 +hA2)TP(A0 +A1 +hA2)x(t)+

∫ t
t–τ1

xT (s)(A1 +hA2)TP(A1 +hA2)x(s)ds, 3) ∆̃3 ≤ q
∫ t

t–τ1
xT (s)(A1 +hA2)TP(A1 +

hA2)x(s)ds + τ1q(xT (t)D1px(t) + xT (t – τ1)D2px(t – τ1)), 4) ∆̃4 ≤ hxT (t)(A0 + A1 + hA2)TP(A0 + A1 + hA2)x(t) +
∫ t

t–h(s – t + h)2xT (s –
τ1)AT

2 PA2x(s – τ1)ds and 5)∆̃5 ≤ hq(xT (t)D1px(t) + xT (t – τ1)D2px(t – τ1)) + q
∫ t

t–h(s – t + h)2xT (s – τ1)AT
2 PA2x(s – τ1)ds. Substituting
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the above inequalities into (22) yields

dV1(x) ≤ xT (t)U1x(t)dt + xT (t – τ1)U2x(t – τ1)dt + d ⟨M, PM⟩ (t) + dM1(t)

+ (q + 1)
∫ t

t–h
(s – t + h)2xT (s – τ1)AT

2 PA2x(s – τ1)dsdt + (q + 1)
∫ t

t–τ1

xT (s)(A1 + hA2)TP(A1 + hA2)x(s)dsdt,

where U1 = (A0 + A1 + hA2)TP + P(A0 + A1 + hA2) + τ1(A0 + A1 + hA2)TP(A0 + A1 + hA2) + h(A0 + A1 + hA2)TP(A0 + A1 + hA2) +
qP + (q + τ1q + hq)D1p and U2 = (q + τ1q + hq)D2p. According to the definition of V2(x), we have

dV2(x) =
1
3

(q + 1)h3xT (t – τ1)AT
2 PA2x(t – τ1)dt + (q + 1)τ1xT (t)(A1 + hA2)TP(A1 + hA2)x(t)dt

– (q + 1)
∫ t

t–h
(s – t + h)2xT (s – τ1)AT

2 PA2x(s – τ1)dsdt – (q + 1)
∫ t

t–τ1

xT (s)(A1 + hA2)TP(A1 + hA2)x(s)dsdt.
(23)

Combining with the estimation of dV1(x) and Assumption 1 yields

dV(x) ≤ xT (t)U3x(t)dt + J1(t – τ1)dt + J2(t – τ2)dt + dM1(t),

where U3 = (A0 + A1 + hA2)TP + P(A0 + A1 + hA2) + τ1(A0 + A1 + hA2)TP(A0 + A1 + hA2) + h(A0 + A1 + hA2)TP(A0 + A1 + hA2) +
(q + 1)τ1(A1 + hA2)TP(A1 + hA2) + qP + (q + τ1q + hq)D1p + D3p, J1(t) = xT (t)( 1

3 (q + 1)h3AT
2 PA2 + (q + τ1q + hq)D2p)x(t) and

J2(t) = xT (t)D4px(t). Applying the Itô formula to eγtV(x), for any γ > 0, ones obtain

d
[
eγtV(x)

]
=γeγtV(x)dt + eγtdV(x)

≤ γeγtV(x)dt + eγtxT (t)U3x(t)dt + eγtdM1(t) + eγtJ1(t – τ1)dt + eγtJ2(t – τ2)dt.
(24)

Integrating the above inequality (24) and taking expectation, we can get

eγtEV(x) ≤EV(x0) +
∫ t

0
γeγsEV(xs)ds + E

∫ t

0
eγsxT (s)U3x(s)ds + E

∫ t

0
eγsJ1(s – τ1)ds + E

∫ t

0
eγsJ2(s – τ2)ds.

