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Abstract 

This article proposes a class of asymmetric 2×n resistor network model which contains multiple 

independent resistors, the study of asymmetric resistor network models is a challenge. We 

conducted in-depth research on this issue using the RT-V theory (Chinese Physics B, 2017, 26(9): 

090503) and achieved new theoretical breakthroughs. This paper derived five original equivalent 

resistance formulae for this asymmetric 2×n circuit network, and also discusses the analytical 

expressions for equivalent resistance in different special cases, and several interesting results have 

been derived, indicating that the original resistance formula has powerful functionality. Finally, 

visual graphics of two types of equivalent resistances are provided using MATLAB drawing tools, 

which reveals the law of equivalent resistance changing with resistance variables. The research 

theory and technology in this article will provide a new theoretical basis for related scientific, 

engineering, and simulation research. 
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1. Introduction  

With the rapid development of electronic technology, circuit systems are becoming 

increasingly complex. As a basic component of circuits, the complexity and diversity of resistor 

networks (RNs) have also increased. Many abstract and complex problems need to be solved by 

establishing intuitive models. The establishment and research of resistor network models (RNMs) 

not only contribute to a deeper understanding of the working principles of circuits, but also have 

significant implications for integrated circuit design [1], circuit optimization [2], and fault diagnosis 

[3]. The research on RNMs are based on the theoretical foundations of multiple disciplines such as 

circuit theory, mathematical graph theory, matrix theory, and optimization algorithms [4-6]. As a 

fundamental research method, it has gradually penetrated into many disciplinary fields, promoting 

their development to a certain extent. 

The establishment and research of RNMs have a history of more than 170 years, dating back to 

1845 when Kirchhoff, who had just graduated from university, proposed two laws for complex 
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circuit calculations in his academic paper [7], namely the famous Kirchhoff laws (loop voltage law 

and node current law). This law establishes the foundation of circuit analysis theory and solves a 

series of complex scientific problems. With the development of the electrification era, the definition 

of RNs has begun to generalize, including infinite networks composed of the same resistors or 

capacitors. At this time, the new theories are needed to study the electrical characteristics of infinite 

networks. Scholars in references [8-10] have proposed research on the resistance between two 

points in an infinite grid, as well as some new ideas and methods. In 2000, Professor Cserti from 

Roland University in Hungary established the Green's function technique (LGF) for calculating the 

equivalent resistance of infinite rectangular networks [9], which applied the LGF to infinite 

resistance networks and provided a method for calculating the equivalent resistance of infinite 

resistance networks. In addition, Asad [11,12] and Owaidat [13-16] used LGF to study complex 

infinite circuit networks. Their research works have promoted the research and development of 

infinite networks and made significant contributions. In 2004, Professor Wu FY from Northeastern 

University proposed the Laplacian matrix method [17] (Wu's LM method) for computing 

large-scale finite RNs, and used the eigenvalues and eigenvectors of the Laplacian matrix to 

calculate the resistance between any two nodes in the RN. Wu's LM method has also been well 

developed and applied in the study of equivalent resistance. For example, references [18-22] 

applied Wu's LM method to study the equivalent resistance between any two points in a resistance 

network under special circumstances, but this method is not applicable to networks on any boundary. 

In 2011, Professor Tan Z-Z from Nantong University in China proposed a new original theory 

called the recursion-transform (RT) theory [1] to solve RN problems with arbitrary boundaries. By 

applying Tan's RT method, the equivalent resistance of finite m×n RNs with different boundaries as 

shown in Refs. [23-31] can be calculated. This methodology only requires the establishment of 

matrix equations along one direction, simplifying the expression of the results and suitable for 

studying infinite and finite RNMs with arbitrary boundaries. 

At present, Professor Tan has elevated the problem of RNs to RNMs, opening up a new 

research field [1]. The establishment of RT theory has promoted the study of RNMs for various 

complex structures. For example, in reference [32], for the first time, the RT-V method was used to 

obtain accurate potential formulas for arbitrary m×n cobweb and Fan networks, and potential 

formulas for infinite and semi infinite networks were derived. Reference [33] studied an arbitrary 

m×n apple surface network with a pair of non-uniform boundary resistances based on RT-V theory. 

Paper [34] studied the resistance between any node in two n-order periodic resistance networks 

using the RT-V method. Reference [35] used the RT-V method to establish two new sets of 

equations to determine the electrical characteristics of an irregular 2×n hammock network. This 

paper proposes a class of asymmetric 2×n RNMs containing multiple independent resistors, as 

shown in Fig.1. The model is very complex and consists of five independent resistor elements. We 

conducted in-depth research on this issue by using Professor Tan's RT-V method established in 
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reference [32]. We derived five original equivalent resistance formulas for asymmetric 2×n circuit 

networks and discussed analytical expressions for equivalent resistance in different special cases. 

Finally, we used MATLAB drawing tools such as those used in references [36, 37] to provide visual 

representations of two types of equivalent resistance, revealing the variation of equivalent resistance 

with resistance variables. 

Recently, reference [38] studied a class of periodic and asymmetric 2 × n circuit networks 

embedded with T-shaped structures, and this article intends to study another type of non-periodic 

and asymmetric 2 × n circuit networks.  Although their partial structures are similar, their essential 

problems are different because their boundary conditions are different (one is periodic structure, the 

other is non-periodic structure), and their equivalent resistance results are different. People 

understand that even a slight change in the conditions of the RNM will alter their electrical 

characteristics. Therefore, it is necessary to study non-periodic and asymmetric 2 × n circuit 

networks. 

 

2. Main conclusions and formulae 

The 2 × n RNM of the embedded inverted T-shaped circuit in Figure 1 has two characteristics : 

firstly, it is a very complex 2×n order RNM; Secondly, it can be inferred from its sub model that the 

model does not have symmetry vertically. Therefore, the n-order RNM embedded in an inverted 

T-shaped circuit is an asymmetric 2×n-order RNM. In this RNM, the lower nodes are defined from 

left to right as A0 to An, the middle nodes corresponding to the lower nodes are defined as B0 to Bn, 

and the remaining intermediate nodes are C1 to Cn in sequence. The top of the model is the 

horizontal axis D0 to Dn with the same potential, and Dk in all expressions in the text is represented 

by O (because they are located on the same wire). Refer to Figure 1, there are the five independent 

arbitrary resistance elements are arranged in this model. The resistance element r is arranged 

between any two nodes on the horizontal axis A0An, the 
2r  is arranged between any two nodes on 

the horizontal axis B0Bn. In the vertical direction, the 0r is placed between Ak and Bk, 3r is placed 

between Bk and Dk, the resistance element
1r is arranged between Ck and Dk. In this paper, the RT-V 

method is also used to study and derive the analytical formula for the equivalent resistance between 

any two nodes 
1x

A (and 
1x

B ) and
2 2 2
( , , )x x xP A B O  in an 2×n RN.  

 

 

 

 

 

 

 

 

 

 

Fig.1. An asymmetric 2 × n resistor network model embedded with T circuit, containing five 

different resistor elements, and r3=r0//(2r1+r2).  
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2.1 Necessary parameter definitions 

The RN studied in this article is very complex. In order to make the expression results more 

concise, the parameters in the article are defined as follows. 

