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Abstract

This article proposes a class of asymmetric 2xn resistor network model which contains multiple
independent resistors, the study of asymmetric resistor network models is a challenge. We
conducted in-depth research on this issue using the RT-V theory (Chinese Physics B, 2017, 26(9):
090503) and achieved new theoretical breakthroughs. This paper derived five original equivalent
resistance formulae for this asymmetric 2xn circuit network, and also discusses the analytical
expressions for equivalent resistance in different special cases, and several interesting results have
been derived, indicating that the original resistance formula has powerful functionality. Finally,
visual graphics of two types of equivalent resistances are provided using MATLAB drawing tools,
which reveals the law of equivalent resistance changing with resistance variables. The research
theory and technology in this article will provide a new theoretical basis for related scientific,
engineering, and simulation research.
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1. Introduction

With the rapid development of electronic technology, circuit systems are becoming
increasingly complex. As a basic component of circuits, the complexity and diversity of resistor
networks (RNs) have also increased. Many abstract and complex problems need to be solved by
establishing intuitive models. The establishment and research of resistor network models (RNMs)
not only contribute to a deeper understanding of the working principles of circuits, but also have
significant implications for integrated circuit design [1], circuit optimization [2], and fault diagnosis
[3]. The research on RNMs are based on the theoretical foundations of multiple disciplines such as
circuit theory, mathematical graph theory, matrix theory, and optimization algorithms [4-6]. As a
fundamental research method, it has gradually penetrated into many disciplinary fields, promoting
their development to a certain extent.

The establishment and research of RNMs have a history of more than 170 years, dating back to

1845 when Kirchhoff, who had just graduated from university, proposed two laws for complex
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circuit calculations in his academic paper [7], namely the famous Kirchhoff laws (loop voltage law
and node current law). This law establishes the foundation of circuit analysis theory and solves a
series of complex scientific problems. With the development of the electrification era, the definition
of RNs has begun to generalize, including infinite networks composed of the same resistors or
capacitors. At this time, the new theories are needed to study the electrical characteristics of infinite
networks. Scholars in references [8-10] have proposed research on the resistance between two
points in an infinite grid, as well as some new ideas and methods. In 2000, Professor Cserti from
Roland University in Hungary established the Green's function technique (LGF) for calculating the
equivalent resistance of infinite rectangular networks [9], which applied the LGF to infinite
resistance networks and provided a method for calculating the equivalent resistance of infinite
resistance networks. In addition, Asad [11,12] and Owaidat [13-16] used LGF to study complex
infinite circuit networks. Their research works have promoted the research and development of
infinite networks and made significant contributions. In 2004, Professor Wu FY from Northeastern
University proposed the Laplacian matrix method [17] (Wu's LM method) for computing
large-scale finite RNs, and used the eigenvalues and eigenvectors of the Laplacian matrix to
calculate the resistance between any two nodes in the RN. Wu's LM method has also been well
developed and applied in the study of equivalent resistance. For example, references [18-22]
applied Wu's LM method to study the equivalent resistance between any two points in a resistance
network under special circumstances, but this method is not applicable to networks on any boundary.
In 2011, Professor Tan Z-Z from Nantong University in China proposed a new original theory
called the recursion-transform (RT) theory [1] to solve RN problems with arbitrary boundaries. By
applying Tan's RT method, the equivalent resistance of finite m>n RNs with different boundaries as
shown in Refs. [23-31] can be calculated. This methodology only requires the establishment of
matrix equations along one direction, simplifying the expression of the results and suitable for
studying infinite and finite RNMs with arbitrary boundaries.

At present, Professor Tan has elevated the problem of RNs to RNMs, opening up a new
research field [1]. The establishment of RT theory has promoted the study of RNMs for various
complex structures. For example, in reference [32], for the first time, the RT-V method was used to
obtain accurate potential formulas for arbitrary m>n cobweb and Fan networks, and potential
formulas for infinite and semi infinite networks were derived. Reference [33] studied an arbitrary
m>n apple surface network with a pair of non-uniform boundary resistances based on RT-V theory.
Paper [34] studied the resistance between any node in two n-order periodic resistance networks
using the RT-V method. Reference [35] used the RT-V method to establish two new sets of
equations to determine the electrical characteristics of an irregular 2>n hammock network. This
paper proposes a class of asymmetric 2>n RNMs containing multiple independent resistors, as
shown in Fig.1. The model is very complex and consists of five independent resistor elements. We

conducted in-depth research on this issue by using Professor Tan's RT-V method established in
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reference [32]. We derived five original equivalent resistance formulas for asymmetric 2>n circuit
networks and discussed analytical expressions for equivalent resistance in different special cases.
Finally, we used MATLAB drawing tools such as those used in references [36, 37] to provide visual
representations of two types of equivalent resistance, revealing the variation of equivalent resistance
with resistance variables.

Recently, reference [38] studied a class of periodic and asymmetric 2 > n circuit networks
embedded with T-shaped structures, and this article intends to study another type of non-periodic
and asymmetric 2 xn circuit networks.  Although their partial structures are similar, their essential
problems are different because their boundary conditions are different (one is periodic structure, the
other is non-periodic structure), and their equivalent resistance results are different. People
understand that even a slight change in the conditions of the RNM will alter their electrical
characteristics. Therefore, it is necessary to study non-periodic and asymmetric 2 > n circuit
networks.