Note that
∫ t

0 eγsJ1(s – τ1)ds ≤ eγτ1
∫ 0

–τ1
J1(s)ds + eγτ1

∫ t
0 eγsJ1(s)ds and

∫ t
0 eγsJ2(s – τ2)ds ≤ eγτ2

∫ 0
–τ2

J2(s)ds + eγτ2
∫ t

0 eγsJ2(s)ds.
Then, we can obtain

eγtEV(x) ≤C1(γ) +
∫ t

0
γeγsEV(xs)ds + E

∫ t

0
eγsxT (s)U4(γ)x(s)ds, (25)

where U4(γ) = U3 + eγτ1 ( 1
3 (q + 1)h3AT

2 PA2 + (q + τ1q + hq)D2p) + eγτ2 D4p and C1(γ) = EV(x0) + eγτ1
∫ 0

–τ1
J1(s)ds + eγτ2

∫ 0
–τ2

J2(s)ds.
According to the definition of the Lyapunov functional V(x) and the elementary inequality (a + b)TO(a + b) ≤ 2aTOa + 2bTOb,
for a, b ∈ Rn and O > 0, we can obtain V(xs) ≤ C2

∫ s
s–τ1

∥x(θ)∥2dθ + C3
∫ s

s–h ∥x(θ – τ1)∥2dθ + 3∥P∥∥x(s)∥2, where C2 =
(q + 4)τ1 ∥A1 + hA2∥2 ∥P∥ and C3 = (q + 4)h2 ∥A2∥2 ∥P∥. Substituting this inequality into previous formula (25), we can get

eγtEV(x) ≤3∥P∥
∫ t

0
γeγsE∥x(s)∥2ds + C1(γ) + E

∫ t

0
eγsxT (s)U4(γ)x(s)ds

+ C2

∫ t

0
γeγs

∫ s

s–τ1

E∥x(θ)∥2dθds + C3

∫ t

0
γeγs

∫ s

s–h
E∥x(θ – τ1)∥2dθds.

Note that
∫ t

0eγs
∫ s

s–τ1
E∥x(θ)∥2dθds ≤

∫ 0
–τ1

E∥x(θ)∥2
∫ θ+τ1

θ
eγsdsdθ +

∫ t
0 E∥x(θ)∥2

∫ θ+τ1

θ
eγsdsdθ ≤ τ1eγτ1

∫ t
0eγθE∥x(θ)∥2dθ +

τ 2
1e

γτ1∥φ∥2
C. Hence, ones obtain

eγtEV(x) ≤C4(γ) + E
∫ t

0
eγsxT (s)U4(γ)x(s)ds + C5(γ)γ

∫ t

0
eγsE∥x(s)∥2ds + C6(γ)

∫ t

0
eγsE∥x(s – τ1)∥2ds

≤C4(γ) + E
∫ t

0
eγsxT (s)U5(γ)x(s)ds + C6(γ)

∫ t

0
eγsE∥x(s – τ1)∥2ds,

(26)
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where C4(γ) = C1(γ) + (C2 + C3)γτ 2
1 eγτ1∥φ∥2

C, C5(γ) = C2τ1eγτ1 + 3∥P∥, C6(γ) = C3heγhγ and U5(γ) = U4(γ) + γC5(γ)In. Note
that

∫ t
0 eγsx2(s – τ1)ds ≤ eγτ1

∫ 0
–τ1

x2(s)ds + eγτ1
∫ t

0 eγsx2(s)ds. Then, it can be deduced that

eγtEV(x) ≤ C5(γ) + E
∫ t

0
eγsxT (s)U6(γ)x(s)ds, (27)

where C5(γ) = C4(γ) + C6(γ)eγτ1
∫ 0

–τ1
∥x(s)∥2ds and U6(γ) = U5(γ) + γC5(γ)In + eγτ1 C6(γ)In. Considering U6 as a function

of γ, we can see that U6(0) < 0 under condition (21). Therefore, if condition (21) holds, then there exists a γ∗ > 0 such that
for any γ < γ∗, U6(γ) < 0. This, together with inequality (27), can lead to E

∫ t
0 eγsxT (s)(–U6(γ))x(s)ds < C5(γ), which implies

E∥x(t)∥2 ≤ C0e–γ0t. This proof is completed.

Remark 4. Theorem 3 develops the sufficient conditions for the semi-linear SDDS with fragment-integral term to be m.s. and a.s.
exponentially stable. In the previous works 31, 32 the discrete delay term like x(t – τ ) was proved to be positive for stochastic
stability. It is revealed in Theorem 3 that both the discrete and distributed delay terms can have a positive impact on stochastic
stability since condition (21) does not require A0 to be Hurwitz. Additionally, the condition (21) in Theorem 3 is a simple matrix
inequality containing one decision variable, which has lower computational complexity and can more intuitively reflect the role
of proportional and fragment-integral terms. A concise stability criterion is also more conducive to applications.

