Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Stability of stochastic differential delay systems with integral/
fragment-integral term and applications

Xuping Hou'** | Xiaofeng Zong*? | Jungi Mu'??

!School of Automation, China University of Abstract

Geoscience, Wuhan, China
) . This article investigates the stochastic stability of stochastic differential delay systems (SDDSs) with
Hubei Key Laboratory of Advanced Control and

Intelligent Automation for Complex Systems path information and their applications in consensus control of multi-agent systems (MASs) based on the

Wauhan, China path information feedback. Here, the integral path information and fragment-integral path information
3Engineering Research Center of Intelligent are considered respectively. The mean square (m.s.) and almost sure (a.s.) exponential stability criteria of
Technology for Geo-Exploration, Ministry of the SDDSs with path integral information are established respectively according to the two types of path
Education, Wuhan, China information. It is shown that the fragment-integral term may work positively for stochastic stability. Moreover,

the obtained stochastic stability theorems are applied to design a distributed proportional integral/ fragment-
Correspondence

i 1 1 1 stablish cons itions f hastic MA ional-i 1
Xiaofeng Zong, School of Automation, China integral control protocol and establish consensus conditions for stochastic Ss under proportional-integra!

University of Geoscience, Wuhan 430074, China (PI) -type controls. Finally, the effectiveness of the results is verified through two simulation examples.

Email: zongxf@cug.edu.cn
KEYWORDS

stability, stochastic differential delay systems, path integral, path fragment-integral, consensus
Funding Information

National Natural Science Foundation of China,
Grant/Award Numbers: 62073305, 62261136550;
Natural Science Foundation of Hubei Province,
Grant/Award Number: 2022CFA041.

1 | INTRODUCTION

Stochastic differential system is a mathematical model that encompass the combined influence of deterministic and stochastic
factors within a given system. It serves as a universal tool for comprehending the intricacies of practical problems influenced by
stochastic factors, while also facilitating the modeling of real-world systems that account for environmental noise. Nowadays,
stochastic differential systems have emerged as an intriguing field garnering widespread attention from both theoretical and
applied domains, assuming a pivotal role in system modeling and control across various disciplines such as physics, epidemiology,
economics, network science, and engineering1 el

In general, the evolution of a dynamical system is not solely determined by its current state. In fact, its past or history may
also exert influence on its future evolution. This justifies the appearance of various types of delay or memory in models, which
further indicates that the early states of the system will impact future states . To describe such phenomena, path information
is modeled as an important component of the system model, and the concept of path dependence is introduced. Indeed, the
path-dependent stochastic models can not only take into account the stochastic modeling of the actual environment, but also
effectively capture the dependence of system evolution on path information. Consequently, they have garnered attention from
experts in the fields of engineering technology, economics, and social sciences®”. Additionally, in deterministic situations,
incorporating path information into deterministic systems may significantly improve the performance of control systems, such
as adaptive control and fully distributed control of multi-agent systems (MASs)®®. However, there lacks a general theory to
support research on stability in stochastic systems with path information. Therefore, investigating stability of path-dependent
stochastic systems and their applications in feedback control problems holds great significance.
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In stochastic systems, there exist multiple forms of path dependence. Firstly, if a system relies solely on a specific moment
or interval along the trajectory/path it follows, it degenerates into a stochastic differential delay systems (SDDS). SDDSs and
their applications have been extensively studied over recent decades'*"'2. Secondly, when considering the cumulative impact
of the entire or fragmented historical path information, the corresponding system becomes a stochastic system with integral
information of the entire or fragmented path!. Its typical applications include integral feedback problems in control systems
such as proportional-integral-derivative (PID) control, where the corresponding closed-loop system iis inherently path dependent.
PID control protocol is widely used for controller design in various engineering systems, with approximately 95% of automatic
control systems currently employing PID controllers'*®, Despite the extensive exploration of PID control for deterministic
systems in many literatures' 7, research on PID control for stochastic systems remains relatively limited due to the challenges
posed by incompletely differentiable states. In their work, reference 20| proposed a PID control term for a second-order stochastic
system by utilizing partial differentiable states of the system and provided sufficient conditions for selecting PID parameters
to reach mean square (m.s.) asymptotic convergence of the tracking error. Furthermore, reference 21 presented a specific PID
controller design method for globally stabilizing nonlinear uncertain stochastic systems with state observers, obtaining explicit
formulas for both PID controller and observer gain parameters. Reference 22| demonstrated the capability of PD control to
globally stabilize uncertain stochastic control systems in the mean square sense, where the drift and diffusion terms were
both nonlinear functions of state and control variables and the upper bound of the partial derivative of the nonlinear functions
satisfied certain algebraic inequalities. Additionally, reference 23| designed a PID controller to address the tracking problem in
coupled MASs consisting of second-order nonlinear uncertain dynamical agents. Reference 24| solved m.s. consistency issues in
directed graphs by designing a PI protocol for stochastic dynamic nonlinear MASs. The above works extend deterministic PID
control designs to stochastic systems from a control perspective. Nevertheless, it should be acknowledged that the corresponding
closed-loop stochastic systems are path dependent, and their stability criteria have not been well established yet.

Indeed, when considering two types of path information, the corresponding system can be regarded as a SDDS with either
global or fragmented path integral information. In deterministic situations, as a typical application of stability problems in delay
systems with path integral information, PID control of delay systems have been partially studied*"?%. However, due to the
inherent characteristics of stochastic systems, many methods applicable to deterministic systems cannot be directly applied
in stochastic situations. Currently, there is limited research on PID theory for SDDSs due to the absence of corresponding
fundamental stability theories for SDDSs with path information.

Drawing upon the aforementioned discussion, this article investigates the stability of SDDSs with path integral information,
where both the integral and fragment-integral cases are taken into account, respectively. Specifically, the m.s. and almost sure
(a.s.) exponential stability criteria of SDDSs with path integral/ fragment-integral information are established respectively as
a foundation for control of such stochastic systems. Based on the stochastic stability theorems, two PI-type controllers are
designed and sufficient conditions are proposed to reach m.s. and a.s. consensus for stochastic MASs.

The remainder of this article is structured as follows. Section [2] presents the stability analysis of semi-linear SDDSs with
integral and fragment-integral terms. In Section [3] we apply the derived stability criteria to establish consensus conditions for
stochastic MASs. In Section[d] two simulation examples are provided to illustrate our theoretical results. Section [5|concludes the
article.

2 | STABILITY OF SEMI-LINEAR SDDSS WITH INTEGRAL/ FRAGMENT-INTEGRAL
TERM

Throughout this article, we use the following notations. R**? is the set of a x b real matrices. M” and ||M|| represent the transpose
and Euclidean norm of matrix M. For matrices M, M, M, M > 0 and M| > M, indicate that M is positive definite and M| —M, is
positive semidefinite respectively. Let (€2, F, IP) denotes a complete probability space with a filtration {F; },>¢ satisfying the usual
conditions. For m;,m; € R, min {m;, m,}(or max {m;,m,}) is denoted by m; A m, (or m; \VV my). For continuous martingales
M () and M, (1), (M1, M>) (¢) represents their quadratic variation. For 7 > 0, C([-7, 0]; R") denotes the space of all continuous
R"-valued functions ¢ defined on [, 0] with the norm ||¢||c = sup,¢_, o; [|#(?)]|. Iy denotes the N-dimensional identity matrix.