2. Main conclusions and formulae

The 2 xn RNM of the embedded inverted T-shaped circuit in Figure 1 has two characteristics :
firstly, it is a very complex 2>n order RNM; Secondly, it can be inferred from its sub model that the
model does not have symmetry vertically. Therefore, the n-order RNM embedded in an inverted
T-shaped circuit is an asymmetric 2>n-order RNM. In this RNM, the lower nodes are defined from
left to right as Ao to An, the middle nodes corresponding to the lower nodes are defined as Boto B,
and the remaining intermediate nodes are Ci to Cn in sequence. The top of the model is the
horizontal axis Doto Dn with the same potential, and Dk in all expressions in the text is represented
by O (because they are located on the same wire). Refer to Figure 1, there are the five independent
arbitrary resistance elements are arranged in this model. The resistance element r is arranged
between any two nodes on the horizontal axis AoAn, the r, is arranged between any two nodes on

the horizontal axis BoBn. In the vertical direction, ther,is placed between Ak and By, r;is placed
between Bk and Dk, the resistance elementr; is arranged between Cx and Dx. In this paper, the RT-V
method is also used to study and derive the analytical formula for the equivalent resistance between
any two nodes A (and B, )andP, (=A B, ,0) inan2>nRN.
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Fig.1. An asymmetric 2 xn resistor network model embedded with T circuit, containing five
different resistor elements, and ra=ro//(2r1+r2).
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2.1 Necessary parameter definitions
The RN studied in this article is very complex. In order to make the expression results more
concise, the parameters in the article are defined as follows.

1
p = E hrO + (h21 + 2)(h20 +1) _\/Z,

1
P, :Ehro +(h,, +2)(hy +1)+\/Z1 1)
A= (% h.g +1-d)*+(h, +2)hyoh,,, )
In the above equation, d =(h,, +1)(h,;, +2)—-1, and
h, =r/r, ho=rlr, r=rl/2r+r), (3)
and define
kK _ 7k _ _ _ _
B0 =55 AB=BY -8, (=12 @
_1 22\ Z-L(p_fpi_
A= (ppi-4) A=3(p-p7-4). ©)
Fk(,iv) ZABQ)ABQXV ! (6)

The above parameters expressions (1)-(6) are applicable to the entire text and facilitate further
research in the following sections.

2.2 Five original results

In the RNM shown in Fig. 1, for the horizontal axis AoAn , from left to right, the first node on
the left side is Ao, and the k-th node is A« . alike, assuming that the k-th node on the central axis BoBn
is Bk. The parameters of each resistor involved in the article are labeled in Fig. 1, in this asymmetric
2>n RNM, the analytical expressions for the equivalent resistance between any node A, and node
P,(=A,B,0), as well as between node B, and node P/(=B, ,0) are the following five

conclusions.

2.2.1 Analytical formula of equivalent resistance R(A, , B, )
We have derived an accurate equivalent resistance analytical formula R (A, ,B, ) for the
study of RNM in Figure 1
&(&N&) ﬁf—zwﬁg+qﬁg_gd_p)59—2%59+uﬁﬁ>
r (P, = P)(P,—2)B (P~ P)(P,—2)BY
where d = (h, +1)(h, +2)-1, and
u, =h,(2+h,)/(2d-p,), (8)

other parameters B, h,, E') etc. are defined in equations (1)-(6).

=(2d-p,) (7)
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2.2.2 Analytical formula of equivalent resistance R(A, ,0)
We then derived the second equivalent resistance formula R (A, ,O) for the complex 2 > n
RN of Fig.1,
R.(A,0) _ (2d-p)FY (2d - p,)F?
r (- p)(R-2BY (P, —p)(p,—2)BY
where d =(h,, +1)(h,, +2)—1,and t,t, are defined in equation (1).

(9)

2.2.3 Analytical formula of equivalent resistance R(A, , A, )
Furthermore, we derived the third equivalent resistance formula R, (A, ,A.) for the complex
2 xn RN of Fig.1,
R.(A.A,)
r

RY -2R% +F3 _(2d—-p,) Y -2FR? +F7
(pz - pl)(pl _Z)Brg?l ’ (pz - pl)( P, _Z)Brﬁ)l
where all parameters B, hy,d, F) etc. are defined in equations (1)-(6).

=(2d-p,) (10)

2.2.4 Analytical formula of equivalent resistance R(B, , B, )

The fourth equivalent resistance formula R, (B, ,B, ) we derived in the complex 2 <n RN of

Fig.lis
R (Bxl’ BXZ ) — 2+ h21 (( hrO —l) Fl,(ll) 2Fl(;) + I:2(12) _( hrO _1) I:l,(lZ) 2F1(22) + FZ(;) j (11)
I P, =P P2 By p, 2 B\%

where all parameters B", h,, p,p,, ka‘v) etc. are defined in equations (1)-(6).

2.2.5 Analytical formula of equivalent resistance R(B, ,O)
The fifth equivalent resistance formula R, (B, ,0) we derived in the complex 2 xn RN of

Fig.lis

I P, — Py Br(ml+)1 P, — 2 B(Z)
where all parameters B, hy, p,, p,, F' etc. are defined in equations (1)-(6).

From the above formulas (7), (9), (10), (11), and (12), we can see that although their
expression are succinct, their contents are very abundant, and they are the research conclusions
obtained for the first time in this article. The following text will provide the specific calculation
process and draw the above conclusions.

R (B, ,0 RO F@
. )=2+hﬂ((p ELE L J 12

3 Basic methods and theories
This article uses the most cutting edge theory, the RT-V theory established by Professor Tan

[32], to study the complex circuit network in Figure 1. This theory has five essential research
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process. The RT-V theory will be used for calculation and derivation in the following text.

3.1 Construction of Matrix Equations
According to the RT-V theory, the Kirchhoff node current law (> r~, =0) is first applied to

establish a differential equation model for node voltage (including a general equation model and a
boundary constrained equation model) to study the complex 2>n RN in Figure 1. According to the
structural characteristics of the RN in Figure 1, assuming that the potential of node O be zerou, =0,

the current | flows into the network from node A and exits at nodeB, (orA_,0). In order to

establish the equation model, the sub network diagram shown in Figure 2, as well as the resistance
and voltage parameters, were provided.