1 0 21 20

1
( 2)( 1)

2
rp h h h      ,  

2 0 21 20

1
( 2)( 1)

2
rp h h h      ,                       (1) 

2

0 21 20 0

1
( 1 ) ( 2)
2

r rh d h h h      ,                       (2) 

In the above equation, 20 21( 1)( 2) 1d h h    , and   

0 0/ , /sk s k rh r r h r r   ,  3 0 1 2//(2 )r r r r  ,                  (3) 

and define 

( )
k k

i i i
k

i i

B
 

 





,  

( ) ( ) ( )

1

i i i

k k kB B B   , ( 1,2)i                     (4) 

   2 21 1
4 , 4

2 2
i i i i i ip p p p        .                    (5) 

( ) ( ) ( )

, k v

i i i

k v x n xF B B   ,                               (6) 

The above parameters expressions (1)-(6) are applicable to the entire text and facilitate further 

research in the following sections. 

 

2.2 Five original results 

In the RNM shown in Fig. 1, for the horizontal axis A0An , from left to right, the first node on 

the left side is A0, and the k-th node is Ak . alike, assuming that the k-th node on the central axis B0Bn 

is Bk. The parameters of each resistor involved in the article are labeled in Fig. 1, in this asymmetric 

2×n RNM, the analytical expressions for the equivalent resistance between any node
1x

A and node 

2 2 2
( , , )x x xP A B O , as well as between node

1x
B and node 

2 2
( , )x xP B O   are the following five 

conclusions. 

 

2.2.1 Analytical formula of equivalent resistance
1 2

( , )x xR A B   

We have derived an accurate equivalent resistance analytical formula 
1 2

( , )n x xR A B  for the 

study of RNM in Figure 1 

 
1 2

(1) (1) 2 (1) (2) (2) 2 (2)

1,1 1 1,2 1 2,2 1,1 2 1,2 2 2,2

1 2(1) (2)

2 1 1 1 2 1 2 1

, 2 2
(2 ) (2 )

( )( 2) ( )( 2)

n x x

n n

R A B F u F u F F u F u F
d p d p

r p p p B p p p B 

   
   

   
.     (7) 

where 20 21( 1)( 2) 1d h h    , and   

20 21(2 ) /(2 )i iu h h d p   ,                          (8) 

other parameters ( )i

kB , skh , ( )

,

i

k vF  etc. are defined in equations (1)-(6). 



 5 

 

2.2.2 Analytical formula of equivalent resistance
1

( , )xR A O   

We then derived the second equivalent resistance formula 
1

( , )n xR A O for the complex 2 × n 

RN of Fig.1,  

 
1

(1) (2)

1 1 1 2 1 1

(1) (2)

2 1 1 1 2 1 2 1

, (2 ) (2 )

( )( 2) ( )( 2)

n x

n n

R A O d p F d p F

r p p p B p p p B 

 
 

   

， ， ,               (9) 

where 20 21( 1)( 2) 1d h h    , and 1 2,t t  are defined in equation (1). 

 

2.2.3 Analytical formula of equivalent resistance
1 2

( , )x xR A A   

Furthermore, we derived the third equivalent resistance formula 
1 2

( , )n x xR A A  for the complex 

2 × n RN of Fig.1, 

1 2

(1) (1) (1) (2) (2) (2)

1,1 1,2 2,2 1,1 1,2 2,2

1 2(1) (2)

2 1 1 1 2 1 2 1

( , ) 2 2
(2 ) (2 )

( )( 2) ( )( 2)

n x x

n n

R A A F F F F F F
d p d p

r p p p B p p p B 

   
   

   
.       (10) 

where all parameters ( )i

kB , skh , d, ( )

,

i

k vF  etc. are defined in equations (1)-(6). 

 

2.2.4 Analytical formula of equivalent resistance
1 2

( , )x xR B B   

The fourth equivalent resistance formula 
1 2

( , )n x xR B B  we derived in the complex 2 × n RN of 

Fig.1 is 

 
1 2

(1) (1) (1) (2) (2) (2)

1,1 1,2 2,2 1,1 1,2 2,20 021

(1) (2)

2 2 1 1 1 2 1

, 2 22
( 1) ( 1)

2 2

n x x r r

n n

R B B F F F F F Fh hh

r p p p B p B 

    
        

  (11) 

where all parameters ( )i

kB , skh , 1 2,p p , ( )

,

i

k vF  etc. are defined in equations (1)-(6). 

 

2.2.5 Analytical formula of equivalent resistance
1

( , )xR B O   

The fifth equivalent resistance formula 
1

( , )n xR B O  we derived in the complex 2 × n RN of 

Fig.1 is 

 
1

(1) (2)

1,1 1,10 021

(1) (2)

2 2 1 1 1 2 1

, 2
( 1) ( 1)

2 2

n x r r

n n

R B O F Fh hh

r p p p B p B 

 
        

,             (12) 

where all parameters ( )i

kB , skh , 1 2,p p , ( )

,

i

k vF  etc. are defined in equations (1)-(6). 

From the above formulas (7), (9), (10), (11), and (12), we can see that although their 

expression are succinct, their contents are very abundant, and they are the research conclusions 

obtained for the first time in this article. The following text will provide the specific calculation 

process and draw the above conclusions. 

 

3 Basic methods and theories  

This article uses the most cutting edge theory, the RT-V theory established by Professor Tan 

[32], to study the complex circuit network in Figure 1. This theory has five essential research 
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process. The RT-V theory will be used for calculation and derivation in the following text. 

 

 

3.1 Construction of Matrix Equations 

According to the RT-V theory, the Kirchhoff node current law ( 1 0i kr V  ) is first applied to 

establish a differential equation model for node voltage (including a general equation model and a 

boundary constrained equation model) to study the complex 2×n RN in Figure 1. According to the 

structural characteristics of the RN in Figure 1, assuming that the potential of node O be zero 0OU  , 

the current I flows into the network from node
1xA and exits at node

2xB (or
2xA ,O). In order to 

establish the equation model, the sub network diagram shown in Figure 2, as well as the resistance 

and voltage parameters, were provided. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1 Voltage equation for any node 

When the current is input from node
1xA to node

2xA output, analyze Figure 2 and apply 

Kirchhoff's node current law ( 1 0i kr V  ) to obtain the node voltage equation system as follows  

( ) ( ) ( )

21 1( 2) c b b

k k kh V V V   ,                          (13) 

( ) ( ) ( )

21 1 1( 2) c b b

k k kh V V V    .                          (14) 

2 1

( ) ( ) ( ) ( )

1 0 0 1( 2) ( )a a b a

k r k r k k kx kxV h V h V V rI         ,               (15) 

( ) ( ) ( ) ( )

1 20 202( 1) 0c c a b

k k k kV V h V h V      ,                   (16) 

In equation (15), ,k x is the Dirac function, and 
0 0/ , /sk s k rh r r h r r   . 