2.1 | Stability of semi-linear SDDSs with integral term

Consider the following semi-linear SDDS with integral term
t
dx(t) = [Aox(t) + Ax(t = 71) + f(x(0), x(1 — 1)) + Az / x(s)dsdr + g(x(1), x(1 = 2))dw(1), )
0

where Ag,A1,A; € R™" fi, g; : R" X R" — R", 7, 75 > 0, w(¢) is standard Brownian motion defined on the complete probability
space (£2, F,P). Denote 7 = 71 V 7». The initial data is x() = ¢(t) € C([-7,0],R"), t € [-7,0]. fi(x) and g;(x) satisfy the
following assumption.

Assumption 1. For matrix P > 0, there exist matrices D1y, Dy,, D3,, D4, > 0 such that
T 2,.T T
S, x2)Pf(x1, x2) < g7 (x Dipxy + x5 Dopxo), ()
g (x1,x2)Pg(x1,x2) < X1 D3px; + X3 Dapxa,
where g > 0.
Definition 1. The solution to stochastic system (1)) is called m.s. exponentially stable (or a.s. exponentially stable) if for any
initial data ¢ € C([-7, 0], R"), there exist Cy, o > O such that

1 _
E|jx(®)]* < Coe_w(ortlim sup — log [|x(0)]| < %,a.s.). 3)
— 00

Lemma 1 (Jensen’s Inequality). For any matrix 2 > 0, the following inequality holds:

m T my
(my —my) @ (&) QWarpi(§)dg > [/ w(f)dﬁ] Q [/ w(f)df] .

myp myp nmy

0 Q

Lemma 2 (29). The LMI (QT p

) > 0 where Q = QT and P = P7, is equivalent to either of the following:

HP>0,0-QP'QT >0,
2)0>0,P-QT07'Q>0.

Theorem 1. Suppose the Assumption[I|holds. The semi-linear SDDS with integral term (1)) is m.s. and a.s. exponentially stable
if there exist matrice P, Py, P, where P > 0 and P, — P1P‘1P1T > 0 such that

(;} ?) <0, (4)
= =)

where 2y = ATPT + P1Ay + AT PA, + qP P PT, 25 = (Ag + A1) P+ P(Ag + A1) + T1(Ag + A1) P(Ag + A) + (g + 3)ATPA, +
Py + Pl + 7P P'PT + gP + q(11 + 2)(D1, + D2p) + D3y, + Dayy and =3 = ATP + Py + Pi(Ag + Ay).

Proof. Let 9(f) = fot x(s)ds and o(f) = (97 (#),x (1))T. Then, (I) can be expressed as:

do(t) =(Loo() + Ly o(t — 1) + F(0(2), o(t = T))dt + G(o(1), o(t = 72))dw(D), (&)

where Lo = () 0),21= (3 ) P00, 000-7) = 0.£0.36 -7 and G, 0= 72) = 0,30 50 =)

The initial data is { o(f) = (I(), x(£))TW(0) = 0, x(f) = (1), t € [-,0]}. We choose Lyapunov functional as

V(o, ) = Vi(o) + V2(0),
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where Vi (0) = [o(t) + L [ iﬂ o(s)ds1TPo(t) + L, j;iﬂ o(s)ds], and P € R?"*2" P > 0. V,(p) will be given later. According to the
Ito formula, it can be deduced that £V (p) has the following form:

LV1(0) =0" () [(Lo + L))" P + P(Lo + L1)] o(t) + 20" ()PF(o(t), ot — 1))

+2 / 0" (s)dsLTP(Lo + Ly)o(t) +2 / o' (s)dsL{ PF(o(1), o(t — 1)) ©

+ G (0(1), o(t — 7))PG(o(t), o(t — 72))
ZZAO + A] + Az + A3 + A4.

_ P, P _
Let P = (P% Pl> Note that P > 0 according to Lemma [2[since P, — P{P'PT > 0 and P > 0. Using Lemma [1| and the
1

clementary inequality: 2a"T'h < ea"Ta + 1b'T'b, fora,b € R",I' > 0 and € > 0, ones get 1) Ay = 297 (0)P1f (x(1), x(1 — 7))+
2xT()Pf(x(1), x(t —71)) < g7 ()PP PTI(t) + gx" (£)(P + 2Dy ,)x(1) + 2gx" (t = 71)Dopx(t = 71), 2) Ay = 2 ft;l xT (5)dsAT PALO(1) +
2 [ X1 ()dsATPTx() +2 [ x"(s)dsATP(Ag + ADx(t) < 3 [ xT()AT PA x(s)ds + Tyx" ()PP~ PYx(t) + 707 (AT PA9(1) +
X (Ao + A P(Ag + ADx(1), 3) Az =2 f,l,ﬂ X" ($)dsATPf(x(2), x(t — 1)) < qrix"()Dypx(1) + gmix" (t = 71)Dopx(t — 71) +
q f,’m xT(s)AlTPAlx(s)ds and 4) Ay = g7 (x(1), x(t — T2))Pg(x(£), x(t — T2)) < xT(t)D3,,x(t) +xT(t- T2)Dy4,x(t — 7). Substituting the
above inequalities into previous formula (6] yields

LVi(0) < 0" (1) [(Lo + L)' P + P(Ly + Ly)] ot) + g0 ()P P~ PT9(1) + 19" (AT PAI(1)
+ 71X (OP1 P P x(0) + X" ()D3px(t) + gx" ()(P + 71Dy + 2D1,)x(2)
+71x (1)(Ag + A1) P(Ag + A)x(2) + gx" (t = 71 )(T1 Dy + 2Dap)x(t — 71)

+(g+3) x"()A] PA1x(s)ds + x" (t = T2)Dapx(t — 7).

=7

Let V2(0) = (g +3) f_OTl ' 0T (O)LT PL, o(8)dfds. According to the Itd formula and the definition of V»(g), we can get

t+s

LV5(0) =(q + 3)mix" (VAT PA x(t) — (g + 3) / xT($)AT PA | x(s)ds. (7

Combining with the estimation of LV/(p), we obtain

LV(0) <o (OS10(t) + 9T (1)S29(8) + x” (1)S3x(2) + g(11 + 2)x (¢ — 71)Dapx(t —71)

+ X1 (t = T2)Dapx(t — 72),

where Sl = (LO +L])TP + P(LO +L|), S2 = T]A{PAQ + qP]FIP{ and S3 = T[(A() +A])TP(A0 +A1) + (q + 3)7’]A{PA1 + qP +

q(T1 +2)Dy, + D3, + 71 P1P~' P]. Then, we get dV(p) = LV (p)dt + dM(t), where M(t) = 2 fot 0T ($)PG(0(s), o(s — T2), $)dw(s) =

fot 2xT (5)Pg(x(s), x(s — T2), s)dw(s). Futhermore, it can be inferred dV (o) = o7 (t)Ss0(t)dt + H,(t — T)dt + Ho(t — 7)dt + dM(?),

where S; = (f} f3>, Ei = ATPT + PiA;, + ATPA, + qP\P'PT, 25 = (Ag + AP + P(Ag + A)) + T1(Ag + AT P(Ag +
=3 52 B

A+ (q+3)mATPA; + Py + PT + P P'PT + gP + q(11 + 2)D), + D3, 3 = ATP + Py + P1(Ag + A1), Hi(1) = 0T (D2 0(2),

_ _ 0 0
Hy(1) = 0" ()Dyy0(t), Doy = (

_ 00
d Dy, = . Applying the Ito fi la to 7" V(p), f 0 yield:
0 g + 2)D2p> and Dy, (O D4p> pplying the Ito formula to 7' V(p), for any v > 0 yields

d[e7"V(0)] =ve"'V(o)dt + €"'aV (o) )
<ve"'V(o)dt + € 0" (1)Ss0(t)dt + €Y' dM(t) + "' H\(t — 7)dt + "' Ho (1 — 7»)dLt.