Ok
l’o“ | [ I | [FO L
— —

b b (b)
Vk(—l) Vk(C) Vk( ) Vk(fl) Vi
o rofy rofl

(a) (2)
Vk(,al) r Vk r Vk +1

Fig.2. A sub network diagram with resistors and voltage parameters used for
analyzing circuits

3.1.1 Voltage equation for any node
When the current is input from node A  to node A output, analyze Figure 2 and apply

Kirchhoff's node current law (> r™*V, =0) to obtain the node voltage equation system as follows

(h, +2v©@ =v,®) +v® (13)

(hy, + 2V, =v® 1v,®) (14)

V8 = (o + 2V —h VP V& +ri (8, -4,). (15)
VE +VO +h V& —2(h, +1)V,* =0, (16)

In equation (15), 5, , is the Dirac function,and hy =r,/r,, h,=r/r,.

r

To eliminate V. +V,) | substitute equations (13) and (14) into equation (16) and simplify it

Vk(fl) = _(h21 +2) hzovk(a) + 2[(h21 + 2)(h20 +1) _1]\/k(b) _Vk(fl) =0. (17)
Represent equations (15) and (17) in matrix form
v&f} H H 1
"~ 1=D,, = (G, =0 )| A |1 (18)
[Véi’f Vi ] vE 0

from the previous text, it is known that a=(2+h,,)(1+h,)—1, so in the above equation
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(2+hr0) _hrO
D =
22 [—(h21+2)h20 2od | (19)

Equation (18) is the recursive equation of the key matrix required to solve the analytical
formula for equivalent resistance.

Consider the boundary condition equation of associated node A, , when the current I is input

from node Axl , It is obtained from equation (18)

(a) (a) (a)
Vx1 +1 Vx1 Vx1 -1 |:1 :|

= - r I (20)
b 2x2 b b
v e v Lo
When current | flows into the network from node A, ,equation (18) yields
A, MO L) e
b 2x2 b - b
ve | e v o

Moreover, when current | flows into the network from node B, on the BB, axis and flows out

of the network from node B, , based on the above analysis, the matrix equation is obtained using the

same method above

Vk(f]? -D Vk(a) Vk(fj? h 2)(S. S 0 I
VK(E]? - F2x2 Vk(b) - Vk(ijl) +r2( 21+ )( kg kxl) 1 ) (22)

the matrix D,,, in the above equation comes from equation (19).

3.1.2 Boundary condition equation

The above equation is not sufficient to solve the node voltage, and it is necessary to establish
conditional equations for the left and right boundaries. Establish boundary condition equations
using Kirchhoff's law for the circuit shown in Figure 3.

Do Ds

gl [Jro Qo [ [l
v 12 22 12 02

0 EVIC R AR VO v®

g ol o]

| S | LT

Vo(a) r Vl(a) r Vz(a)
Fig.3. The network model and its parameters for the left boundary, where rz=ro//(2r1+r2).
According to the circuit on the left boundary shown in Figure 3, a matrix equation can be
established using a technique similar to equation (18)
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{VM (o +) —h, j{v} 3)
Vl(b) _hzo (2 + h21) [(2 + h21)(1+ hzo + hzz) _1] Vo(b)

Research has found that only when (2+h,,)(1+h,, +h;)=2d =2[(2+h,,)(1+h,,)—1] at that
time can the network model have a concise analytical expression, which leads to
h,; =h,, +h,, /(2+h,,) and further simplifies to r, =r, //(2r, +r,). This is why we choose this value,

otherwise it is impossible to obtain an accurate equivalent resistance analytical expression. So
equation (23) can be abbreviated as

Vl(a) Vo(a)
Vl(b) =(D,.. —E;.) Vo(b) | (24)
Where E is the identity matrix.
Similarly, the conditional equation for the right boundary can be written
|:V (a1):| VAQ)
e (szz - szz) " ) (25)
v v

The above equations established using the RT-V method are all equations required for
calculating the analytical expression of equivalent resistance.

3.2 Transformation of Matrix Equations
3.2.1 Main matrix equation transformation

Use the matrix transformation method in RT theory to indirectly calculate the solution of the
above equation. According to the matrix transformation method established in references [39-42],
perform matrix transformation on equation (22) (ignoring the input and output of current).
Assuming the existence of an undetermined second-order matrixQ, ,, multiply both ends of

equation (22) by Q,,, simultaneously and perform matrix transformation to obtain

2x2 Vk(b:E T N2x2 *2x2 Vk(b) 2x2 Vk(b]? . (26)

Find the eigenvalue of D, , from formula det[D, , — pE]=0below, that is

(2+hr0)_ P _hro -0
=V, (27)
_(h21 + 2)h20 2d - Y
therefore
p2 - (hro +2d + 2) p+ 2d (2 + hro) - (h21 + 2)hZOhrO =0 ’ (28)

the solution of p in the above equation is

1
P, = E hr0 + (h21 + 2)(h20 +1) - \/Z,
1
P, = E hro + (h21 + 2)(h20 +1) + \/X ) (29)

where A:(%hro+1—d)2+(h21+2)h20hr0,and d = (h, +1)(h,, +2)—1.
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Next, calculate the eigenvector Q,, through diagonalization matrix transformation
(2+ hrO) _hrO P 0
= : 30
Q2><2 [_(th + 2) hzo 2d O pz Q2><2 ( )
where we assume
e

= , 31
Q2><2 [az sz ( )

whereupon, according to the matrix identity, from equations (30) and (31), it can be obtained that

Q _ ((hZZL + 2)h20 2+ hrO - pl] (32)
z2 (h21 + 2) hzo 2+ hrO - P,

Next, use the following transformation matrix to simplify the matrix equation

Yk(l) _0 Vk(a)
Yk(z) T N2x2 Vk(b) . (33)

Therefore, without considering boundary flow conditions, the main matrix equation (22) is

transformed into
|:Yk(i)1 } _ ( p, O j{Yk(l) } _ l:Yk(ﬂ } (34)
Yk(+21) 0 p2 Yk(Z) Yk(—zl)

then, the above equation can be simplified as
Y =pYE VS (s=12) (35)
Through observation, it was found that the main matrix equation (22) is a relatively complex

two-dimensional equation, while the transformed equation (35) is a relatively simple
one-dimensional equation. It is obvious that the transformed equation is easier to solve.