In addition, for the case f = 0, Theorem 3 can directly lead to the following corollary for the following SDDS with
fragment-integral term

dx(t) =
[

A0x(t) + A1x(t – τ1) + A2

∫ t

t–h
x(s)ds

]
dt + g(x(t), x(t – τ2))dw(t). (28)

Corollary 4. Suppose Assumptions 1 holds. If there exists a matrix P > 0 such that

(A0 + A1 + hA2)TP + P(A0 + A1 + hA2) + τ1(A0 + A1 + hA2)TP(A0 + A1 + hA2)

+ h(A0 + A1 + hA2)TP(A0 + A1 + hA2) + τ1(A1 + hA2)TP(A1 + hA2)

+
1
3

h3AT
2 PA2 + D3p + D4p < 0,

(29)

then the SDDS with fragment-integral term (28) is m.s. and a.s. exponentially stable.

In the next section, we apply the stochastic stability criteria obtained in this section to establish consensus conditions for
stochastic MASs under distributed proportional integral (PI) and proportional fragment-integral (PFI) control protocols.

3 CONSENSUS OF STOCHASTIC MASS UNDER PI AND PFI PROTOCOLS

The interaction topology among MASs is modeled as an connected undirected graph G = {V , E ,A}, where V = {1, 2, ..., N}
represents the node set with i being the ith agent, E represents the edge set, and A = [aij]N×N represents the adjacency matrix
with aij = 1 representing there exists an information flow between j and i, otherwise aij = 0. The set of agent i’s neighbors
is represented as Ni, that is, for j ∈ Ni, aij = 1. The degree of i is denoted by deg(i) =

∑N
j=1 aij. The Laplacian matrix of G is

denoted as L = D – A, where D = diag{deg(i), i = 1, ..., N}. Since the graph G is connected and undirected, the eigenvalues of L
are denoted by λ1 = 0 and 0 < λ2 ≤ . . . ≤ λN . Denote Λ = diag(λ2,λ3, ...,λN).

Consider a system with N(N ≥ 2) agents, where the dynamic model of each agent is described as follows

dxi(t) = Axi(t) + Bui(t) + dMi(t), i = 1, 2, ..., N, (30)

where xi(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, ui(t) ∈ Rm is the control input of the ith agent, Mi(t) =
∑d

l=1

∫ t
0 gl(xi(s))dwl(s),

gl : Rn → Rn, d > 0, {wl(t)}d
l=1 are independent Brownian motions. gl(x) satisfies Assumption 1. We consider the following PI

and PFI control protocols for the ith agent:

ui(t) =
∑
j∈Ni

(
Kpϵji(t) + KI

∫ t

0
ϵji(s)ds

)
, (31)
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and

ui(t) =
∑
j∈Ni

(
Kpϵji(t) + KI

∫ t

t–τ
ϵji(s)ds

)
, (32)

where ϵji(t) = xj(t) – xi(t) and Kp, KI ∈ Rm×n are the proportional and integral feedback gain matrices to be designed. τ represents
the duration of the integral action, τ > 0. Denote x(t) = [xT

1 (t), ..., xT
N(t)]T . We also give the initial data x(t) = φ(t) for t ∈ [–τ , 0],

φ ∈ C([–τ , 0],RnN).

Definition 2. The MAS (30) reachs m.s. (or a.s.) consensus if for any initial data φ ∈ C([–τ , 0];RnN) and all distinct i, j ∈ V ,
limt→∞ E∥xi(t) – xj(t)∥2 = 0 (or limt→∞ ∥xi(t) – xj(t)∥ = 0, a.s.).

3.1 Consensus of stochastic linear MASs under PI protocol

Theorem 4. Suppose that gl(x) = σlx, σl ≥ 0. The stochastic linear MASs (30) under PI control protocol (31) can reach m.s.
and a.s. consensus if there exist three matrice P̄1 = IN–1 ⊗ P1, P̄2 = IN–1 ⊗ P2, P̄ = IN–1 ⊗ P, P1, P2, P ∈ Rn×n, P > 0 and
P2 – P1P–1PT