To eliminate ( )c

kV + ( )

1

c

kV  , substitute equations (13) and (14) into equation (16) and simplify it  

( ) ( ) ( ) ( )

1 21 20 21 20 1( 2) 2[( 2)( 1) 1] 0b a b b

k k k kV h h V h h V V          .           (17) 

Represent equations (15) and (17) in matrix form 

2 1

( ) ( ) ( )

1 1

2 2( ) ( ) ( )

1 1

1
( )

0

a a a

k k k

kx kxb b b

k k k

V V V
D r I

V V V
 

 



 

       
          

            
,               (18) 

from the previous text, it is known that 21 20(2 )(1 ) 1a h h    , so in the above equation  

Fig.2. A sub network diagram with resistors and voltage parameters used for 

analyzing circuits 
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( )

1

a

kV   

( )

1

b

kV   
( )

1

c

kV   
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0 0

2 2

21 20

(2 )

( 2) 2

r rh h
D

h h d


  
  

  
.                          (19) 

Equation (18) is the recursive equation of the key matrix required to solve the analytical 

formula for equivalent resistance. 

Consider the boundary condition equation of associated node xA ，when the current I is input 

from node 
1xA , it is obtained from equation (18) 

1 1 1

1 1 1

( ) ( ) ( )

1 1

2 2( ) ( ) ( )

1 1

1

0

a a a

x x x

b b b

x x x

V V V
D r I

V V V

 



 

       
         

            
,                       (20) 

When current I flows into the network from node
2xA ,equation (18) yields 

2 2 2

2 2 2

( ) ( ) ( )

1 1

2 2( ) ( ) ( )

1 1

1

0

a a a

x x x

b b b

x x x

V V V
D r I

V V V

 



 

       
         

            
.                      (21) 

Moreover, when current I flows into the network from node
1xB on the B0Bn axis and flows out 

of the network from node
2xB , based on the above analysis, the matrix equation is obtained using the 

same method above 

2 1

( ) ( ) ( )

1 1

2 2 2 21( ) ( ) ( )

1 1

0
( 2)( )

1

a a a

k k k

kx kxb b b

k k k

V V V
D r h I

V V V
 

 



 

       
           

            
,            (22) 

the matrix 2 2D   in the above equation comes from equation (19).  

 

3.1.2 Boundary condition equation 

The above equation is not sufficient to solve the node voltage, and it is necessary to establish 

conditional equations for the left and right boundaries. Establish boundary condition equations 

using Kirchhoff's law for the circuit shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

According to the circuit on the left boundary shown in Figure 3, a matrix equation can be 

established using a technique similar to equation (18) 

Fig.3. The network model and its parameters for the left boundary, where r3=r0//(2r1+r2). 
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( )( )

01 0 0

( ) ( )
20 21 21 20 231 0

( 1)

(2 ) [(2 )(1 ) 1]

aa

r r

b b

VV h h

h h h h hV V

     
     

            

.            (23) 

Research has found that only when 21 20 23 21 20(2 )(1 ) 2 2[(2 )(1 ) 1]h h h d h h        at that 

time can the network model have a concise analytical expression, which leads to 

23 20 21 21/(2 )h h h h   and further simplifies to 3 0 1 2//(2 )r r r r  . This is why we choose this value, 

otherwise it is impossible to obtain an accurate equivalent resistance analytical expression. So 

equation (23) can be abbreviated as 

( )( )

01

2 2 2 2( ) ( )

1 0

( )

aa

b b

VV
D E

V V
 

  
    

      
,                       (24) 

Where E is the identity matrix. 

Similarly, the conditional equation for the right boundary can be written 

( ) ( )

1

2 2 2 2( ) ( )

1

( )

a a

n n

b b

n n

V V
D E

V V



 



   
    

      
,                       (25) 

The above equations established using the RT-V method are all equations required for 

calculating the analytical expression of equivalent resistance.  

 

3.2 Transformation of Matrix Equations 

3.2.1 Main matrix equation transformation 

Use the matrix transformation method in RT theory to indirectly calculate the solution of the 

above equation. According to the matrix transformation method established in references [39-42], 

perform matrix transformation on equation (22) (ignoring the input and output of current). 

Assuming the existence of an undetermined second-order matrix
2 2Q 

, multiply both ends of 

equation (22) by 2 2Q  simultaneously and perform matrix transformation to obtain 

 

( ) ( ) ( )

1 1

2 2 2 2 2 2 2 2( ) ( ) ( )

1 1

a a a

k k k

b b b

k k k

V V V
Q Q D Q

V V V

 

   

 

     
      

          
.                  (26) 

Find the eigenvalue of 2 2D   from formula 
2 2det[ ] 0D pE   below, that is 

0 0

21 20

(2 )
0

( 2) 2

r rh p h

h h d p

  


  
,                        (27) 

therefore 

2

0 0 21 20 0( 2 2) 2 (2 ) ( 2) 0r r rp h d p d h h h h        ,             (28) 

the solution of p in the above equation is  

1 0 21 20

1
( 2)( 1)

2
rp h h h      ,  

2 0 21 20

1
( 2)( 1)

2
rp h h h      ,                     (29) 

where 
2

0 21 20 0

1
( 1 ) ( 2)
2

r rh d h h h      , and 20 21( 1)( 2) 1d h h    . 
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Next, calculate the eigenvector 
2 2Q 

 through diagonalization matrix transformation 

0 0 1

2 2 2 2

21 20 2

(2 ) 0

( 2) 2 0

r rh h p
Q Q

h h d p
 

    
   

    
,                    (30) 

where we assume 

1 1

2 2

2 2

a b
Q

a b


 
  
 

,                              (31) 

whereupon, according to the matrix identity, from equations (30) and (31), it can be obtained that 

21 20 0 1

2 2

21 20 0 2

( 2) 2

( 2) 2

r

r

h h h p
Q

h h h p


   
  

   
.                      (32) 

Next, use the following transformation matrix to simplify the matrix equation  

(1) ( )

2 2(2) ( )

a

k k

b

k k

Y V
Q

Y V


   
   

      
.                           (33) 

Therefore, without considering boundary flow conditions, the main matrix equation (22) is 

transformed into 

(1) (1) (1)

1 11

(2) (2) (2)
21 1

0

0

k k k

k k k

Y Y Yp

pY Y Y

 

 

      
       

           
,                     (34) 

then, the above equation can be simplified as  

( ) ( ) ( )

1 1

s s s

k s k kY p Y Y   .  ( 1,2s  )                     (35) 

Through observation, it was found that the main matrix equation (22) is a relatively complex 

two-dimensional equation, while the transformed equation (35) is a relatively simple 

one-dimensional equation. It is obvious that the transformed equation is easier to solve. 
 

 

3.2.2 Transform boundary condition equation  

Next, combining the transformation of the boundary condition matrix equation, equations (24) 

and (25) are transformed using the method of equation (26) to obtain 

  
( ) ( )

1 0( 1)i i

iY p Y  .  ( 1,2i  )                     (36) 

  
( ) ( )

1 ( 1)i i

n i nY p Y   .  ( 1,2i  )                     (37) 

 

3.2.3 Transformation of Current Excitation Matrix Equation 

Considering the transformation of boundary condition equations for current flowing in and out 

of node xA and out of node Bx in the network, using the above method, when current I flows into the 

network from node
1xA , equation (20) is transformed into 

1 1 1

( ) ( ) ( )

1 1 21 20( 2)i i i

x i x xY pY Y rI h h     .                     (38) 

When the current flows out from node
2xA , equation (21) yields 

2 2 2

( ) ( ) ( )

1 1 21 20( 2)i i i

x i x xY pY Y rI h h     .                     (39) 

Besides, when the current flows in from node
1x

B and flows out from node
2xB , by transforming 
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equation (22), we can obtain  

1 1 1

( ) ( ) ( )

1 1 2 21 0( 2)(2 )i i i

x i x x r iY pY Y r I h h p       .                   (40) 

2 2 2

( ) ( ) ( )

1 1 2 21 0( 2)(2 )i i i

x i x x r iY pY Y r I h h p       .                   (41) 

The above equation provides us with preliminary preparation for promoting the main results. 