Integrating the above inequality (8) and taking expectation, we can obtain

t t
e"EV(0) <EV(op) + / ve* EV(o5)ds + E / €7 0" (5)S40(s)ds
0 0
t

t
+E/ eVSHl(s—Tl)ds+E/ eV Hy(s — 1)ds.
0 0
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Note that fot eV H\(s—1))ds < e’ f_OTl Hi(s)ds+e'™ fot eV H,(s)ds and fot eV Hy(s—T3)ds < '™ f_OTZ Hy(s)ds+e™ fot eV Hy(s)ds.
Then, it can be inferred that

e"EV(p) <Ci(7) + / ve"EV(o5)ds + E / €7 0" (5)Ss5(7)o(s)ds, 9
0 0

where S5(7) = Sy + €77 Dy, + €7Dy, and C1(7) = EV(o) + ™ [ Hy(s)ds + ™™ [ H(s)ds. According to the definition of
the Lyapunov functional V(o) and the elementary inequality (a + b)" O(a + b) < 2a” Oa + 2b7 Ob, for a,b € R" and O > 0, we
can obtain V(g,) < C, j;'iﬂ | 0(8)|17df +2||P||||o(s)||*, where Ca = (g + 5)71||L1||*||P||. Substituting this inequality into previous
formula (9) yields

t t
e"EV(o) <2||P| / eV E| o(s)||*ds + Ci(7) + E / €7 0" (5)Ss5(7)o(s)ds
0 0
t s
+C2/ ’yew/ E| o(0)||*dbds.
0 S—T1

Note that [je™ [ Ello(®)|*dbds < f_oﬂ Ello@)| [} e dsdd + [1E|o@)|? [y e dsdd < me’™ [1eE]|o(6)]2d0 +
7777 ||¢||%. Hence, we can get

e"EV(o) <C3(7)+E / €7 0" (5)Ss5(7)o(s)ds + Ca(y)y / e Ello(s)||*ds
0 0 (10)

<Ci(7)+E / €7 0" (5)Ss(7)o(s)ds,
0

where C3(7) = C1(y) + Coyie?™ |||, Ca(y) = Camie?™ +2||P|| and Se() = Ss5(y) + yCa(7)1,. Considering Se as a function
of 7, we can see that S¢(0) < 0 under condition (d). Therefore, if condition (@) holds, then there exists a ¥ > 0 such that for
any v <7, Se(7) = Ss(7) + YCa(NI, = Sy + €™ D2y, + €™ Dy, + vCa(7), < 0. This, together with inequality (I0), can lead to
E fol €7 0" (5)(=Ss(7))o(s)ds < C3(7), which implies E||o(¢)||> < Coe™ . Therefore, this proof is completed.

]

Remark 1. A delay-dependent stability criterion for the semi-linear SDDS with integral term (T)) is provided inTheorem[T]. In
condition (@), the stability condition does not involve time delay 7,. This implies that the stability of semi-linear SDDSs with
integral term is independent of delay in the diffusion term, which is in consistent with our previous work [30L

Note that if the integral term vanishes, i.e. A, = 0, the stochastic system (T)) degenerates to the first-order case:
dx(1) = [Aox(t) + A1x(t = 71) + f (x(1), x(1 = 71), D)]dt + g(x(2), x(t — T2), )dw(7). Y

Then, Py, P, vanish in condition (@) and the following corollary can be obtained, which is consistent with Theorem 4.4 in[30l

Corollary 1. If there exist matrix P > 0 such that

(Ag+ A P+ P(Ag+A)) +71(Ag + A P(Ag + A)) + (g + 3)T AT PA,

(12)
+qP + q(11 + 2)(D1, + D)) + D3, + Dy, <0,

then the semi-linear SDDS (1)) is m.s. and a.s. exponentially stable.

In addition, for the case f = 0, that is, consider the following SDDS with integral term, Theorem|[I]can directly lead to the
following corollary.

dx(t) = [Agx() +Ax(t—11) + Ay / x(s)ds] dt + g(x(2), x(t — m2))dw(t). (13)
0

Corollary 2. Suppose Assumption holds. If there exist matrice P, Py, Py where P > 0 and P, — P1P~'PT > 0 such that

(i; i;) <0, (14)
=l g
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where El = A;P{+P1A2+T1A2TPA2, Ez = (A0+A1)TP+P(A0+A1)+T1 (AQ+A1)TP(A()+A1)+3T]A{PA]+P1+P{+7—1P1P—1 P{+D3p+D4p
and =3 = AZT P+ Py + Pi(Ag + Ay), then the SDDS with integral term (13)) is m.s. and a.s. exponentially stable.

The previous theorem gives a stability criterion in the form of matrix inequality. For the scalar case, we can further obtain an
explicit condition of the stability criterion. Let Ag = ag,A; = a1,A; = ap and g = ox(¢ — 7). Consider the following linear scalar
stochastic system

dx(t) = (apx(t) + a1x(t — 1) + a» / x(8)ds)dt + ox(t — m)dw(t). (15)
0

Corollary 3. The linear scalar SDDS with integral term (13) is m.s. and a.s. exponentially stable if there exist constants ., 6
which satisfy p— 6% > 0 such that a,0 + 2a§7’1 <0and & & - f% > 0 hold, where & = 2a,0 + a%Tl, & =2ap+ar) +1i(ag+ar)? +
37’1a% +20+ 107 + o%and & = p+ (ag + a,)0 + as.

Proof. LetPy=p,P1=60,P=1in Theorem Then, we can obtain the desired result. O

Remark 2. Corollary [3| provides stability criteria for a scalar linear stochastic system with integral term. If 71, 7> = 0 in (I3), then
the linear scalar delay-free stochastic system is m.s. and a.s. exponentially stable if there exist constants j, § satisfying p1— 6% > 0
such that n; < 0 and 172 —n3 > 0, where 1, = 20as, 1y = 2(ag +a1) + 20 + 02, 3 = ax + p+ 0(ag + ar). Let pp = —ar — O(ap + ay) ,
then the above inequalities can be reduced to a + 6(ag +a;) + 6> < 0, fay < 0, and 2(ag +a;) +20 + 0> < 0. Let § € (0, 6), where
g = -ty ldora) —io W A-ag—ay — 0% If a; < 0 and ag + a; + 302 < 0, then the above three inequalities hold, that is, the linear
scalar delay-free stochastic system is m.s. and a.s. exponentially stable, which is consistent with Theorem 1 in 20l

In what follows, a more concise stability criterion than Theorem [I]is proposed to facilitate the application of stability theorem
to feedback control design.