1 > 0 such that [
Φ1 Φ3

ΦT
3 Φ2

]
< 0, (33)

where Φ1 = QT
2 P̄T

1 + P̄1Q2, Φ2 = (Q0 + Q1)T P̄ + P̄(Q0 + Q1) + P̄1 + P̄T
1 + DP̄, Φ3 = QT

2 P̄ + P̄2 + P̄1(Q0 + Q1), Q0 = IN–1 ⊗ A,
Q1 = –Λ⊗ BKp, Q2 = –Λ⊗ BKI , DP̄ = σ̄2P̄ and σ̄ = max(σl).

Proof. With the distributed PI control protocol (31), the stochastic linear MASs (30) can be expressed as:

dx(t) = (IN ⊗ A)x(t)dt – (L ⊗ BKp)x(t)dt –
∫ t

0
(L ⊗ BKI)x(s)dsdt + dΘ1(t),

where Θ1(t) =
∑d

l=1

∫ t
0 [IN ⊗ (σlIn)] x(s)dwl(s). Denote ΥN = 1√

N
1N1T

N and ℧(t) = [(IN – ΥN) ⊗ In] x(t), where column vector
1N = [1, 1, ..., 1]T .

d℧(t) = (IN ⊗ A)℧(t)dt – (L ⊗ BKp)℧(t)dt –
∫ t

0
(L ⊗ BKI)℧(s)dsdt + dΘ2(t),

where Θ2(t) =
∑d

l=1

∫ t
0 [IN ⊗ (σlIn)]℧(s)dwl(s). Denote the unitary matrix SL = [ 1N√

N
,κ2, ...,κN], where κT

i L = λiκ
T
i ,

∥∥κT
i

∥∥ =
1, i = 2, ..., N. Define ℧(t) = (SL ⊗ In)℧̃(t) and ℧̃(t) = [℧̃T

1 (t), ..., ℧̃T
N(t)]T , where ℧̃1(t) ≡ 0. Denote ℧̄(t) = [℧̃T

2 (t), ..., ℧̃T
N(t)]T .

d℧̄(t) = (IN–1 ⊗ A)℧̄(t)dt – (Λ⊗ BKp)℧̄(t)dt –
∫ t

0
(Λ⊗ BKI)℧̄(s)dsdt + dΘ3(t)

= (Q0℧̄(t) + Q1℧̄(t))dt + Q2

∫ t

0
℧̄(s)dsdt + dΘ3(t),

(34)

where Q0 = IN–1 ⊗ A, Q1 = –Λ⊗ BKp, Q2 = –Λ⊗ BKI and Θ3(t) =
∑d

l=1

∫ t
0 [IN–1 ⊗ (σlIn)] ℧̄(s)dwl(s). Therefore, the consensus

problem of stochastic MAS (30) is transformed into the stability problem of the stochastic differential equation (34).

Let P̄ =
[

P̄2 P̄1

P̄T
1 P̄

]
, where P̄1 = IN–1 ⊗P1, P̄2 = IN–1 ⊗P2, P̄ = IN–1 ⊗P, P1, P2, P ∈ Rn×n, P > 0 and P2 – P1P–1PT

1 > 0. Denote

Rl = IN–1 ⊗ (σlIn). Then, we can get ℧̄T (t)RT
l P̄2Rl℧̄(t) = σ2

l ℧̄T (t)P̄℧̄(t) = ℧̄T (t)DP̄℧̄(t), where DP̄ = σ̄2P̄ and σ̄ = max(σl).
Applying Theorem 1 to equation (34), we can obtain the following stability criteria of (34)[

Φ1 Φ3

ΦT
3 Φ2

]
< 0,

where Φ1 = QT
2 P̄T

1 + P̄1Q2, Φ2 = (Q0 + Q1)T P̄ + P̄(Q0 + Q1) + P̄1 + P̄T
1 + DP̄ and Φ3 = QT

2 P̄ + P̄2 + P̄1(Q0 + Q1).
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The above theorem provides sufficient condition for the consensus of stochastic MASs in the form of linear matrix inequalities.
On this basis, the stochastic algebraic Riccati equation (SAREs) can be used to design control gains, thereby obtaining more
intuitive explicit consensus conditions. Firstly, consider the following SARE

ATP + PA + CTPC – PBR–1BTP + Q = 0, R > 0. (35)

Remark 5. The solvability of this SARE has been well investigated in 33. It indicates that the existence and uniqueness of the
positive definite solution P > 0 to (35) is equivalent to the corresponding stochastic system dx(t) = [Ax(t) + Bu(t)]dt + Cx(t)dw(t)
is m.s. stabilizable, that is, the m.s. stabilization of the stochastic system can guarantee the existence of the solution to SARE. In
this case, the stabilizing and optimal controller is u(t) = –R–1BTPx(t). In particular, if B is invertible, then the SARE (35) exists a
positive definite solution.