 

4. Deduction of Main Conclusions 

Analysis of the circuit shown in Figure 1 reveals two possible scenarios: 2 1x x or 2 1x x . 

Since all the calculation processes of situation 2 1x x  are completely similar to situation 2 1x x , 

this article only considers the case of 2 1x x . 

 

4.1 Calculation of equivalent resistance
1 2

( , )n x xR A B
 

4.1.1 Special solutions of matrix equations under constraint conditions 

Firstly, considering the condition that current I is input from node 
1xA to node 

2xB , the 

required matrix equation is solved as equation (35), and its corresponding constraint equations are 

(38) and (41), respectively. Equations (36) and (37) are common boundary conditions. 

Equation 2 1ip    is the eigenvalue of equation (35), let its two solutions be 
i  and 

i  

respectively, and solve them as follows 

   2 21 1
4 , 4

2 2
i i i i i ip p p p        .                    (42) 

According to the method for solving the difference equation established in references [31-33], 

equation (35) was solved and its piecewise function solution was obtained as follows 

( ) ( ) ( ) ( ) ( )

1 0 1

i i i i i

k k kY Y B Y B   , ( 10 k x  )                      (43) 

1 1 1 1

( ) ( ) ( ) ( ) ( )

1 1

i i i i i

k x k x x k xY Y B Y B     , ( 1 2x k x  )                    (44) 

2 2 2 2

( ) ( ) ( ) ( ) ( )

1 1

i i i i i

k x k x x k xY Y B Y B     , ( 2x k n  )                    (45) 

in the above equation ( ) ( ) /( )i k k

k i i i iB        is defined by equation (4). 

Let's start calculating the analytical expression for ( )i

kY , by (36) and (43) to derive 

( ) ( ) ( )

0

i i i

k kY B Y  , ( 10 k x  ),                           (46) 

to solve the equation, we need to eliminate
1

( )

1

i

xY 
 and 

2

( )

1

i

xY 
 in equations (44) and (45). So，

substituting equation (38) into equation (44) together with (46), yielding ( 1 2x k x  ) 

1

( ) ( ) ( ) ( )

0 21 20( 2)i i i i

k k k xY B Y Ir h h B    , ( 1 2x k x  )                   (47) 

by substituting both equation (41) and equation (47) into equation (45), yielding ( 2x k n  ) 

2 1

( ) ( ) ( ) ( ) ( )

0 2 21 0 21 20( 2)(2 ) ( 2)i i i i i

k k r s k x k xY B Y r I h h p B Ir h h B        ,            (48) 

to find out 
( )

0

iY ，take equation (48) with { , 1}k n n   into (37), we have  

  1 2

( ) ( )

20 2 0( )

0 21 ( )

1

(2 )
( 2)

( 2)

i i

n x r i n xi

i

i n

rh B r h p B
Y I h

p B

 



    
 


.              (49) 
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Substitute (49) into (47) and export ( 1 2x k x  ， =1 2i ，) 

1 2

( ) ( ) ( ) ( )

20 2 0( )

21 ( )

1

( 2 )
( 2)

( 2)

i i i i

x n k r i k n xi

k i

i n

rh B F r h p B B
Y I h

p B

 



      
 


,           (50) 

The calculation of equivalent resistance 
1 2

( , )n x xR A B  will mainly depend on equation (50). 

 

4.1.2 Calculate the equivalent resistance
1 2

( , )n x xR A B  

Based on the RT-V method for calculating equivalent resistance in reference[32], we can first 

invert (33) and apply the matrix equation (32) of 
2 2Q 

to obtain it  

(2) (1)
( ) 0 1 0 2

21 20 2 1

(2 ) (2 )

(2 ) ( )

a r k r k
k

h p Y h p Y
V

h h p p

    


 
,                   (51) 

 

(1) (2)
( )

2 1

b k k
k

Y Y
V

p p





.                              (52) 

Next, we can derive the following formula from Ohm's law 

 
1 2 1 2

( ) ( ), ( ) /a b

n x x x xR A B V V I  .                       (53) 

Simplify the equations of 
( )a

kV  and 
(b)

kV  by substituting them into the above equation  

  1 2 1 2

1 2

(2) (2) (1) (1)

0 1 21 20 0 2 21 20

21 20 2 1 21 20 2 1

( 2 ) (2 ) ( 2 ) (2 )1
,

(2 ) ( ) (2 ) ( )

r x x r x x

n x x

h p Y h h Y h p Y h h Y
R A B

I h h p p h h p p

        
       

.  (54) 

Because of 1 2 0 2 2rp p h d    , therefore 0 1 22 2rh p p d    , substituting (50) 

with
1 2,k x x into (54) yields 

 
1 2

(1) (1) (1)

1 1,1 20 21 1,2 2 21 2 2,2

(1)

2 1 1 1

(2) (2) (2)

2 1,1 20 21 1,2 2 21 1 2,2

(2)

2 1 2 1

(2 ) 2 (2 ) (2 )(2 )

( )( 2)
,

(2 ) 2 (2 ) (2 )(2 )

( )( 2)

r

n

n x x

r

n

d p F h h F h h d p F

p p p B
R A B r

d p F h h F h h d p F

p p p B





      
 

  
      
    

.     (55) 

Because of 

1 2 0 1 0 2 21 20 0( 2 )( 2 ) ( 2 )( 2 ) (2 )r r rp d p d h p h p h h h          ,            (56) 

using Eq.(56) to obtain 2 20 0 21 12 (2 ) /(2 )rp d h h h d p    and defining 20 21(2 ) /(2 )i iu h h d p   , 

then simplifying using Eq. (55) yields 

 
1 2

(1) (1) 2 (1) (2) (2) 2 (2)

1,1 1 1,2 1 2,2 1,1 1 1,2 1 2,2

1 2(1) (2)

2 1 1 1 2 1 2 1

, 2 2
(2 ) (2 )

( )( 2) ( )( 2)

n x x

n n

R A B F u F u F F u F u F
d p d p

r p p p B p p p B 

   
   

   
.   (57) 

In summary, the equivalent resistance
1 2

( , )n x xR A B between nodes
1x

A and
2xB was obtained, and 

parameter (6) was proved. 

 

4.2 Calculation of equivalent resistance
1

( , )n xR A O   

4.2.1 Special solutions of matrix equations under constraint conditions 

To calculate the equivalent resistance 
1

( , )n xR A O , the current can be input from node
1x

A and 
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output from node O. At this point, equations (43) - (45) given earlier are applicable to this situation, 

and equations (46) and (47) are also applicable to this situation. However, the scope of equation (47) 

needs to be modified to 1x k n  , so equation (47) needs to be rewrite. 