3.2.2 Transform boundary condition equation
Next, combining the transformation of the boundary condition matrix equation, equations (24)
and (25) are transformed using the method of equation (26) to obtain

YO =(p YO, (i=12) (36)
YO =(p-DYP. (i=12) (37)

3.2.3 Transformation of Current Excitation Matrix Equation
Considering the transformation of boundary condition equations for current flowing in and out
of node A and out of node Bx in the network, using the above method, when current | flows into the

network from node A, , equation (20) is transformed into

Y0 = PO =Y —rl (hy, + Dy, (38)
When the current flows out from node A, , equation (21) yields
Y =PY,) =Y+l (hy +2)hy. (39)

Besides, when the current flows in from node B, and flows out from node B, , by transforming
9



equation (22), we can obtain

Yx5i+)1 = pinEi) _Yxii—)l —Ll(h +2)2+h,-p). (40)
Yx(ziil = pin(zi) _Yx(zizl +01(h, +2)(2+h,—p). (41)

The above equation provides us with preliminary preparation for promoting the main results.

4. Deduction of Main Conclusions

Analysis of the circuit shown in Figure 1 reveals two possible scenarios: X, = X, 0or X, <X,.
Since all the calculation processes of situation X, <X, are completely similar to situation X, =X,

this article only considers the case of X, = X,.

4.1 Calculation of equivalent resistanceR (A, , B, )
4.1.1 Special solutions of matrix equations under constraint conditions
Firstly, considering the condition that current | is input from node A, to node B, , the

required matrix equation is solved as equation (35), and its corresponding constraint equations are
(38) and (41), respectively. Equations (36) and (37) are common boundary conditions.
Equation A*=p,A-1 is the eigenvalue of equation (35), let its two solutions be 4 and 7,

respectively, and solve them as follows

Ai=S(p+Pi=a) A=2(n-r-4). (42)

According to the method for solving the difference equation established in references [31-33],
equation (35) was solved and its piecewise function solution was obtained as follows

Y& =Y, OB —Y "B, (0<k<x,) (43)
YO =YOBO —YOBO | (x<k<x,) (44)
YO =080, ~YOBY, L, (x <k<n) )

in the above equation B = (1 —A*)/(4 —4) is defined by equation (4).
Let's start calculating the analytical expression for y®, by (36) and (43) to derive

YO = ABOYD, (0<k<x), (46)
to solve the equation, we need to eliminateY,”’; and Y,"); in equations (44) and (45). So,

substituting equation (38) into equation (44) together with (46), yielding (x, <k <x,)

YO = ABOYD — Ir(h,, +2)h,BY, , (x <k <x,) (47)
by substituting both equation (41) and equation (47) into equation (45), yielding (X, <k <n)
YO = ABOY® 4+ (hy, +2)(2+ o — p,)BY, —Ir(h,, +2)h,BY, | (“48)

to find out Y, take equation (48) with k ={n,n—1} into (37), we have

rh,,ABY, —1,(2+ho—p)ABY,
(p,~2)BY | )

n+1

Yo(i) =1(h, +2)
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Substitute (49) into (47) and export (x, <k <x,, i=1,2)

rh,ABOAFRY, —r,(h, +2—- p,)ABY AB?
20 X n-k 2\r0 i k n—X, 50
(p~2)B0 ’ e

n+1

Yk(i) =1(h, +2)

The calculation of equivalent resistance R (A, ,B, ) will mainly depend on equation (50).

4.1.2 Calculate the equivalent resistanceR, (A, , B, )

Based on the RT-V method for calculating equivalent resistance in reference[32], we can first
invert (33) and apply the matrix equation (32) of Q,,,to obtain it

(2 + hrO — pl)Yk(Z) - (2 + hrO — pz)Yk(l)

V& = , (51)
‘ (2 + h21)h20 ( P, — pl)
Y(l) _Y(2)
V& =t (52)
P, — P
Next, we can derive the following formula from Ohm's law
R, (A, B, )= (V@ -V)/1 (53)
Simplify the equations of V) and V,”’ by substituting them into the above equation
R (A( B ) _ 1 (ho+2- pl)Yx£2) +(2+ th)hZOYx(ZZ) B (ho+2- pz)Yxil) +(2+ h21)h20Yx(21) (54
' ’ I (2 + h21)h20(p2 - pl) (2 + h21)h20( p2 - pl)
Because of p,+p,=h,+2+2d, therefore h,+2—p, =p,—2d, substituting (50)
withk = x;, X, into (54) yields
(2d - pl) I:1,(11) B 2h20 (2 + h21) Fl,(;) B h2r (2 + th)(Zd - pz) Fz(,lz)
— -2 B(l)
R,(A, B, )=r (P, = P)(P = 2)By; (55)
’ (2d - pz) Fl,(lZ) - 2hzo (2 + th) Fl,(zz) - h2r (2 + h21)(2d - pl) Fz(,?
(p,—P)(P, ~2)BY)
Because of
(pl - Zd)( P, — 2d) = (hrO +2- pl)(hro +2- pz) = _(2 + hzl)hzohro J (56)

using Eq.(56) to obtain p,—2d =h,h,,(2+h,)/(2d — p,) and defining u, =h,(2+h,)/(2d—p,),
then simplifying using Eq. (55) yields
R, (Aﬁ' B, ) RS —2uR5 +u'Fy —(2d-p,) RS -2uRY +u'F?
r (P, = P.)(p, — 2B, (P~ p)(P,-2)BY,
In summary, the equivalent resistance R, (A, B, ) between nodes A, and B, was obtained, and

=(2d-p,) (57)

parameter (6) was proved.