Lemma 3. If Q2 < 0 and there exists P̄ = IN–1 ⊗P > 0 such that ΠP = (Q0 + Q1)T P̄ + P̄(Q0 + Q1) + DP̄ < 0 holds and Q2P̄ = P̄Q2,
where Q0 = IN–1 ⊗ A, Q1 = –Λ⊗ BKp, Q2 = –Λ⊗ BKI , DP̄ = σ̄2P̄ and σ̄ = max(σl), then the stochastic linear MASs (30) under
PI control protocol (31) can reach m.s. and a.s. consensus.

Proof. Let τ1 = 0 in Theorem 2, then we can get that if Q2 < 0 and there is P̄ > 0 such that ΠP = (Q0 +Q1)T P̄+P̄(Q0 +Q1)+DP̄ < 0
holds and Q2P̄ = P̄Q2, then (33) holds. Then, by Theorem 4, we can obtain the desired result.

Corollary 5. Assume that the SARE (35) has a positive definite solution. Suppose that gl(x) = σlx, σl ≥ 0 and B is invertible.
The stochastic linear MASs (30) under PI control protocol (31) with Kp = kpBTP, KI = kIB–1 can reach m.s. and a.s. consensus if
kp > 1

2λi
and kI > 0, where P > 0 is the solution to the SARE (35) with C = σl.

Proof. Note that Π2 < 0 can be guaranteed by

(A – λiBKp)TP + P(A – λiBKp) + DP < 0,

where DP = σ̄2P and i = 2, ..., N. By the elementary inequality (m1 + m2)TO(m1 + m2) ≤ 2mT
1 Om1 + 2mT

2 Om2, for m1, m2 ∈ Rn

and O > 0, we can get

ATP + PA – λiKT
p BTP – λiPBKp + σ̄2P < 0.

Note that B is invertible and KI = kIB–1, kI > 0, which satisfy Q2 = –Λ⊗ BKI < 0 and Q2P = PQ2. Then, according to Lemma 3,
Kp can be selected based on the SARE (35). Let Kp = kpBTP, the above inequality can be transformed into

ATP + PA – 2λikpPBBTP + σ̄2P < 0.

In this case, P > 0 is the solution P to equation (35) with C = σl. Let R = Im in the equation (35), then we can get

ATP + PA – 2λikpPBBTP + σ̄2P = (1 – 2λikp)PBBTP – Q < 0. (36)

Note that 1 – 2λikp < 0. Then, the above inequality (36) holds, that is, Φ2 < 0 holds. By Lemma 3, if Kp = kpBTP, KI = kIB–1,
P > 0, 1 – 2λikp < 0 and kI < 0, then the stochastic differential equation (34) is m.s. and a.s. exponentially stable. This, combined
with the definition of ℧̄(t), implies the m.s. and a.s. consensus.

Remark 6. The above corollary utilizes Lemma 3 and SARE to design controller gains. On the basis that the integral term will
not have a negative effect on consensus, a SARE is used to design and solve the gain of the proportional control term. However,
due to the integral term, the controller designed in this corollary is no longer an optimal controller like typical proportional
feedback, and the integral control gain also needs to be further designed, which is the next step in the future.

Specifically, for the scalar case, we can obtain more compact explicit conditions for the consensus of stochastic MASs with
respect to system parameters. Consider a scalar MAS, where the dynamic model of ith agent is described as

dxi(t) = axi(t) + bui(t) + dmi(t), i = 1, 2, ..., N, (37)
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where a, b are constants, mi(t) =
∫ t

0 g(xi(s))dw(s). We consider the following distributed PI control protocol for the ith agent:

ui(t) =
∑
j∈Ni

(
kpϵji(t) + kI

∫ t

0
ϵji(s)ds

)
, (38)

where ϵji(t) = xj(t) – xi(t) and kp, kI ∈ R are the proportional and integral feedback gain matrices to be designed.