1

( ) ( ) ( ) ( )

0 21 20(2 )i i s i

k k k xY B Y Ir h h B    , ( 1x k n  )                (58) 

To find out ( )

0

sY , take equation (58) with { , 1}k n n  into (37), we therefore have after 

algebraic operations 

  1

( )

( )

0 21 20 ( )

1

(2 )
( 2)

i

n xi

i

i n

B
Y Ir h h

t B






 


.                        (59) 

Since equation (46) also applies to this situation, substituting (59) into (46) yields 

1

( ) ( )

( )

21 20 ( )

1

(2 )
( 2)

i i

k n xi

k i

s n

B B
Y Ir h h

p B





 
 


, ( 10 k x  )                   (60) 

 

4.2.2 Calculation of equivalent resistance
1

( , )n xR A O  

Equation (51) is a universal inverse transformation equation, it also applies to the situation 

here. Similarly, the analytical formula 
1 1

( )( , ) ( 0) /a

n x xR A O V I  for calculating equivalent resistance 

through Ohm's law, where 
1

( )a

xV  is expressed by equation (51), therefore  

  1 1

1

(2) (1)

0 1 0 2

21 20 2 1

( 2 ) ( 2 )1
,

(2 ) ( )

r x r x

n x

h p Y h p Y
R A O

I h h p p

     
     

.               (61) 

Use equation (60) to eliminate ( )i

kY  in the above equation and simplify it to obtain  

 
1

(1) (2)

0 2 1 1 0 1 1 1

(1) (2)

1 2 1 1 1 2 2 1

( 2 ) ( 2 )
,

( )( 2) ( )( 2)

r r
n x

n n

h p F h p F
R A O r r

p p p B p p p B 

   
 

   

， ， .              (62) 

Because of 1 2 0 2 2rp p h d    , Substituting 0 2 12 2rh p p d     into (62) yields conclusion 

(9). At present, the equivalent resistance
1

( , )n xR A O between nodes
1x

A and O is solved, and formula (9) 

is proven. 

 

4.3 Calculation of equivalent resistance
1 2

( , )n x xR A A  

Consider the special solutions of matrix equations under constraint conditions. Equations (38) 

and (39) provide the constraint equations for the input current from node
1xA and the output current 

from node
2xA , while equations (43) - (45) provide the piecewise functional solutions for the main 

matrix equation (35), respectively. Combining equation (47) ( 1 2x k x  ), solve the system of 

equations to obtain  

1

( ) ( ) ( ) ( )

0 21 20(2 )i i i i

k k k xY B Y Ir h h B    , ( 1 2x k x  )                 (63) 

2 1

( ) ( ) ( ) ( ) ( )

0 21 20(2 ) ( )i i i i i

k k k x k xY B Y Ir h h B B     , ( 2x k n  )            (64) 

To find out
( )

0

iY , take equation (64) with { , 1}k n n   into (37), we have  
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  1 2

( ) ( )

( )

0 21 20 ( )

1

(2 )
( 2)

i i

n x n xi

i

i n

B B
Y Ir h h

p B

 



 
 


.                      (65) 

Substitute (65) into (63) and export ( 1 2x k x  ) 

1 2

( ) ( ) ( ) ( )( )

21 20 ( )

1

(2 )
( 2)

i i i ii
x n k k n xk

i

s n

B B B BY
h h

Ir p B

 



   
 


, ( 1 2x k x  )             (66) 

Using a method similar to the calculation process mentioned earlier, and then applying Ohm's 

law to calculate the analytical formula for equivalent resistance, we obtain 

1 2 1 2

( ) ( )( , ) ( ) /a a

n x x x xR A A V V I  .                       (67) 

where 
1

( )a

xV  is expressed by equation (51). 

Substitute equation (51) into equation (67) to obtain 

1 2 1 2

1 2

( ) ( ) ( ) ( )

2 1

21 20 2 1 21 20 2 1

( 2 )( ) ( 2 )( )1
( , )

(2 ) ( ) (2 ) ( )

b b a a

x x x x

n x x

p d Y Y p d Y Y
R A A

I h h p p h h p p

    
       

.           (68) 

Substituting Eq.(66) with 1 2{ , }k x x  into (68) yields 

1 2

(1) (1) (1) (2) (2) (2)

1,1 1,2 2,2 1,1 1,2 2,2

1 2(1) (2)

2 1 1 1 2 1 2 1

2 2
( , ) (2 ) (2 )

( )( 2) ( )( 2)
n x x

n n

F F F F F F
R A A r d p r d p

p p p B p p p B 

   
   

   
.     (69) 

At this point, the equivalent resistance 
1 2

( , )n x xR A A  between nodes
1x

A and
2xA is solved, and formula 

(10) is proven. 

 

4.4 Calculation of equivalent resistance
1 2

( , )n x xR B B
 

When the current I is input from node 
1xB to output from node 

2xB , We obtain constraint 

equations (40) and (41). Except for the different input and output condition equations of current I, 

the general solutions (43) - (46) given above still apply to this situation. So the general solution was 

combined with the constraint equations (40) and (41) to obtain the solution 

1

( ) ( ) ( ) ( )

0

i i i i

k k i k xY B Y Ic B   , ( 1 2x k x  )                     (70) 

2 1

( ) ( ) ( ) ( ) ( )

0 ( )i i i i i

k k i k x k xY B Y Ic B B    , ( 2x k n  )                 (71) 

where 2 21 0( 2)( 2 )i r ic r h h p    . 

To understand ( )

0

sX ，take equation (71) with { , 1}k n n   into (37), we have  

  
2 1 2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 1 1 0( ) ( 1)[ ( )]i i i i i i i i

n i n x n x i n i n x n xB Y Ic B B p B Y Ic B B             .             (72) 

Simplify to obtain 

  1 2

( ) ( )

( )

0 ( )

1( 2)

i i

n x n xi

i i

i n

B B
Y Ic

p B

 



 



.                          (73) 

Substitute (73) into (70) and export ( 1 2x k x  ) 

1 2

( ) ( ) ( ) ( )

( )

( )

1( 2)

i i i i

x n k k n xi

k i i

i n

B B B B
Y Ic

p B

 



   



,                     (74) 

the calculation of equivalent resistance
1 2

( , )n x xR B B will mainly depend on equation (74). 
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Thus, Ohm's law can be used to derive 

 
1 2 1 2

( ) ( ), ( ) /b b

n x x x xR B B V V I  .                       (75) 

The expression of ( )b

kV  is given by equation (52). Substitute equation (52) into equation (75) to 

derive 

  1 2 1 2

1 2

(1) (1) (2) (2)

2 1 2 1

1
,

x x x x

n x x

Y Y Y Y
R B B

I p p p p

  
     

.                   (76) 

So substituting (74) with 1 2{ , }k x x  into (76) and simplifies it to obtain 

 
1 2

(1) (1) (1) (2) (2) (2)

1,1 1,2 2,2 1,1 1,2 2,20 02 21

(1) (2)

2 1 1 1 2 1

2 2(2 )
, ( 1) ( 1)

2 2

r r
n x x

n n

F F F F F Fh hr h
R B B

p p p B p B 

    
        

   (77) 

Obviously, the equation (11) proposed earlier has been proven. 