4.2 Calculation of equivalent resistance R, (A, ,0)

4.2.1 Special solutions of matrix equations under constraint conditions
To calculate the equivalent resistance R (A, ,0), the current can be input from node A, and
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output from node O. At this point, equations (43) - (45) given earlier are applicable to this situation,
and equations (46) and (47) are also applicable to this situation. However, the scope of equation (47)
needs to be modified to x, <k <n, so equation (47) needs to be rewrite.

Y = ABPYS —1r(2+h,)h,BY, , (x, <k <n) (58)
To find out Y.¥, take equation (58) with k={n,n—L} into (37), we therefore have after
algebraic operations

_ B®
(|) _ n—X
Y,” =1r(2+h,)h,, m : (59)
Since equation (46) also applies to this situation, substituting (59) into (46) yields
. ABABY
YO = Ir(2+h, )h,, ——% (0<k<x) (60)

(ps - 2) Brslzl ’

4.2.2 Calculation of equivalent resistance R (A, ,0)

Equation (51) is a universal inverse transformation equation, it also applies to the situation
here. Similarly, the analytical formula R (A ,0)=(V® —0)/1for calculating equivalent resistance

through Ohm's law, where V) is expressed by equation (51), therefore

h,+2-p)Y?—(h,+2-p,)Y"®
R (A,.0)=F{ et P~ e TR | (61)
I (2 + h21)h20(p2 - pl)
Use equation (60) to eliminate Y’ in the above equation and simplify it to obtain
_ @ _ (2)
Rn (A<1 ’ O) —r (hrO +2 pz) F1,1 r (hrO +2 pl) I:1,1 (62)

(pl_ pz)(pl_Z)Brﬁ)l (pl_ pz)(pz_Z)Brgi)l .
Because of p,+p,=h,+2d+2, Substituting h,+2-p,=p,—2d into (62) yields conclusion
(9). At present, the equivalent resistance R (A ,0) between nodes A and O is solved, and formula (9)

IS proven.

4.3 Calculation of equivalent resistance R, (A, , A,)

Consider the special solutions of matrix equations under constraint conditions. Equations (38)
and (39) provide the constraint equations for the input current from node A, and the output current

from node A, while equations (43) - (45) provide the piecewise functional solutions for the main

matrix equation (35), respectively. Combining equation (47) (x,<k<X,), solve the system of
equations to obtain

YO = BN ~ I+ )heBY, . (% <k <) (63)
0 = ABOYY + 12 ) (B, ~B,), (3 <k <) (64

To find outY,"”, take equation (64) with k ={n,n—1} into (37), we have
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ABY, —ABY,

YO =1r(2+h,)h . (65)
ane (pi _2) Br5+)l
Substitute (65) into (63) and export (x, <k <X,)
Y(u) AB(i)AB(i)k —AB(')AB(')
-+ =(2+h,)h - R 2 (% <k<x,) (66)
Ir e (P, —2)By) T

Using a method similar to the calculation process mentioned earlier, and then applying Ohm's
law to calculate the analytical formula for equivalent resistance, we obtain

Rn (Acl’ A(z) = (\/xia) _Vx(za))/ I (67)
where V@ is expressed by equation (51).

Substitute equation (51) into equation (67) to obtain

1( (p,—2d)(Y,” Y 2) _(p —2d)(Y,® -Y¥)
R.(A A, )— - . LS (68)
(2+ h21)h20(p2 ) (2+ h21)h20(p2 - pl)
Substituting Eq.(66) with k ={x,x,} into (68) yields
|:(1) _2|:(1) +|:(l) |:(2) _2|:(2) +|:(2)
Ri(AA,) =1(2d —p) e —r(2d - p,) 225 (69)

(pz - pl)( P — 2) Bn+1 (pz - pl)( P, — 2) Bn+1
At this point, the equivalent resistance R (A ,A ) between nodes A and A is solved, and formula

(10) is proven.

4.4 Calculation of equivalent resistanceR, (B, ,B, )
When the current | is input from node B, to output from node B, , We obtain constraint

equations (40) and (41). Except for the different input and output condition equations of current I,
the general solutions (43) - (46) given above still apply to this situation. So the general solution was
combined with the constraint equations (40) and (41) to obtain the solution

YO = ABOY ~16BY, , (% <k<Xx,) (70)
YO = ABOYY +1¢,(BY, —BY, ), (x, <k<n) (71)
where ¢, =r,(h,,+2)(h,+2-p,).
To understand X ¥, take equation (71) with k ={n,n—1} into (37), we have

ABLYSY +1c (B, — By, = (B —DIABYY” +1c;(BY, B, )] (72)
Simplify to obtain
. AB —ABY
Yo(l) =Ic — O (73)
(pi 2) Bn+l

Substitute (73) into (70) and export (x, <k <X,)

ABABY", —ABAB{,
(pi - )Brgl+)1

ywill mainly depend on equation (74).

YO =1c, 2, (74)

the calculation of equivalent resistance R (B

X ! X
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Thus, Ohm's law can be used to derive
R.(B, B, )=(V"-v)/I. (75)

XX
The expression of V,* is given by equation (52). Substitute equation (52) into equation (75) to

derive

Y(l) _Y(l) Y(2) _Y(2)
X1 Xy _ X Xy ] (76)

_1
Rn(BXl,BXZ)_I[ P, — Py P, — Py

So substituting (74) with k={x,X,} into (76) and simplifies it to obtain

FD _o® L gD F®@ _92g®@ L E®
R, (Bx1’ sz ) _ r,(2+h,) (( hy 1) 11 (11)2 22 heo ~1) 11 (1; 2,2 (77)
P, — Py p—2 B p,—2 B

n+1 n+1
Obviously, the equation (11) proposed earlier has been proven.