Corollary 6. Suppose that g(x) = σx, σ ≥ 0. The stochastic linear MASs (37) under PI control protocol (38) can reach m.s.

and a.s. consensus if ∃ θ ∈ (θ1, θ2) where θ1 =
bkpλ2–

√
b2k2

pλ
2
2+4bkIλ2

2 , θ2 =
bkpλ2+

√
b2k2

pλ
2
2+4bkIλ2

2 and b2k2
pλ2 + 4bkI > 0, such that

–2bkIθλi + θa < 0, 2(a – bkpλi) + (a + 2)θ + σ2 < 0.

Proof. Let P̄ =
[

P̄2 P̄1

P̄T
1 P̄

]
, where P̄2 = µΛ, P̄ = IN–1, P̄1 = θIN–1 with µ, θ to be determined. Indeed, µλ2 > θ2 is necessary to

ensure the positive definiteness of P. By Theorem 4, we can obtain the following stability criteria of (34)

U =
[
Φ1 Φ3

ΦT
3 Φ2

]
< 0,

where Φ1 = –2bkIθΛ, Φ2 = 2(aIN–1 – bkpΛ) + 2θIN–1 + σ2IN–1 and Φ3 = µΛ – bkIΛ + θ(aIN–1 – bkpΛ). Let µ = bkI + θbkp, then
Φ3 = θaIN–1. Note that [

0 θaIN–1

θaIN–1 0

]
≤

[
θaIN–1 0

0 θaIN–1

]
.

Then, we can get

U ≤
[
η1 0
0 η2

]
,

where η1 = –2bkIθΛ + θaIN–1 and η2 = 2(aIN–1 – bkpΛ) + 2θIN–1 + σ2IN–1 + θaIN–1. Then, we need η1 < 0 and η2 < 0. It is
easy to verify that –2bkIθλi + θa < 0 implies η1 < 0, 2(a – bkpλi) + (a + 2)θ + σ2 < 0 implies η2 < 0 and θ ∈ (θ1, θ2) where

θ1 =
bkpλ2–

√
b2k2

pλ
2
2+4bkIλ2

2 , θ2 =
bkpλ2+

√
b2k2

pλ
2
2+4bkIλ2

2 , b2k2
pλ2 + 4bkI > 0 implies µλ2 > θ2. Therefore, U < 0. That is, the stochastic

linear MASs (37) under PI control protocol (38) can reach m.s. and a.s. consensus.

3.2 Consensus of stochastic linear MASs under PFI protocol

Theorem 5. Suppose that gl(x) = σlx, σl ≥ 0. The stochastic linear MASs (30) under PFI control protocol (32) with Kp = kpBTP,
KI = kIBTP and P > 0 can reach m.s. and a.s. consensus if

ATP + PA + 3τATPA – ρiPBI–1
m BTP + σ̄2P < 0, (39)

where ρi = 2kpλi + 2kIτλi – 3τk2
pλ

2
i – 10

3 τ
3k2

I λ
2
i and σ̄ = max(σl).

Proof. With the distributed PFI control protocol (32), the stochastic linear MASs (30) can be expressed as:

dx(t) = (IN ⊗ A – L ⊗ BKp)x(t)dt –
∫ t

t–τ
(L ⊗ BKI)x(s)dsdt + dM1(t),

where M1(t) =
∑d

l=1

∫ t
0 [IN ⊗ (σlIn)] x(s)dwl(s). Denote ΥN = 1√

N
1N1T

N and ℧(t) = [(IN – ΥN) ⊗ In] x(t), where column vector
1N = [1, 1, ..., 1]T .

d℧(t) = (IN ⊗ A – L ⊗ BKp)℧(t)dt –
∫ t

t–τ
(L ⊗ BKI)℧(s)dsdt + dM2(t),
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where M2(t) =
∑d

l=1

∫ t
0 [IN ⊗ (σlIn)]℧(s)dwl(s). Denote SL = [ 1N√

N
,κ2, ...,κN], where κT

i L = λiκ
T
i ,
∥∥κT

i

∥∥ = 1, i = 2, ..., N. Define
℧(t) = (SL ⊗ In)℧̃(t) and ℧̃(t) = [℧̃T

1 (t), ..., ℧̃T
N(t)]T , where ℧̃1(t) ≡ 0. Denote ℧̄(t) = [℧̃T

2 (t), ..., ℧̃T
N(t)]T .