 

4.5 Calculation of equivalent resistance
1

( , )n xR B O   

4.5.1 Special solutions of matrix equations under constraint conditions 

To calculate the equivalent resistance
1

( , )n xR B O , the current can be input from
1x

B and output 

from node O. At this point, Eqs. (43) - (46) given earlier are applicable to the situation here, Eq. (70) 

also applies to this situation. But the range of Eq. (70) needs to be modified to 1x k n  , so equation 

(70) needs to be rewritten 

1

( ) ( ) ( ) ( )

0 2 21 0( 2)( 2 )i i s i

k k r i k xY B Y r I h h p B      , ( 1x k n  )             (78) 

To find out 
( )

0

sY , take Eq. (78) with { , 1}k n n   into (37), we have  

  1

( )

( )

0 2 21 0 ( )

1

(2 )( 2 )
( 2)

i

n xs

r i i

i n

B
Y r I h h p

p B






   


.                    (79) 

Substitute (79) into (46) to calculate 

1

( ) ( )

( )

2 21 0 ( )

1

(2 )( 2 )
( 2)

i i

k n xi

k r i i

i n

B B
Y r I h h p

p B





 
   


, ( 10 k x  )               (80) 

4.5.2 Calculation of equivalent resistance 
1

( , )n xR B O  

Equation (52) also applies to this situation. Similarly, using Ohm's law to calculate the 

analytical formula 
1 1

( )( , ) ( 0) /b

n x xR B O V I  for equivalent resistance, where
1

( )b

xV is represented by 

equation (52), therefore 

  1 1

1

(1) (2)

2 1

1
,

x x

n x

Y Y
R B O

I p p

 
    

,                        (81) 

substituting (80) with 1k x  into (81) yields 

  1 1 1 1

1

(1) (1) (2) (2)

0 021
2 (1) (2)

2 1 1 1 2 1

2
, ( ) ( 1) ( 1)

2 2

x n x x n xr r
n x

n n

B B B Bh hh
R B O r

p p p B p B

 

 

    
        

,        (82) 

At this point, the equivalent resistance 
1

( , )n xR B O between nodes 
1x

B and O is solved, and formula 

(12) is proven. 
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5. Special Situations and Discussions  

The asymmetric 2×n RN has already been calculated in the above text, which inclouding the 

analytical formulae for the equivalent resistances between five pairs of nodes: 
1 2

( , )x xA B , 
1

( , )xA O , 

1 2
( , )x xA A , 

1 2
( , )x xB B , 

1
( , )xB O . Due to the abstract analytical formula for equivalent resistance given in 

the previous text, in order to better understand the physical meaning of the conclusion and compare 

and verify its correctness, we will discuss some special cases below.  

To facilitate the verification of the equivalent resistance of the RN, we can use the structural 

transformation between T  in the network model of Fig.1 to obtain the 2×n-order RN of the 

structure shown in Fig. 4. 

 

 

 

 

 

 

 

 

In the transformation shown in Fig. 4, the equivalent resistance can be solved 

1 1 22R r r  , 2
2 1 2

1

(2 )
r

R r r
r

  .                        (83) 

So, we can equate the circuit diagram to the structure of Fig. 5. In Fig. 5, there be  

0 1 2
4 0 1 1

0 1 2

(2 )
// //

2 2

r r r
r r R R

r r r


 

 
.                        (84) 

 

 

 

 

 

 

 

 

 

5.1 The case of 0n   

When 0n  , the n2 -order RNM shown in Fig.1 can be degraded into the 2 0 -order RNM 

shown in Fig.6 (rotate from vertical to horizontal direction). 

 

 

 

 

 

Fig.5. A equivalent circuit network of asymmetric 2×n resistance network  

Fig.4. Circuit transformation: T↔▽ 

Fig.6. Expressed a 2×0 circuit network with n=0 (rotated 900) 
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When 0n  , there be  

( )

0 0iB  , ( )

1 1iB  , ( )

0 1iB  , ( )

0,0 1iF  .                   (85) 

From Eq. (7) or (55), we have 

  0 1 20 21 2 21 0 2
0 0 0

2 1 2

( 2 ) 2 (2 ) (2 )( 2 )
,

( )( 2)

r rr h p h r h r h h p
R A B

p p p

       


 
 

0 2 20 21 2 21 0 1

2 1 1

( 2 ) 2 (2 ) (2 )( 2 )

( )( 2)

r rr h p h r h r h h p

p p p

       


 
.          (86) 

Simplify (86) then export 

  1 2 0 21 20
0 0

2 1

4 (2 )
,

( 2)( 2)

r
n

p p h h h
R A B r

p p

    


 
.                   (87) 

Because 1p  and 2p  are the two roots of equation (28), therefore 

1 2 0 21 202(2 )(1 )rp p h h h      

1 2 0 21 20 02 ( 2) (2 )r rp p a h h h h                           (88) 

So the molecule of equation (87) can be simplified as 

1 2 0 21 20( 4) (2 )rp p h h h      21 21 202 (2 )h h h                  (89) 

So, by substituting (88) into the denominator of equation (87), we obtain 

1 2 2 1 1 2

0 21 20 0 0 21 20

( 2)( 2) 2( ) 4

2 ( 2) (2 ) 2 4(2 )(1 ) 4r r r

p p p p p p

a h h h h h h h

     

        
             (90) 

Because of 21 20(2 )(1 ) 1d h h    , Substitute the value of d into equation (90) to calculate 

1 2 0 21 21 20( 2)( 2) [2 (2 ) )]rp p h h h h                          (91) 

Substitute equations (89) and (91) into (87) to calculate 

 0 0 0 0, /n rR A B r h r  .                            (92) 

Equation (92) is identical to the actual circuit result shown in Fig.6, which verifies the correctness 

of the equation at n=0. 

Next, verify the situation of  0 0,0R A . When n=0, substitute equation (85) into equation (9) 

and export 

  1 2
0 0

2 1 1 2 1 2

(2 ) (2 )
,

( )( 2) ( )( 2)

a p d p
R A O r r

p p p p p p

 
 

   
,                   (93) 

simplify and obtain 

 0 0

1 2

2( 1)
,

( 2)( 2)

d
R A O r

p p




 
,                          (94) 

because of 20 21( 1)(2 ) 1d h h    , therefore 21 20 21 21 201 (2 )(1 ) 2 (2 )d h h h h h        , 

substituting a and (91) it into equation (94), we have 

  21 21 20 21 20
0 0 0 0

21 21 20 21 21 20

(2 ) (2 )
, 2 1

2 (2 ) 2 (2 )

h h h h h
R A O r r

h h h h h h

   
   

    
,           (95) 

simplify by substituting 2 2 /k kh r r  into the above equation 
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  1 2
0 0 0

0 1 2

2
, 1

2 2

r r
R A O r

r r r

 
  

  
.                        (96) 

According to the actual circuit calculation shown in Fig.6, it is obtained that 

  1 2
0 0 0 4 0 0

0 1 2

2
,

2 2

r r
R A O r r r r

r r r


   

 
.                     (97) 

Obviously, the theoretical result (96) is identical to the actual circuit result shown in Fig. 6, which 

verifies the correctness of 
1

( , )n xR A O  at n=0. 