4.5 Calculation of equivalent resistance R, (B, ,O)

4.5.1 Special solutions of matrix equations under constraint conditions

To calculate the equivalent resistanceR (B, ,0), the current can be input from B, and output
from node O. At this point, Eqgs. (43) - (46) given earlier are applicable to the situation here, Eq. (70)
also applies to this situation. But the range of Eq. (70) needs to be modified to x, <k <n, so equation

(70) needs to be rewritten

Y = ABIYS® —r, I (h, +2)(h, +2-p,)BY, | (x, <k <n) (78)
To find out Y., take Eq. (78) withk ={n,n-1} into (37), we have
B
Yo =61 (2+h,)(h, +2- pi)m : (79)
Substitute (79) into (46) to calculate
YO =r1(2+h,)(h +2—p.)% (0<k<x) (80)
© o Ao T(p-2BY

4.5.2 Calculation of equivalent resistance R (B, ,0)

Equation (52) also applies to this situation. Similarly, using Ohm's law to calculate the
analytical formula R (B, ,0)=(V,"”) —0)/1 for equivalent resistance, whereV,"is represented by

equation (52), therefore

Y(l)_Y(Z)
R,(B,,0)=3 2—=|, (81)
I P, — P
substituting (80) with k=X into (81) yields
WAR® @ AR®
R (8,.0) = (2t (flo 2B (o A8 AR | g
T P, — Py p1_2 Bﬁ)l p2—2 Br(li)l

At this point, the equivalent resistance R (B, ,0)between nodes B, and O is solved, and formula
(12) is proven.

14



5. Special Situations and Discussions
The asymmetric 2>0 RN has already been calculated in the above text, which inclouding the
analytical formulae for the equivalent resistances between five pairs of nodes: (A B, ), (A,0),

(AA). (BB, (B,,0). Due to the abstract analytical formula for equivalent resistance given in
the previous text, in order to better understand the physical meaning of the conclusion and compare
and verify its correctness, we will discuss some special cases below.

To facilitate the verification of the equivalent resistance of the RN, we can use the structural
transformation between T <>V in the network model of Fig.1 to obtain the 2>n-order RN of the
structure shown in Fig. 4.

o=y QR [JRe

1

ro r2 ?2

Fig.4. Circuit transformation: TV

In the transformation shown in Fig. 4, the equivalent resistance can be solved
R =2r+r, R,=2(2r+r). (83)
n
So, we can equate the circuit diagram to the structure of Fig. 5. In Fig. 5, there be

=R IR =Zith)

. 84
2+ 21 +1, (84)

Do D Dn

rs rs ’[|]r4 [|]r4 H]m
Bo| 5 |- 5 5 |8,
o [n o 0o [
N T A

Fig.5. A equivalent circuit network of asymmetric 2>n resistance network

51Thecaseof n=0
Whenn=0, the 2xn-order RNM shown in Fig.1 can be degraded into the 2x0-order RNM
shown in Fig.6 (rotate from vertical to horizontal direction).

Ao Bo Do
o—{ 11— — |—o
Io ra

Fig.6. Expressed a 2>0 circuit network with n=0 (rotated 90°)
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When n=0, there be

B"” =0, B" =1, AB{" =1, Fo(fo) =1. (85)
From Eq. (7) or (55), we have
r(ho +2-p)+2h,r(2+hy,) - 2+h,)(h,+2-p,)
RO A)! B — r0 r
( 0) (pz_p1)(p2_2)
_ r(ho +2—p,) +2h,r(2+h,)—r,(2+h,)(h, +2-p,)
. (86)
(pz - pl)( P — 2)
Simplify (86) then export
P+ P, _4_hr0 _(2"' h21)h20
R,(A,B,)=r : (87)
( O) (p2_2)(p1_2)
Because p, and p, arethe two roots of equation (28), therefore
PP, = hrO +2(2+ hzl)(]-+ hzo)
PP, = 28-(hro +2)—(2+ th)hZOhrO (88)
So the molecule of equation (87) can be simplified as
(p1 +P; —4) - hrO -2+ h21)h20 = 2h21 +(2+ h21)h20 (89)
So, by substituting (88) into the denominator of equation (87), we obtain
(P, =2)(P, =2) = PP, —2(py + P,) +4 (90)
=2a(h,, +2) = (2+hy)hyohy —2h, —4(2+hy )1+ hyy) +4
Because of d =(2+h,,)(1+h,,)—1, Substitute the value of d into equation (90) to calculate
(p1 —2)( P, -2)= hro[2h21 +(2+h21)h20)] (91)
Substitute equations (89) and (91) into (87) to calculate
R.(A.B)=r/h,=r. (92)

Equation (92) is identical to the actual circuit result shown in Fig.6, which verifies the correctness
of the equation at n=0.

Next, verify the situation of RO(A),O). When n=0, substitute equation (85) into equation (9)

and export

(23-_ pl) (2d - pz)
,0)= - , 93
R A= -2 (- PP, -2 43)

simplify and obtain

2(d-1

Ry (A,0)= ,
O( ) (p1_2)(p2_2)

because of d=(h,,+1)(2+h,)-1, therefore d-1=(2+h,)1+h,)-2=h, +(2+h,)h, ,

substituting a and (91) it into equation (94), we have

h,,+(2+h,)h (2+h,))h
R 0)=2r —2 1) _ g4 h1) My , 95
° (Ab ) ’ 2h,; +(2+h,;)hy, ’ [ 2h,, +(2+h,)h,, %)

(94)

simplify by substituting h,, =r,/r, into the above equation
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RO(AD,O):rO(1+2r1—+r2j. (96)

21+ 21+,
According to the actual circuit calculation shown in Fig.6, it is obtained that

Ro(A,O)=1+1, =1+, 2L,

e — 97
°2r +2r, +r, ®7)

Obviously, the theoretical result (96) is identical to the actual circuit result shown in Fig. 6, which
verifies the correctness of R (A ,0) atn=0.