d℧̄(t) = (IN–1 ⊗ A – Λ⊗ BKp)℧̄(t)dt –
∫ t

t–τ
(Λ⊗ BKI)℧̄(s)dsdt + dM3(t)

= L0℧̄(t)dt + L1

∫ t

t–τ
℧̄(s)dsdt + dM3(t),

(40)

where M3(t) =
∑d

l=1

∫ t
0 [IN–1 ⊗ (σlIn)] ℧̄(s)dwl(s), L0 = IN–1 ⊗ A – Λ ⊗ BKp and L1 = –Λ ⊗ BKI . Therefore, the consensus

problem of (30) is transformed into the stability problem of (40). Denote Ql = IN–1 ⊗ (σlIn) and P̄ = IN–1 ⊗ P(P ∈ Rn×n). Then,
we can get ℧̄T (t)QT

l P̄Ql℧̄(t) = σ2
l ℧̄T (t)P̄℧̄(t) ≤ ℧̄T (t)DP̄℧̄(t), where DP̄ = σ̄2IN–1 ⊗ P and σ̄ = max(σl). Applying Theorem 3 to

equation (40) and substituting DP̄ into it, we can obtain the following stability criteria of (40)

(L0 + τL1)T P̄ + P̄(L0 + τL1) + τ (L0 + τL1)T P̄(L0 + τL1) +
1
3
τ 3LT

1 P̄L1 + DP̄ < 0.

Let Hi = A – λiBKp – τλiBKI , i = 2, ..., N. According to the definition of L0, L1 and P̄, the above inequality can be written as

HT
i P + PHi + τHT

i PHi +
1
3
τ 3λ2

i KT
I BTPBKI + σ̄2P < 0. (41)

By elementary inequality (m1 + m2 + m3)TO(m1 + m2 + m3) ≤ 3m1TOm1 + 3mT
2 Om2 + 3mT

3 Om3, m1, m2, m3 ∈ Rn, O > 0, then
HT

i PHi ≤ 3ATPA + 3λ2
i KT

p BTPBKp + 3τ 2λ2
i KT

I BTPBKI . Substituting this inequality into (41) and letting Kp = kpBTP, KI = kIBTP,
we can obtain

ATP + PA + 3τATPA – ρiPBI–1
m BTP + σ̄2P < 0, (42)

where ρi = 2kpλi + 2kIτλi – 3τk2
pλ

2
i – 10

3 τ
3k2

I λ
2
i . Thus, by Theorem 3, if (42) holds, then (40) is m.s. and a.s. exponentially stable,

which implies m.s. and a.s. consensus of stochastic MAS (30).

Remark 7. Theorem 5 establishes a sufficient condition for the m.s. and a.s. consensus of a stochastic MAS with proportional and
fragment-integral control, which indicates that fragment-integral term can have a positive impact on consensus for a stochastic
MASs since condition (39) does not require A to be Hurwitz. In addition, when A does not meet the Hurwitz condition, the
stochastic MAS can also achieve consensus by selecting appropriate control parameters of proportional and fragment-integral
terms.

Especially, for the scalar case, i.e. A = a and B = b, we obtain Corollary 7.

Corollary 7. Suppose that g(x) = σx, σ ≥ 0. The stochastic linear MASs (30) under PI control protocol (32) with Kp = kpb,
KI = kIb can reach m.s. and a.s. consensus if

2a + 3τa2 – ρib2 + σ2 < 0, (43)

where ρi = 2kpλi + 2kIτλi – 3τk2
pλ

2
i – 10

3 τ
3k2

I λ
2
i .

4 SIMULATIONS

In this section, two simulations are provided to validate the effectiveness of the theoretical results. Consider the linear MAS (30)
composed of four scalar agents, where A = –0.01, B = 1 and gl(x) = 0.0001x. The interaction topology is modeled as an connected
undirected graph G = {V , E ,A}, where the node set V = {1, 2, 3, 4}, the edge set E = {(3, 4), (4, 3), (2, 3), (3, 2), (1, 2), (2, 1)},
and the adjacency matrix A = [aij]4×4 with a12 = a21 = a23 = a32 = a34 = a43 = 1 and other being 0. We can obtain the
eigenvalues of the Laplacian matrix L are λ1 = 0, λ2 = 0.5858, λ3 = 2, λ4 = 3.4142. The initial value is x(0) = [7, 2, –4, –8]T .