Next, verify the situation of  0 0,0R B . When n=0, substitute equation (85) into equation (12) 

and export 

  0 0 0 2121
0 0 2 2

2 1 1 2 1 2

(2 )2
, ( )

2 2 ( 2)( 2)

r r rh h h hh
R B O r r

p p p p p p

  
   

     
.             (98) 

Substituting equation (91) into equation (98) yields 

  21
0 0 2

21 21 20

2
,

2 (2 )

h
R B O r

h h h




 
,                        (99) 

simplify by substituting 2 2 /k kh r r  into the above equation 

  1 2
0 0 0

0 1 2

2
,

2 2

r r
R B O r

r r r




 
.                         (100) 

From the actual circuit calculation shown in Fig. 6,  0 0 4,R B O r  is obtained. Obviously, the 

theoretical result (100) is completely identical to the actual circuit result shown in Fig. 6, which 

verifies the correctness of
1

( , )n xR B O  at n=0. 

From Eqs.(10) and (11), the analytical formula for the equivalent resistance between 

nodes
1x

A (
1x

B ) and
2xA (

2xB ) in the complex 2 × n RN of Fig.1 is 

0 0 0( , ) 0R A A  ,  0 0 0( , ) 0R B B                          (101) 

Obviously, the equivalent resistance calculated by the theoretical formula when 0n  is completely 

consistent with the actual circuit results, verifying the correctness of the theoretical formula when 

0n  . 

In addition, when 1n  , a similar verification method can be used for verification, and the 

verification results are completely correct. The calculation process will not be given here. 

 

5.2 The case of 1r   and rrrr 5.0, 20   

When 1r and rrrr 5.0, 20  , the complex 2×n RNM of Fig.1 is simplified to the RNM 

shown in Fig. 5 with R2=r, r4=r0.  

Because
1 1

21 2 1lim( )= lim( / ) 0
r r

h r r
 


 
and 20 2 0 0 0= / 1/ 2 = / 1rh r r h r r ， , 21 20(2 )(1 ) 1d h h     

=2, from equations (1), (2), (5), (7) and (8), we can obtain 

1 1 2 24 2cos , 4 2cosp p      , (2 1) /5i i                   (102) 

22 cos (2 cos ) 1i i i       , 
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22 cos (2 cos ) 1i i i       ,                      (103) 

Substituting Eqs. (102)-(103) into analytical equations (6), (9) and (10) can be simplified to obtain 

 
1 2

(1) (1) (1) (2) (2) (2)

2 1,1 1,2 1 2,2 1 1,1 1,2 2 2,2

(1) (2)

1 2 1 1 1 2 2 1

, 2 2

( )( 2) ( )( 2)

n x x

n n

R A B q F F q F q F F q F

r p p p B p p p B 

   
 

   
.          (104) 

Inside 
0 2s r sq h p   . 

Using (102) to obtain 

0 2 2cos 1i r i iq h p      ， 1

1 5
cos

4



 ， 2

1 5
cos

4



 ，        (105) 

so the calculation shows that 

2 21 1
1 2

1 2 2 1

2cos 1 4 5 5 4 4
sin ( ) sin (2 )

2cos 2cos 5 8 5 5

q

p p


 

 

  
           

        (106) 

2 22 2
2 1

1 2 2 1

2cos 1 4 5 5 4 4
sin ( ) sin (2 )

2cos 2cos 5 8 5 5

q

p p


 

 

  
        

.          (107)       

Substituting equations (106) and (107) into (104) yields 

 
1 2

(1) 2 (1) (1) 2

1,1 1 1,2 1 1 2,2 1

(1)

1 1

(2) 2 (2) (2) 2

1,1 2 1,2 2 2 2,2 2

(2)

2 1

sin (2 ) 2 sin( )sin(2 ) sin ( )

(1 cos )2
,

5 sin (2 ) 2 sin( )sin(2 ) sin ( )

(1 cos )

n

n x x

n

F F F

B
R A B r

F F F

B

   



   







  
 

 
  
   

,       (108) 

the remaining parameters ( )i

kB , , skh , ( )

,

i

k vF  etc. are defined in equations (1)-(6). 

The analytical formula for the equivalent resistance between nodes
1x

A and O in the 2 × n RN of 

Fig.1 is 

 
1

(1) 2 (2) 2

1 1 1 1 1 2

(1) (2)

1 1 2 1

sin (2 ) sin (2 )2
,

5 (1 cos ) (1 cos )
n x

n n

F Fr
R A O

B B

 

  

 
  

  

， ， ,               (109) 

Because using (105) to derive
2

2sin (2 )2
cot ( )

5 1 cos

i
i

i






 
 

 
, equation (109) can be rewritten as 

 
1 1 1 1 1

(1) (1) (2) (2)

2 2

1 2(1) (2)

1 1

,
cot ( ) cot ( )

n x x n x x n x

n n

R A O B B B B

r B B
 

 

 

   
  ,             (110) 

The analytical formula for the equivalent resistance between nodes
1x

B and O in the 2 × n RN of 

Fig.1 is 

 
1

(1) 2 (2) 2

1 1 1 1 1 2

(1) (2)

1 1 2 1

sin ( ) sin ( )2
,

5 (1 cos ) (1 cos )
n x

n n

F Fr
R B O

B B

 

  

 
  

  

， ， ,               (111) 

because 2 2 2 21 1 1
sin ( ) 4sin ( )cos ( ) 2(1 cos )cos ( )

2 2 2
i i i i i       , equation (111) can be rewritten as 

 
1

(1) (2)
2 21 1 1 10

1 2(1) (2)

1 1

4 1 1
, cos ( ) cos ( )

5 2 2
n x

n n

F Fr
R B O

B B
 

 

 
  

 

， ， ,               (112) 
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the analytical formula for the equivalent resistance between nodes
1x

A and
2xA in the 2 × n RN of 

Fig.1 is 

1 2

(1) (1) (1) (2) (2) (2)

1,1 1,2 2,2 1,1 1,2 2,22 2

1 2(1) (2)

1 1

( , ) 2 2
cot ( ) cot ( )

n x x

n n

R A A F F F F F F

r B B
 

 

   
  .         (113) 

The analytical formula for the equivalent resistance between nodes
1x

B and
2xB in the 2 × n RN 

of Fig.1 is 

1 2

(1) (1) (1) (2) (2) (2)

1,1 1,2 2,2 1,1 1,2 2,22 2

1 2(1) (2)

1 1

( , ) 2 24 1 1
cos ( ) cos ( )

5 2 2

n x x

n n

R B B F F F F F F

r B B
 

 

    
   

 
.     (114) 

The equivalent resistance
1

( , )n xR A O of the 2×n fan network model was once a research topic in 

Refs. [41, 42], and Ref. [39] investigated more general issues. Comparing these conclusions, it was 

found that the conclusions drawn in this paper (108) - (114) are consistent with those given in 

references [41,42], which indirectly proves the correctness of the calculation results in this paper. 