Theorem 2. Suppose the Assumptions[I|holds. The semi-linear SDDS with integral term (1)) is m.s. and a.s. exponentially stable
if Ay < 0 and there is P > 0 such that Up < 0 holds and A>P = PA,, where Up = (Ag + A1)TP + P(Ag + A)) + T1(Ag +A)TP(Ag +
A+ (g+ 3)7-1AITPA] +qP + q(11 + 2)(D1), + Dop) + D3, + Dy, < 0.

Proof. Note that condition Up < 0 implies that the system matrix Ao + A; must be Hurwitz. In condition (@), we can choose
P = —(A,P + P»)(Ag + A;)7!, and then =3 = 0. Moreover, —A,P is positive definite since PA, = A,P and A, < 0. Now, let
P, =—(1 - @)A,P with a € (0, 1), and then P; = —aA,P(Ag + A;)"". One can see that for any o € (0, o),

P, —PiP7'P] = (1 —a)A;P — a*A,PAPA,
> ~(1 = @)A2P — &% (A2P) AnaxA
> Anin(=A2P)(1 = )l = Ay (A2 P AmiAc’L, > 0, (16)

max

Amin(A2PY /A2 (A2 PYHA A min(~A2P) Amax(~A2 PP AmaxA

where A = (Ag +A) '"P 1 ((Ag+A)™)T, o < AL AP A Note that Up = (Ag +A;) P+ P(Ag +

A+ T1(Ag + AT P(Ag + Ay) + (g + 3)T1IATPA| + qP + q(11 +2)(D1, + Dy,) + D3, + Day, < 0 and

Pl + P =—a[AsP(Ag + A1) + (Ao + AT PA,] (17)
Then, there is a small o, > 0 such that for o < ap

EQ=UP+P1T+P| +7']P]P71P{w
=Up—afA,P(Ag+ A1) + ((Ag + A) )T PA,] + 110 A, PAPA, < 0. (18)

Moreover, since (Ag +A)TP + P(Ag +A;) <0,
= AIP] + P1A> + ASPAy + qP PT'P]

= aAy(Ao+ A1) D) (A9 +ADTP+ P(Ag + A1))(Ag + A)) ' Az + g’ A, PAPA, + 1 AT PA,
< —aa+a2b+c, (19)

o

where a = Apin(A2((Ag + A1) ™) (—(Ag + AP = P(Ag + A)))(Ag + A1) ' A2), b = gAmax(A2PAPA) and ¢ = Ty Amax (AT PA). Then,
we can obtain Z; < 0, for a small 7; and o < a3 := . That is, choosing Py = —(A2P + P2)(Ag + A "and P, = (1 — a)A,P with
a < ay A ap A az yields (@). Therefore, the desired result follows from Theoremm
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O

Remark 3. Theorem 2] provides a relatively conservative stability condition since A, < 0 and A,P = PA, are required in Theorem
[2 while A, does not need to be symmetric and negatively definite in Theorem [I] However, the dimension and complexity of the
matrix inequality in Theorem 2]is lower than the matrix inequality (@), indicating that the stability condition in Theorem [2]is
more concise and easier to calculate than Theorem [I] Therefore, Theorem [2]is more applicable to controller design in feedback
control problems, which will be shown in Section 3}

2.2 | Stability of semi-linear SDDSs with fragment-integral term

In this subsection, we will investigate the stability of SDDSs with fragment-integral term. In fact, fragment-integral term, also
namely the distributed delay term, has been addressed in many previous studies. This subsection aims to investigate the specific
role of this term in the stability of SDDSs and provide a more concise stability theorem for the feedback control and applications.
The specific content is as follows.

Consider the semi-linear SDDS with fragment-integral term

1

dx(t) = [Agx(t) + Ay x(t — 1) + f(x(8), x(t — 1)) + As / x(s)ds]dt + g(x(1), x(t — 12))dw(t), (20)
t-h

where Ag,A1,Ay € R, 17, 1,h > 0, f,g : R" — R", w(¢) is the independent Brownian motion defined on the complete

probability space (2, F,P). Denote 7 = 71 V 7, V h. The initial data is x(¢) = ¢(f) € C([-7,0],R") , t € [-7,0]. f(x) and g(x)

satisfy Assumption|[I]

Theorem 3. Suppose Assumptions|l|holds. If there exists a matrix P > 0 such that

(Ao +A; +hA) P+ P(Ag +Ap + hAz) + 71 (Ag + A1 + hA2) P(Ag + A; + hAy)
+h(Ag + A1 +hA) P(Ag + Ay + hAy) + (g + DTi(Ar + hA2) P(A1 + hAs) @1

1
+ g(q; + DIPATPA; + qP + (g + 11q + hq) (D1 + D) + D3 + Dy, < 0,

then the semi-linear SDDS with fragment-integral term is m.s. and a.s. exponentially stable.

Proof. We choose the Lyapunov functional
V(x) = Vi(x) + V2 (x)

with Vi () = @’ (0)Pw(x) and Va(x) = (g+1) [ [ (s+h)><" (@ —11)AL PAyx(6—71)dfds +(q+ 1) f_"ﬂ JL AT(0)(Ar +hA)TP(A; +
hA2)x(0)dfds, where w(x) = x(1) + (A1 + hAy) [ x(s)ds + Ay [|,(s—t+ h)x(s — 7)ds. Using the It formula, we get

t-h

dVy(x) = X" (1) [(Ao + Ay + hA) P + P(Ag + A1 + hAy)| x(D)dt + 2x" ()P (x(D), x(t — 7))dt
+2 / xT(s)ds(A; + hA2)TP(Ag + Ay + hA2)x(D)dt + 2 / xL(s)ds(A1 + hA2) T PF(x(0), x(t — 11))dt

+2 [ (s—t+hx"(s—1)dsATP(Ag + Ay + hA2)x(t)dt + 2 / (s —t + h)x™ (s — 71)dsAS PF(x(8), x(t — 71))dt (22)
t—h t-h
+dM,(t) +d (M, PM) (t)

= A0+A1 +A2+A3+A4+A5+dM1(l‘)+d<M,PM> 0,

where (M, PM) (t) = for 8T (x(s), x(s — 72))Pg(x(s), x(s — T2))ds, Mi(t) = 2 fot[x(s) + (A + hAy) fss_ﬂ x(O)d +A; [, (0 —s+h)x(6 -
7)d01T PdM(s) and M(¢) = fot 2(x(s), x(s — 2))dw(s). By Lemmaand the elementary inequality: 2a"T'b < ea’T'a + 1b'Tb,
for a,b € R", T > 0 and ¢ > 0, it can be deduced that 1) A; < gx()Px(t) + gx"()D1,x(t) + gx" (t — T))Dapx(t — 1), 2)
A < 1ix! ()(Ag+A1 +hA2)T P(Ag+A1 +hAx()+ [ X" (s)(A1+hA2)T P(A1 +hAy)x(s)ds, 3) Az < q f;ﬂ xT(s)(A1 +hA)TP(A, +
hAx)x(s)ds + 11 g (T (OD1x(0) + X7 (t = T)Dapx(t—11)), 4) By < Il (1)(Ao + Ay +hA)T P(Ag + Ay + hA (D) + [, (s— 1+ BT (s -
)AL PAsx(s—7)ds and 5)As < hq(x" (t)Dy,x(2) + x" (t =11 )Dapx(t—11)) +¢ ftt_h (s—t+h)*xT (s—11)AT PAyx(s —1)ds. Substituting
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the above inequalities into (22)) yields

dvi(x) < xT (U x(0)dt + x" (t — 1) Uax(t — 11)dt + d (M, PM) (£) + dM, (t)
+(g+1) / (s —t+h)*xT (s — 71)AY PAyx(s — my)dsdt + (g + 1) xT($)(A} + hA2)T P(A| + hAy)x(s)dsdt,
t-h