Next, verify the situation of R (B,,0). When n=0, substitute equation (85) into equation (12)

and export
RO(BO,O)=r2(2+h21)[ ho — hy ):rz ho(2+hy,) ' (98)
P, — P p1_2 p2_2 (p1_2)(p2_2)
Substituting equation (91) into equation (98) yields
2+h
R, (B,,0)=r 21 , 99
o (B0) =t g b, &
simplify by substitutingh,, =r, /1, into the above equation
R, (B,,0)=r, 21t (100)

Cor +2r +r,
From the actual circuit calculation shown in Fig. 6, R,(B,,0)=r, is obtained. Obviously, the
theoretical result (100) is completely identical to the actual circuit result shown in Fig. 6, which
verifies the correctness of R (B, ,0) at n=0.

From EQ@s.(10) and (11), the analytical formula for the equivalent resistance between
nodes A, (B, ) and A (B, ) inthe complex 2 <n RN of Fig.1 is

Ry(A,A) =0, Ry(B,,B;)=0 (101)

Obviously, the equivalent resistance calculated by the theoretical formula whenn=0is completely
consistent with the actual circuit results, verifying the correctness of the theoretical formula when
n=0.

In addition, whenn =1, a similar verification method can be used for verification, and the
verification results are completely correct. The calculation process will not be given here.

52 Thecaseof I —>o and ry=r,r,=0.5r
Whenr, —»oandry =r,r, =0.5r, the complex 2>n RNM of Fig.1 is simplified to the RNM
shown in Fig. 5 with R2=r, rsa=ro.
Because !T}O(hzl):!m(rz/ﬁ)zo and hy=r,/r,=1/2, h,=r/ir,=1, d=(2+h,)d+h,)-1
=2, from equations (1), (2), (5), (7) and (8), we can obtain
p,=4-2cosg, p,=4-2cosb,, 6 =2i-1)x/5 (102)

A =2-c0s0 +\/(2—cos¢9i)2 -1,
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Z=2—cos¢9i—\/(2—cos€i)2—1, (103)
Substituting Egs. (102)-(103) into analytical equations (6), (9) and (10) can be simplified to obtain
Rn (Aﬁ’ BXz ) N 0, Fl,(ll) + 2F1,(;) - quz(,lz) G Fl,(12 ) + 2F1,(22 ) a, Fz(,é)

= - : (104)
r (pl_ pz)(pl_Z)Br%—)l (pl_ pz)(pz_Z)BrSi)l
Inside g, =h,+2-p,.
Using (102) to obtain
g =h,+2-p =2cosfd -1, cosHF#, 0056?2:#, (105)
so the calculation shows that
6 __ 20961 _ 4(5-V5)_ Age - A (106)
p,—p, 2cosd,—2cosd ~ S{ 8 5 5
G, __2c0s0,-1 _4[5+V5) 4 (H)——sm (26). (107)
p,—p, 2cosé,—2cosH, "5 8 ] 5
Substituting equations (106) and (107) into (104) yields
F sin?(26,) + 2FS sin(6))sin(26,) + F,3 sin (6,)
1-cos4,)BY
R.(A,.B, )= 2 ( 1)Bra (108)

r
5 . F? sin?(26,) + 2F? sin(6,)sin(26,) + F,3 sin® ©,) |
(1-cosé,)B?)

n+1

the remaining parameters B",A ,h,, Fk(fv) etc. are defined in equations (1)-(6).
The analytical formula for the equivalent resistance between nodes A, and O in the 2 <n RN of

Fig.lis

R (A& o)_ﬂ FY sin*(26,) + R sin®(26,) (109)
AN (1-cos#,)B", ~ (1-cosd,)B?, )’

n+l n+1

Because using (105) to denve_(m

=8 p j_ cot?(), equation (109) can be rewritten as

R, ( A&,O) ABYAB® , AB@AB®@

. XlB 5 cot (01)+$00t2(02), (110)

n+1 n+1

The analytical formula for the equivalent resistance between nodes B, and O in the 2 <n RN of

Fig.1lis

2r( FQsin*(@)  FPsin’(6,)
R,(B,,0)=—] — +—2 111
»(8..0) [(1—0036’)8(1) (1-cos6,)B?, )’ ()

n+l n+1

because sin’*(0)= 4sin2(%¢9i)cosz(%0i) = 2(1—cos:9i)cosz(l0i) , équation (111) can be rewritten as

4I’ |:(1) 1 |:(2)
R (B O) : [Bé?lcos (=6)+- B Ccos ( 6,) |, (112)
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the analytical formula for the equivalent resistance between nodes A_and A in the 2 < n RN of
Fig.lis

RuAA) B 2RYLEY oo B ORD R
r B® B@

n+1 n+1

cot’(6,). (113)

The analytical formula for the equivalent resistance between nodes B, and B, in the 2 <n RN
of Fig.1is
R.(B,.B,) 4( FY-2FY +FS 1 F?-2F® +FQ

1
cos’(=6) + cos*(= 6 )] . (114)
r 5 By 2" B 2"
The equivalent resistance R (A ,0) of the 2>n fan network model was once a research topic in

Refs. [41, 42], and Ref. [39] investigated more general issues. Comparing these conclusions, it was
found that the conclusions drawn in this paper (108) - (114) are consistent with those given in
references [41,42], which indirectly proves the correctness of the calculation results in this paper.

5.3 The case of X, =X
Here we mainly discusses the problem of equation (7). When Xx, =X, there be
F) =F9 =FY, equation (7) can be simplified,
R,(A,.B,)
r

(1-u)*ABPABY, (1-u,)*ABPAB

=(2d-p,) —(2d-p,) . (115)
' (pz B pl)( P - 2) Brﬁ)l ’ (pz B pl)( P, _2) BrSi?L
Among them Ff) =ABUAB®, , U, =h,(2+h,)/(2d - p;).
Specifically, whenx, =x =0 and F{ =AB’AB{’; =AB",, it is derived from (115)
R B 1.2’ AR® 1. )2 AR®
BAB) (g GoWI8BL g ) (-u)aB, (116)

r (pz - pl)(pl _Z)Br(li)l (pz - pl)(pZ _Z)Brg?l .
Obviously, when x, =x,, the analytical formula for equivalent resistance degenerates into a

relatively simple result, and they are all original results derived from this article.