 

5.3 The case of 
2 1x x   

Here we mainly discusses the problem of equation (7). When 2 1x x , there be 

( ) ( ) ( )

1,2 2,2 1,1

i i iF F F  , equation (7) can be simplified,  

 
1 1 1 1 1 1

2 (1) (1) 2 (2) (2)

1 2

1 2(1) (2)

2 1 1 1 2 1 2 1

, (1 ) (1 )
(2 ) (2 )

( )( 2) ( )( 2)

n x x x n x x n x

n n

R A B u B B u B B
d p d p

r p p p B p p p B

 

 

     
   

   
.      (115) 

Among them
1 1

( ) ( ) ( )

1,1

i i i

x n xF B B   ， 20 21(2 ) /(2 )i iu h h d p   . 

Specifically, when 2 1 0x x   and ( ) ( ) ( ) ( )

1,1 0 0

i i i i

n nF B B B   , it is derived from (115) 

  2 (1) 2 (2)
0 0 1 2

1 2(1) (2)

2 1 1 1 2 1 2 1

, (1 ) (1 )
(2 ) (2 )

( )( 2) ( )( 2)

n n n

n n

R A B u B u B
d p d p

r p p p B p p p B 

   
   

   
.         (116) 

Obviously, when 2 1x x , the analytical formula for equivalent resistance degenerates into a 

relatively simple result, and they are all original results derived from this article. 

 

5.4 Visualize resistance relationship 

In order to further reveal the relationship between equivalent resistance with 
1r  and node 

position, we have used the formulae given in the previous text to draw their visualization graphs, 

which can clearly show the relationship between equivalent resistance with 1r  and node position. 

Here we consider the visualization of equivalent resistances 
0( , )n xR A B  and ( ,0)n xR A . The 

parameter design in the graph is 0 2 1r r r   (bΩ), where unit b is any value, such as b=1, b=1000, 

and so on. Let 1r  be a variable, 
xA  be a movable point on the 

0 nA A  axis, and 
xB  be a movable 

point on the 
0 nB B  axis. 

 



 20 

     
 

 

 

 

5.4.1 Visual representation of equivalent resistance
0( , )n xR A B  

Draw a graph of the change in equivalent resistance between
0A and xB . Since

0( , ) /n xR A B r is a 

dimensionless value, regardless of the unit [bΩ] of resistance, the unit [bΩ] does not affect the 

structure of the graph. We take the maximum order of the network as n=40. In order to facilitate the 

investigation of the variation characteristics of equivalent resistance
0( , ) /n xR A B r with 1r , we 

considered two segmented intervals 1 [0,10]r   and 1 [10,100]r  . 

From Fig. 6 (a), it can be seen that when x is determined (e.g. x=20, etc.), the equivalent 

resistance
0( , ) /n xR A B r for 1 [0,10]r   gradually increases with the increase of 1r ; When 1r is 

determined (e.g. 1r =4, etc.), 
0( , ) /n xR A B r  within the range of [0,10]x  significantly increases 

with the increase of x, and 
0( , ) /n xR A B r  within the range of [10,35]x  hardly changes with the 

increase of x, but 
0( , ) /n xR A B r within the range of [35,40]x  significantly increases with the 

increase of x. From Fig. 6 (b), it can be seen that when x is determined (such as x=20, etc.), the 

equivalent resistance 
0( , ) /n xR A B r  of 1 [10,100]r  hardly changes with the increase of 1r , 

indicating that the magnitude of the equivalent resistance
0( , ) /n xR A B r when 1 10r  is not 

significantly affected by 1r . 

 

5.4.2 Visual representation of equivalent resistance ( , )n xR A O  

Draw a graph of the change in equivalent resistance between xA and O. Since ( , ) /n xR A O r is a 

dimensionless value, regardless of the unit (bΩ) of resistance, it does not affect the structure of the 

graph. We take the maximum order of the network as n=40. In order to facilitate the investigation of 

the variation characteristics of equivalent resistance ( , ) /n xR A O r  with respect to 1r , we consider 

two segmented intervals 1 [0,10]r   and 1 [10,100]r  . 

 

Fig. 6. Visual characteristic of equivalent resistance 
0( , ) /n xR A B r  varying with 

1r .  

In Fig. (a), 
1 [0,10]r  , and in Fig. (b), 

1 [10,100]r    
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From Fig.7 (a), it can be seen that when x is determined (e.g. x=10, etc.), and 1 [0,10]r  , the 

equivalent resistance ( , ) /n xR A O r gradually increases with the increase of 1r ; When 1r  is 

determined (such as 1r =4, etc.), the equivalent resistance ( , ) /n xR A O r within the range of [0,40]x  

shows a U-shaped change with the increase of x , showing a significant increase in the equivalent 

resistance at both ends. The equivalent resistance ( , ) /n xR A O r  within the range of [5,35]x  

exhibits a relatively small resistance value. From Fig. 7 (b), it can be seen that when x is determined 

(such as x=20, etc.), when 1 [10,100]r  , the equivalent resistance ( , ) /n xR A O r  remains almost 

unchanged as 1r  increases, this indicates that the magnitude of the equivalent resistance 

( , ) /n xR A O r  when 
1 10r   is not significantly affected by 1r . 

 

6 Summary and comment  

This article proposes an asymmetric 2×n RNM that is a challenging issue. The research here 

indicates that the RT-V method established in reference [32] has broad application value and can 

solve complex circuit networks. The five original analytical formulas for equivalent resistance 

proposed in the article are all derived using the RT-V method. Due to the presence of five 

independent resistive elements in the model, such as 0 ,r r ，1 2,r r , 3r  all of which are random values, 

this model has generality and can generate a series of special network models. The article validates 

and compares the results of this article when discussing special cases, indicating that formulas (7) - 

(12) hold for everything, especially when discussing 1r  and rrrr 5.0, 20  , equivalent 

resistance analytical equations (108) - (114) expressed in trigonometric functions are derived.  

Solving the analytical formula for equivalent resistance is a fundamental problem, as once the 

equivalent resistance formula is obtained, many complex circuits can be solved through variable 

substitution techniques. For example, taking the circuit network in this article as an example, 

consider a class of RLC complex impedance circuits as shown in Fig.1, one can assume 

0 /r j C  , r j L , 2 2r j L , 1 1/r j C  , by substituting these relationships into the 

equivalent resistance formulae, the equivalent complex impedance analytical formula can be 

Fig.7. Characteristics of equivalent resistance ( , ) /n xR A O r  as a function of 
1r , 

where 
1 [0,10]r   in Fig. (a), 

1 [10,100]r   in Fig. (b) 



 22 

derived. For example, in a fractional order complex impedance circuit, let ( /2)

0

0

1
e i

i

jr
C

 



 ,，

( /2)

1

1

1
e i

i

jr
C

 



 ， ( /2)= ei ijr L  , ( /2)

2 2= ei ijr L  , where 0 1 1i i    ， 0 . By substituting 

these relationships into the equivalent resistance formulae, the equivalent complex impedance 

analytical formula for fractional order circuits can be derived. The research work in this article can 

promote the research and development of complex circuit network models; The analytical formula 

for equivalent resistance we have derived can provide a theoretical basis for related research and 

simulation studies in engineering. 
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