=T

where U; = (Ag + A1 + hA2) TP+ P(Ag +A; + hAy) + 11(Ag + A1 + hA)TP(Ag + Ay + hAs) + h(Ag + A + hA))TP(Ap + A; + hAy) +
qP + (g + 11q + hq)D1, and U, = (g + 719 + hq)D,,. According to the definition of V,(x), we have

dV,(x) = %(q + DT (t = 1)AT PALx(t — 71)dt + (g + DX (1)(A] + hA2)T P(A| + hA)x(t)dt

; p (23)
—(g+1) / (s —t+h)*xT (s — 71)AY PAyx(s — my)dsdt — (g + 1) xT($)(Ay + hA)T P(A; + hA)x(s)dsdt.
t-h

-7

Combining with the estimation of dV(x) and Assumption T]yields
dV(x) < xT(OUsx()dt + J1(t = 71)dt + Jo(t — 72)dt + dM (D),

where Us = (Ag + A1 + hA2)TP + P(Ag + A + hAy) + T (Ao + A; + hA2)TP(Ag + A| + hA) + h(Ag + A1 + hA2)TP(Ag + A + hAy) +
(q+ DTi(Ay + hA)TP(A| + hA;) + P + (q + T1q + hq)D, + D3y, J1 (1) = X" (1)(3(q + DIPATPA; + (g + T1q + hq)D2,)x(1) and
L) = xT(t)D4,,x(t). Applying the It formula to €' V(x), for any v > 0, ones obtain

d[e"V(@)] =y V(x)dt + 'dV (x)

24)
< A"V (x)dt + eV xT () Usx()dt + V' dM\(t) + eV J1 (t — 7))dt + €' J(t — 7)dt. (

Integrating the above inequality (24) and taking expectation, we can get

t

t t t
e"EV(x) <EV(xy) + / eV EV(x,)ds + E / e xT (5)Usx(s)ds + E / e’ Ni(s—m)ds+E / eV’ Jh(s —1)ds.
0 0 0 0

Note that for eV (s—1)ds < e’ f_oﬂ Ji(8)ds + e’ fot e75J(s)ds and fot V(s —T)ds < '™ f_OTZ Jo(s)ds + €7 fot eV Jo(s)ds.
Then, we can obtain

e"EV(x) §C1('y)+/ fyeA”IEV(x_Y)ds+E/ e xT () Ug(7)x(s)ds, (25)
0 0

where Ug(y) = Uz +e"™ (%(q + 1)h3AzTPA2 +(q+T1g+hq)D2p) + €7Dy, and Ci(y) = EV(xg) +e7™ ff)ﬂ Ji(s)ds+e7™ LOTZ Jo(s)ds.
According to the definition of the Lyapunov functional V(x) and the elementary inequality (a + b)TO(a + b) < 2a” Oa + 2b” Ob,
for a,b € R" and O > 0, we can obtain V(x,) < G, [7_ [|x(@)[*d0 + Cs [, [|x(6 — 71)|*d6 + 3||P]|||x(s)||*, where C; =
(g +4)71 A1 + hAy||* ||P|| and Cs = (q + 4)h? ||A,||* ||P||. Substituting this inequality into previous formula (23), we can get

t t
"EV(x) <3||P|| / e E||x(s)||*ds + C1(y) + E / eV’ xT () Us()x(s)ds
0 0
t s t s
+C, / e / E|[x(0)||*d6ds + C3 / e / E||x(0 — 11)||*dbds.
0 S—T1 0 s—h

Note that [1¢™ [*Ellx(@)|ddds < [° Ellx@)|7 [, " e dsdd + [} E|xO)| [, erdsd0 < mie™™ [1e7°E|x(©0)]d0 +
777 ||0||%. Hence, ones obtain

e"EV(x) <Ca(y) + E/ e x" () Us(y)x(s)ds + CS(W)’)’/ ¢E||x(s)||*ds + C6(7)/ ¢E||x(s —7)||*ds
0 0 0 (26)

<G +E / ex (5)Us(7)x(s)ds + Co(7) / ¢PE||x(s — )| *ds,
0 0
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where C4(7) = C1(7) +(Co + C3377126”‘ l@ll%, Cs(y) = Cam1e’™ +3||P||, Co(v) = C3he™~ and Us(y) = Us(y) +yCs(7)I,. Note
that fof eVx2(s—T)ds < e f_Tl X2(s)ds + e fot €7 x?(s)ds. Then, it can be deduced that

E"EV(x) < Cs(y) +E / e x! (5)Ug(7)x(s)ds, 27
0

where Cs(7) = C4(y) + Ce(y)e?™ f_oﬂ ||lx(s)||>ds and Us(7y) = Us(y) + yCs()I, + eY™ Ce()I,,. Considering Us as a function
of 7, we can see that Us(0) < 0 under condition @ Therefore, if condition @ holds, then there exists a v* > 0 such that
for any v < v*, Us(7y) < 0. This, together with inequality Z7), can lead to E fot eV xT (s)(~Us(7))x(s)ds < Cs(7y), which implies
E||lx(#)||> < Coe™". This proof is completed.

O

Remark 4. Theorem [3|develops the sufficient conditions for the semi-linear SDDS with fragment-integral term to be m.s. and a.s.
exponentially stable. In the previous works “122 the discrete delay term like x( — 7) was proved to be positive for stochastic
stability. It is revealed in Theorem [3]that both the discrete and distributed delay terms can have a positive impact on stochastic
stability since condition (ZI]) does not require A to be Hurwitz. Additionally, the condition (2I)) in Theorem [3]is a simple matrix
inequality containing one decision variable, which has lower computational complexity and can more intuitively reflect the role
of proportional and fragment-integral terms. A concise stability criterion is also more conducive to applications.

In addition, for the case f = 0, Theorem [3| can directly lead to the following corollary for the following SDDS with
fragment-integral term

dx(t) = [Apx(t) + Ax(t—11) + Ay / x(s)ds} dt + g(x(t), x(t — 12))dw(t). (28)
t—h

Corollary 4. Suppose Assumptions[I|holds. If there exists a matrix P > 0 such that

(Ao + A +hAY) P+ P(Ag+ Ay + hAy) + T (Ao + Ay + hAy) T P(Ag + A} + hAs)
+h(Ag + Ay +hA) P(Ag + Ay + hA) + Ti (A1 +hAy) P(A + hAy) (29)

1
+ §h3AgPA2 + D3, + Dy, <0,

then the SDDS with fragment-integral term 28)) is m.s. and a.s. exponentially stable.