The control input ui(t) adopts distributed proportional integral(PI) (31) and proportional fragment-integral(PFI) control
protocols(32). We will select appropriate proportional and integral control gains Kp and KI to ensure consensus.
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F I G U R E 2 The relative state errors of a stochastic linear MAS with four agents by PI control.

4.1 PI control of linear MAS

According to Corollary 6, we choose Kp = kp = 1 and KI = kI = 0.1. In Corollary 6, θ ∈ (–0.1741, 1.3457) and b2k2
pλ2 + 4bkI =

0.5775 > 0. Then, we can choose θ = 0.1 so that –2bkIθλi +θa ≤ –2bkIθλ2 +θa = –0.012716 < 0 and 2(a–bkpλi)+(a+2)θ+σ2 ≤
2(a – bkpλ2) + (a + 2)θ + σ2 = –0.9926 < 0 hold. Therefore, the designed control gains satisfy the consensus condition.
Here, considering the behavior and sample path of each agent, we have Figure 1, which indicates that states of the four
agents tend to be consensus over time. To simulate m.s. and a.s. consensus more accurately, we consider the relative states
∥xi(t) – x1(t)∥, i = 2, 3, 4. Thus, we obtain Figure 2, indicating that the relative states tend to zero, that is, the four agents reach
a.s. consensus. For m.s. consensus analysis, we generate 104 sample paths. Then, considering the behaviors of the m.s. relative
states E∥xi(t) – x1(t)∥2, i = 2, 3, 4, we obtain Figure 3, which demonstrates that the four agents reach m.s. consensus. Figures 1-3
reveal that the stochastic MAS (30) can reach m.s. and a.s. consensus by PI control protocol (31).
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F I G U R E 3 The m.s. relative state errors of a stochastic linear MAS with four agents by PI control.
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F I G U R E 4 The states of a stochastic linear MAS with four agents by PFI control.

4.2 PFI control of linear MAS

Let τ = 0.01. Owing to Corollary 7, we choose Kp = kp = 2 and KI = kI = 0.01. In Corollary 7, ρi = 2kpλi + 2kIτλi – 3τk2
pλ

2
i –

10
3 τ

3k2
I λ

2
i ≥ 2kpλ2 + 2kIτλ2 – 3τk2

pλ
2
4 – 10

3 τ
3k2

I λ
2
4 = 0.9445. Then, 2a + 3τa2 – ρib2 + σ2 ≤ –0.9645 < 0 holds. Therefore,

the designed control gains satisfy the consensus condition. The revolutions of the states for the four agents xi(t), i = 1, 2, 3, 4
of the linear stochastic MAS are displayed in Figure 4, which reveals that the four agents tend to be consensus. Futhermore,
consider the relative states ∥xi(t) – x1(t)∥, i = 2, 3, 4. Choosing one sample path, we get Figure 5. From Figure 5, it could be
observed that all the relative state trajectories tend to be zero over time, indicating that the four agents reach a.s. consensus.
To validate the m.s. consensus, we generate 104 sample paths and analyze the behaviors of their corresponding m.s. relative
states E∥xi(t) – x1(t)∥2, i = 2, 3, 4. Figure 6 illustrates that the four agents reach m.s. consensus. Thus, it can be concluded that
the stochastic MAS (30) can reach m.s. and a.s. consensus by PFI protocol (32).
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F I G U R E 6 The m.s. relative state errors of a stochastic linear MAS with four agents by PFI control.

5 CONCLUSION

This article investigated the stability of SDDSs with path integral information. For the two cases of integral and fragment-integral,
the corresponding m.s. and a.s. exponential stability criteria for two types of SDDSs were obtained. It indicates that the fragment-
integral term can play a positive role in stochastic stability. In addition, we applied the obtained stochastic stability theorem to
the PI-type control problem of MASs. On this basis, sufficient conditions for the consensus of a stochastic linear MAS under
two PI-type control protocols were established, and corresponding controller design methods were provided. Specifically, for the
case of PI control, we employed SAREs to design control gains, thereby obtaining more intuitive explicit consensus conditions.
The stability results of SDDSs with path information will stimulate future research on more complex nonlinear systems, such as
stochastic systems with Markov switching. Moreover, their applications in PI-type control of MASs can also be further expanded
for research, such as leader-following and containment control.
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