5.4 Visualize resistance relationship
In order to further reveal the relationship between equivalent resistance with r, and node

position, we have used the formulae given in the previous text to draw their visualization graphs,
which can clearly show the relationship between equivalent resistance with r, and node position.

Here we consider the visualization of equivalent resistances R (A,,B) and R (A,0). The
parameter design in the graph is ry =r, =r =1(bQ2), where unit b is any value, such as b=1, b=1000,
and so on. Let r, be a variable, A be a movable point on the AA axis, and B _ be a movable

pointonthe BB, axis.
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(@): ro=r=r [bQ]; n=40 ®): re=r=r [bQ]; n=40

/r\\\\

~

JB)Ir

R(4,B)/r
R4,

o o

=)
s

40 T

71 [bQ] CI ¥ 71 [bQ]

Fig. 6. Visual characteristic of equivalent resistance R (A,,B,)/r varying with r,.
In Fig. (a), r, €[0,10], and in Fig. (b), r, €[10,100]

5.4.1 Visual representation of equivalent resistanceR (A,,B,)
Draw a graph of the change in equivalent resistance between A and B, . SinceRr (A,,B,)/ris a

dimensionless value, regardless of the unit [bQ] of resistance, the unit [bQ] does not affect the
structure of the graph. We take the maximum order of the network as n=40. In order to facilitate the

investigation of the variation characteristics of equivalent resistance R (A,,B)/r with I, , we
considered two segmented intervals r, €[0,10] and r, €[10,100].
From Fig. 6 (a), it can be seen that when x is determined (e.g. x=20, etc.), the equivalent

resistance R (A,,B,)/r for r, €[0,10] gradually increases with the increase of I, ; When I} is

determined (e.g. I =4, etc.), R (A,,B,)/r within the range of x<[0,10] significantly increases
with the increase of x, and R (A,,B,)/r within the range of Xx[10,35] hardly changes with the
increase of x, but R (A,B,)/rwithin the range of xe[35,40] significantly increases with the
increase of x. From Fig. 6 (b), it can be seen that when x is determined (such as x=20, etc.), the
equivalent resistance R (A,,B,)/r of 1, €[10,100] hardly changes with the increase of I,

indicating that the magnitude of the equivalent resistance R (A, B,)/r when 1 >10is not

significantly affected by I;.

5.4.2 Visual representation of equivalent resistance R (A ,O)
Draw a graph of the change in equivalent resistance between A and O. SinceR (A,O)/ris a

dimensionless value, regardless of the unit (bQ)) of resistance, it does not affect the structure of the
graph. We take the maximum order of the network as n=40. In order to facilitate the investigation of

the variation characteristics of equivalent resistance R (A ,0)/r with respect to I, we consider

two segmented intervals r, €[0,10] and r, €[10,100].
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(@): r=r=r [bQ]; n=40 (b): re=r=r [bQ]; n=40

,O)/r
0)/r

X

2 0.7 g,

R(4
RA _,

Mol P,

Fig.7. Characteristics of equivalent resistance R(A,0)/r asa function of r
where , €[0,10] inFig. (3), r, €[10,100] in Fig. (b)

From Fig.7 (a), it can be seen that when x is determined (e.g. x=10, etc.), and r, €[0,10], the

equivalent resistance R (A ,O)/r gradually increases with the increase of I ; When I is

determined (such as 1, =4, etc.), the equivalent resistance R (A ,0)/r within the range of x [0, 40]
shows a U-shaped change with the increase of X, showing a significant increase in the equivalent
resistance at both ends. The equivalent resistance R (A ,O)/r within the range of x €[5,39]
exhibits a relatively small resistance value. From Fig. 7 (b), it can be seen that when x is determined
(such as x=20, etc.), whenr, €[10,100], the equivalent resistance R (A ,O)/r remains almost

unchanged as I, increases, this indicates that the magnitude of the equivalent resistance

R,(A,O)/r when r, >10 is not significantly affected by I’ .

6 Summary and comment

This article proposes an asymmetric 2>n RNM that is a challenging issue. The research here
indicates that the RT-V method established in reference [32] has broad application value and can
solve complex circuit networks. The five original analytical formulas for equivalent resistance
proposed in the article are all derived using the RT-V method. Due to the presence of five
independent resistive elements in the model, suchas r,,r, r,,r,, r, all of which are random values,
this model has generality and can generate a series of special network models. The article validates
and compares the results of this article when discussing special cases, indicating that formulas (7) -
(12) hold for everything, especially when discussing r, —»o and r,=r,r,=0.5r, equivalent
resistance analytical equations (108) - (114) expressed in trigonometric functions are derived.

Solving the analytical formula for equivalent resistance is a fundamental problem, as once the
equivalent resistance formula is obtained, many complex circuits can be solved through variable
substitution techniques. For example, taking the circuit network in this article as an example,
consider a class of RLC complex impedance circuits as shown in Fig.1l, one can assume
L=—jloC, r=joL, 1r,=jolL,, r=—]j/aoC,, by substituting these relationships into the

equivalent resistance formulae, the equivalent complex impedance analytical formula can be
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derived. For example, in a fractional order complex impedance circuit, let :%ej(ﬁmlz),,
(2
=L eihd, r=ghLel?? | [ =phel?) where 0< 2 <1, 0<Z <1.By substituting
@"C,

these relationships into the equivalent resistance formulae, the equivalent complex impedance
analytical formula for fractional order circuits can be derived. The research work in this article can
promote the research and development of complex circuit network models; The analytical formula
for equivalent resistance we have derived can provide a theoretical basis for related research and
simulation studies in engineering.
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