In the next section, we apply the stochastic stability criteria obtained in this section to establish consensus conditions for
stochastic MASs under distributed proportional integral (PI) and proportional fragment-integral (PFI) control protocols.

3 | CONSENSUS OF STOCHASTIC MASS UNDER PI AND PFI PROTOCOLS

The interaction topology among MASs is modeled as an connected undirected graph G = {V, £, A}, where V = {1,2,...,N}
represents the node set with i being the ith agent, £ represents the edge set, and A = [a;;]yxy represents the adjacency matrix
with a;; = 1 representing there exists an information flow between j and i, otherwise a;; = 0. The set of agent i’s neighbors
is represented as NV, that is, for j € N;, a;; = 1. The degree of i is denoted by deg(i) = Z,Ail a;;. The Laplacian matrix of G is
denoted as £ = D — A, where D = diag{deg(i),i = 1, ..., N}. Since the graph G is connected and undirected, the eigenvalues of £
are denoted by \; =0and 0 < A\, < ... < Ay. Denote A = diag(\;, A3, ..., Ay).

Consider a system with N(N > 2) agents, where the dynamic model of each agent is described as follows
dxi(t) = Ax;(¢) + Bu;(t) + dM;(1), i=1,2,...,N, (30)

where x;(f) € R", A € R"™", B € R™"™ u;(t) € R™ is the control input of the ith agent, M;(¢) = Zil fot g1(x;i($)dw(s),
g :R" >R, d>0, {wl(t)}le are independent Brownian motions. g;(x) satisfies Assumption We consider the following PI
and PFI control protocols for the ith agent:

W =>» <erj,~(t) +K; /0 eji(s)ds) : 31)

JEN;
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and
ui(t) = Z <Kp6j,'(l) + K[/ Eji(S)dS> s (32)
JEN; -7

where €;;(f) = x;(1) —x;(¢) and K,,, K; € R™*" are the proportional and integral feedback gain matrices to be designed. 7 represents
the duration of the integral action, 7 > 0. Denote x(t) = [x (2), ..., xk()]7. We also give the initial data x(¢) = o(¢) for ¢ € [~7, 0],
SD S C([_Ts 0]7 RHN)'

Definition 2. The MAS (30) reachs m.s. (or a.s.) consensus if for any initial data ¢ € C([-7,0]; R"") and all distinct i,j € V,
lim, o0 E|x:(5) — x;(0)||* = 0 (or lim/_, o [|x:(t) — x;(1)|| = 0, a.s.).

3.1 | Consensus of stochastic linear MASs under PI protocol

Theorem 4. Suppose that g/(x) = ox, 0; > 0. The stochastic linear MASs (30) under PI control protocol (31) can reach m.s.
and a.s. consensus if there exist three matrice Py = Iy_y @ Py, Py = Iy.i @ Py, P =Iy.i ® P, P1,P>,P € R™", P > 0 and
Py — P1P'PT > 0 such that

D O3
[q)g (I)J <0, 33)

where ®; = QITPT + P10,, @, = (Qo + Q1)'P+P(Qo + Q1) + P1 + P1 + Dp, D3 = Q5P+ Py + P1(Qo + Q1), Qo = In-1 @ A,
Q) =-A ® BK,, 0, =-A ® BK}, Dp = %P and & = max(o)).

Proof. With the distributed PI control protocol (3T), the stochastic linear MASs (30) can be expressed as:
t
dx(t) = (Iy ® A)x()dt — (L ® BK,)x(t)dt — / (L ® BKpx(s)dsdt + dO©, (1),
0

where O(¢) = ;;il fot [Iy ® (o:1,)] x(s)dw,(s). Denote Yy = ﬁl;vl,(, and O(¢) = [(Iy — Tn) ® I,] x(¢), where column vector
Iy =1[1,1,..,1]".

dO(1) = (Iy ® A)U(dt — (L ® BK,)U(t)dt — / (£ ® BK)U(s)dsdt + dO, (1),
0

where O,(1) = E;il fot [y ® (o11,)] B(s)dw(s). Denote the unitary matrix S, = [ITN’ K2, ..., ki1, Where k7 £ = \isT, H,TH =

1,i=2,...,N. Define 5(t) = (S; ® ,)5(t) and (z) = [B1(2), ..., OL(1)]", where T;(1) = 0. Denote U(z) = [B1(2), ..., Ok (0]

dO(1) = (Iy-1 ® A)O(t)dt — (A ® BK,)U(t)dt — / (A ® BK)O(s)dsdt + dOs(1)
0 (34)

= (Qo0@0) + 0, 0(1))dt + 0, / O(s)dsdt + dOs(1),
0

where Qp = Iy.1 ® A, Q1 =-A ® BK,,, 0> =-A ® BK; and O3(t) = 27:1 fol [y_1 @ (o1,)] O(s)dw;(s). Therefore, the consensus
problem of stochastic MAS (30) is transformed into the stability problem of the stochastic differential equation (34)).

_ [P, P _ _ _
Let P = [P% Pl] ,where P| = Iy_y @ P\, Py = Iy_y @ Py, P= Iy, ® P, P, P,,P € R"", P> 0 and P, — P{P~'PT > 0. Denote
R; = Iy_1 ® (011,). Then, we can get BT (t)RT P,R(1) = o?GT (1)PU(t) = U7 (1)Dp0(1), where Dp = 2P and & = max ().
Applying Theorem [I|to equation (34), we can obtain the following stability criteria of

O O3
[‘I’3T ‘I’j <0

where ®; = QTPT + P10y, &, = (Qo + 01)'P+ P(Qp + Q1) + Py + PT + Dp and @3 = QTP + Py + P1(Qo + O)). O
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The above theorem provides sufficient condition for the consensus of stochastic MASs in the form of linear matrix inequalities.
On this basis, the stochastic algebraic Riccati equation (SARESs) can be used to design control gains, thereby obtaining more
intuitive explicit consensus conditions. Firstly, consider the following SARE

ATP+PA+CTPC-PBR'B'"P+Q=0,R>0. (35)

Remark 5. The solvability of this SARE has been well investigated in |33l It indicates that the existence and uniqueness of the
positive definite solution P > 0 to (33) is equivalent to the corresponding stochastic system dx(¢) = [Ax(¢) + Bu(t)]dt + Cx(t)dw(t)
is m.s. stabilizable, that is, the m.s. stabilization of the stochastic system can guarantee the existence of the solution to SARE. In
this case, the stabilizing and optimal controller is u(f) = —R~' BT Px(¢). In particular, if B is invertible, then the SARE (B3) exists a
positive definite solution.

Lemma 3. If 0, < 0 and there exists P = Iy_; @ P > 0 such that IIp = (Qo + 01)" P+ P(Qo + 01) + D3 < 0 holds and Q>P = PQ,,
where Qy = Iy_1 ® A, Q) =-A ® BK,,, 0, = —A ® BK;, Dp = 5°P and & = max(o;), then the stochastic linear MASs (30) under
PI control protocol (31) can reach m.s. and a.s. consensus.

Proof. LetT; = 0in Theorem[2] then we can get that if Q> < 0 and there is P > 0 such that ITp = (Qo+Q1)" P+P(Qo+Q1)+Dp < 0
holds and Q,P = PQ», then holds. Then, by Theorem we can obtain the desired result. O

Corollary 5. Assume that the SARE has a positive definite solution. Suppose that g;(x) = o;x, 0; > 0 and B is invertible.
The stochastic linear MASs under PI control protocol with K, = k,B" P, K; = k;B™" can reach m.s. and a.s. consensus if
k, > ﬁ and k; > 0, where P > 0 is the solution to the SARE with C = oy.

Proof. Note that II, < 0 can be guaranteed by
(A—\BK,)" P+ P(A - \BK,) + Dp <0,

where Dp = %P and i = 2, ..., N. By the elementary inequality (m; + m)T O(m; +my) < 2mT Omy + 2m} Omy, for my,m; € R”
and O > 0, we can get

A"P +PA— \K!B"P - \PBK, +5°P < 0.

Note that B is invertible and K; = k;B™", k; > 0, which satisfy Q> = —A ® BK; < 0 and Q,P = PQ,. Then, according to Lemma
K, can be selected based on the SARE (33). Let K,, = k,B” P, the above inequality can be transformed into

ATP + PA—2)\k,PBB"P + %P < 0.
In this case, P > 0 is the solution P to equation (33)) with C = ;. Let R = I, in the equation (33)), then we can get
ATP + PA —2)\k,PBB"P + 5*P = (1 - 2\;ik,)PBB"P - 0 < 0. (36)

Note that 1 — 2k, < 0. Then, the above inequality (36) holds, that is, ®, < 0 holds. By Lemma if K, =k,B"P,K; = kB!,
P >0,1-2)\k, < 0and k; <0, then the stochastic differential equation @I) is m.s. and a.s. exponentially stable. This, combined
with the definition of U3(¢), implies the m.s. and a.s. consensus. O]

Remark 6. The above corollary utilizes Lemma [3|and SARE to design controller gains. On the basis that the integral term will
not have a negative effect on consensus, a SARE is used to design and solve the gain of the proportional control term. However,
due to the integral term, the controller designed in this corollary is no longer an optimal controller like typical proportional
feedback, and the integral control gain also needs to be further designed, which is the next step in the future.

Specifically, for the scalar case, we can obtain more compact explicit conditions for the consensus of stochastic MASs with
respect to system parameters. Consider a scalar MAS, where the dynamic model of ith agent is described as

dx;(t) = ax;(t) + bu;(t) + dm;(t), i=1,2,..,N, (37)
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where a, b are constants, m;(t) = fot g(x;(s))dw(s). We consider the following distributed PI control protocol for the ith agent:
t
ui(t) = Z (kpﬁji(t) + kl/ Eji(s)ds> , (38)
JEN; 0
where €;(¢) = x;(t) — x;(?) and k,, k; € R are the proportional and integral feedback gain matrices to be designed.

Corollary 6. Suppose that g(x) = ox, o > 0. The stochastic linear MASs (37) under PI control protocol (38) can reach m.s.
_ 272 \2 272 \2

and a.s. consensus if 30 € (01, 0,) where 0, = b Ao/ ];”A2+4bk')\2, 0, = Py Aoty/b ;{”)\zﬂbk')\z and bzklz,)\z + 4bk; > 0, such that

~2bkiON; + 0a < 0, 2(a—bk,\;) + (a+2)0 + 0> < 0.

P, P . - - . : .

P; Pl} , Where P, = uA, P = Iy_y, Py = 0Iy_; with p, 0 to be determined. Indeed, A, > 0% is necessary to
1

ensure the positive definiteness of P. By Theorem[d] we can obtain the following stability criteria of (34)

o, Os
= - O’
v ng ‘PJ )

Proof. Let P =

where ® = -2bk;0A, ©, = 2(aly_1 — bk, A) +201n_; + o?Iy_; and ®3 = pA — bk A + O(aly_; — bk, ). Let pu = bk; + 6bk,,, then
@3 = faly_;. Note that

0 ele_l < HaIN_l 0
Oaly_; 0 - 0 Oaly_y '

Then, we can get

U< [771 0] ’
0 m
where 71 = —2bk;0A + Qaly_, and n, = 2(aly_i — bk,A) + 20Iy_ + 0?Iy_; + Oaly_,. Then, we need n; < 0 and 7, < 0. It is
easy to verify that —2bk;0\; + 6a < 0 implies ; < 0, 2(a — bk, \;) + (a +2)0 + o2 <0 implies 17, < 0 and 6 € (6, 6,) where
— 2 2 2 . . . .
0, = by damy bz/f)‘”%k’)‘z .0, = bhypdaty bzﬁ’z’ AZMM{MZ, b*k2X; + 4bk; > 0 implies p), > 6%, Therefore, U < 0. That is, the stochastic
linear MASs under PI control protocol can reach m.s. and a.s. consensus.

O

3.2 | Consensus of stochastic linear MASs under PFI protocol

Theorem 5. Suppose that g,(x) = 0.x, o; > 0. The stochastic linear MASs (30) under PFI control protocol (32)) with K,, = k,B" P,
K; = k;B"P and P > 0 can reach m.s. and a.s. consensus if

ATP + PA +37ATPA - p,PBI,'B"P + 5*P < 0, (39)

where p; = 2k N\ + 2k T\ — 37’1{112,/\,2 - 1—307'3192)\1-2 and ¢ = max(o).

Proof. With the distributed PFI control protocol (32)), the stochastic linear MASs can be expressed as:
t
dx(t) = (Iy ® A - L @ BK,)x(1)dt - / (L @ BK;)x(s)dsdt + dM, (1),
-7

where M (1) = Z;j:l for Uy ® (o1,)] x(s)dw,(s). Denote Yy = \ileng, and U(¢) = [(Iy — Ty) ® 1,1 x(¢), where column vector
1y =[1,1,..,1] .

dO(t) = (Iy ® A- L ® BK,)U(t)dt - / (L ® BK)O(s)dsdt + dM, (1),
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where My(1) = S, [0 [Iy @ (01,)] B(s)dwi(s). Denote S = [%, K2, ..oy iy, where K7L = Nl ||7]| = 1,i = 2, ..., N. Define
U(1) = (Sz @ I,)O(2) and B(p) = [GI (1), ..., BF(0]”, where 0, (t) = 0. Denote 5(7) = [GL (1), ..., 5L

t
dO(t) = Iy, RA-A® BK,,)(J(t)dt - / (A ® BK)O(s)dsdt + dM;(t)
, -7 (40)
= LyO()dt + L, / O(s)dsdt + dM;(1),
-7

where M5(f) = Zil fot (Uy-1 @ ()] O(s)dwi(s), Ly = In.i RA-A ® BK, and L; = —A ® BK;. Therefore, the consensus
problem of (30) is transformed into the stability problem of (@0). Denote Q; = Iy_; ® (0yl,) and P = Iy_; ® P(P € R"*"). Then,
we can get 7 (1)QT PQ,0(t) = o707 (1)PU(r) < U7 (1)DpU(t), where Dp = 6%Iy_; ® P and & = max(c;). Applying Theoremto
equation {@0) and substituting Dp into it, we can obtain the following stability criteria of (40)

_ _ 1 _
(Lo + TL)"P+ P(Ly + TLy) + (Lo + TL))" P(Lo + L) + 5T3L,TPL, +Dp <0.
Let Hi=A - \BK, - TA\;BK;, i =2,...,N. According to the definition of Ly, L; and P, the above inequality can be written as
1
H!'P+ PH; + TH' PH; + §T3A,.21<,TBTPBK, +3°P <0. (41)

By elementary inequality (m; + ma + m3)" O(my + my + mz) < 3mTOm; + 3m} Omy + 3m} Oms, my, my, m3 € R", 0 > 0, then
HIPH; < 3ATPA+3)\ KT B" PBK,, + 37> \}K] B” PBK;. Substituting this inequality into (#T) and letting K, = k,B" P, K; = k;B" P,
we can obtain

ATP + PA+37ATPA - p,PBI;'BTP + 5P < 0, (42)

where p; = 2k, \; + 2k; T\ - 3’1’]{[2,)\[2 - 13—073k%)\i2. Thus, by Theorem if (@2) holds, then (@0) is m.s. and a.s. exponentially stable,
which implies m.s. and a.s. consensus of stochastic MAS (30).
O]

Remark 7. Theorem|[5]establishes a sufficient condition for the m.s. and a.s. consensus of a stochastic MAS with proportional and
fragment-integral control, which indicates that fragment-integral term can have a positive impact on consensus for a stochastic
MASSs since condition @]) does not require A to be Hurwitz. In addition, when A does not meet the Hurwitz condition, the
stochastic MAS can also achieve consensus by selecting appropriate control parameters of proportional and fragment-integral
terms.

Especially, for the scalar case, i.e. A = a and B = b, we obtain Corollarym

Corollary 7. Suppose that g(x) = ox, o > 0. The stochastic linear MASs (30) under PI control protocol (32)) with K, = k,b,
K; = kib can reach m.s. and a.s. consensus if

2a+371a* - pib* + 0% <0, 43)

where p; = 2k, N + 2k T\ — 3Tkz%/\i2 - %73192/\,-2.

4 | SIMULATIONS

In this section, two simulations are provided to validate the effectiveness of the theoretical results. Consider the linear MAS @])
composed of four scalar agents, where A = —0.01, B = 1 and g;(x) = 0.0001x. The interaction topology is modeled as an connected
undirected graph G = {V, £, A}, where the node set V = {1,2, 3,4}, the edge set £ = {(3,4),(4,3),(2,3),(3,2),(1,2),(2, 1)},
and the adjacency matrix A = [a;jlaxs With a1 = as1 = ax3 = an = a34 = a3 = 1 and other being 0. We can obtain the
eigenvalues of the Laplacian matrix £ are A; = 0, A, = 0.5858, \3 =2, \y = 3.4142. The initial value is x(0) = [7,2, -4, -817.

The control input u;(f) adopts distributed proportional integral(PI) (3T) and proportional fragment-integral(PFI) control
protocols(32). We will select appropriate proportional and integral control gains K, and K; to ensure consensus.



14

8
agent 1
6 agent2 | |
agent 3
= = =agent4
4 i

X(t)

I
- =

8 I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time t

FIGURE 1 The states of a stochastic linear MAS with four agents by PI control.
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FIGURE 2 The relative state errors of a stochastic linear MAS with four agents by PI control.

41 | PI control of linear MAS

According to Corollary@ we choose K, =k, =1 and K; =k; = 0.1. In Corollary@ 0 € (-0.1741,1.3457) and bzkg)\z +4bk; =
0.5775 > 0. Then, we can choose 6 = 0.1 so that —2bk;0)\; +0a < -2bk;0 > +60a = -0.012716 < 0 and Z(a—bkp)\i)+(a+2)t9+02 <
2(a — bkyXy) + (a + 2)0 + 0% = —0.9926 < 0 hold. Therefore, the designed control gains satisfy the consensus condition.
Here, considering the behavior and sample path of each agent, we have Figure [T} which indicates that states of the four
agents tend to be consensus over time. To simulate m.s. and a.s. consensus more accurately, we consider the relative states
||x:(£) — x1 ()], i = 2,3,4. Thus, we obtain Figure indicating that the relative states tend to zero, that is, the four agents reach
a.s. consensus. For m.s. consensus analysis, we generate 10* sample paths. Then, considering the behaviors of the m.s. relative
states E||x;(t) — x; (t)||2, i =2,3,4, we obtain Figure|3} which demonstrates that the four agents reach m.s. consensus. Figures
reveal that the stochastic MAS (30) can reach m.s. and a.s. consensus by PI control protocol (3T).
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FIGURE 3 The m.s. relative state errors of a stochastic linear MAS with four agents by PI control.
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FIGURE 4 The states of a stochastic linear MAS with four agents by PFI control.

4.2 |  PFI control of linear MAS

Let 7 = 0.01. Owing to Corollary , we choose K, =k, =2 and K; = k; =0.01. In Corollary pi = 2kp\i + 2k TN — 37']‘,%/\1'2 -
1—307'3/%12/\,-2 > 2k, Ay + 2k TN — ?n'lcp)\?1 - ?7’3/’(12/\3 = 0.9445. Then, 2a + 37a®> — pib* + 0> < —0.9645 < 0 holds. Therefore,
the designed control gains satisfy the consensus condition. The revolutions of the states for the four agents x;(r),i = 1,2,3,4
of the linear stochastic MAS are displayed in Figure 4] which reveals that the four agents tend to be consensus. Futhermore,
consider the relative states ||x;(#) —x;(?)||,i = 2, 3,4. Choosing one sample path, we get Figure [5| From Figure |3} it could be
observed that all the relative state trajectories tend to be zero over time, indicating that the four agents reach a.s. consensus.
To validate the m.s. consensus, we generate 10* sample paths and analyze the behaviors of their corresponding m.s. relative
states E||x;(¢) — x (t)Hz, i=2,3,4. Figure @illustrates that the four agents reach m.s. consensus. Thus, it can be concluded that
the stochastic MAS (30) can reach m.s. and a.s. consensus by PFI protocol (32).
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FIGURE 5 The relative state errors of a stochastic linear MAS with four agents by PFI control.
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FIGURE 6 The m.s. relative state errors of a stochastic linear MAS with four agents by PFI control.

5 | CONCLUSION

This article investigated the stability of SDDSs with path integral information. For the two cases of integral and fragment-integral,
the corresponding m.s. and a.s. exponential stability criteria for two types of SDDSs were obtained. It indicates that the fragment-
integral term can play a positive role in stochastic stability. In addition, we applied the obtained stochastic stability theorem to
the PI-type control problem of MASs. On this basis, sufficient conditions for the consensus of a stochastic linear MAS under
two PI-type control protocols were established, and corresponding controller design methods were provided. Specifically, for the
case of PI control, we employed SAREsS to design control gains, thereby obtaining more intuitive explicit consensus conditions.
The stability results of SDDSs with path information will stimulate future research on more complex nonlinear systems, such as
stochastic systems with Markov switching. Moreover, their applications in PI-type control of MASs can also be further expanded
for research, such as leader-following and containment control.
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