References
Adams, C. J., Manley-Harris, M., & Molan, P. C. 2009. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium ) honey. Carbohydrate Research , 344 (8), 1050–1053. https://doi.org/10.1016/j.carres.2009.03.020Aleixo, K. P., Menezes, C., Imperatriz Fonseca, V. L., & da Silva, C. I. 2017. Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis). Apidologie ,48 (1), 117–127. https://doi.org/10.1007/s13592-016-0456-4Ávila, S., Hornung, P. S., Teixeira, G. L., Malunga, L. N., Apea-Bah, F. B., Beux, M. R., Beta, T., & Ribani, R. H. 2019. Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Research International , 123 , 1–10. https://doi.org/10.1016/j.foodres.2019.01.068Ayton, S., Tomlinson, S., Phillips, R. D., Dixon, K. W., & Withers, P. C. 2016. Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature. Journal of Experimental Biology ,219 (10), 1552–1562. https://doi.org/10.1242/jeb.137588Bahri, S., Abd Razak, S. B., Aziz, A., Nora’aini, A., Ali, M. F., & Visser, F. 2016. The sustainable integration of meliponiculture as an additional income stream for rubber smallholders in Malaysia. CRI & IRRDB International Rubber Conference 2016, Siem Reap, Cambodia.Bailey, N. W. 2012. Evolutionary models of extended phenotypes. Trends in Ecology & Evolution , 27 (10), 561–569. https://doi.org/10.1016/j.tree.2012.05.011Berenbaum, M. R., & Calla, B. 2021. Honey as a Functional Food for Apis mellifera. Annual Review of Entomology , 66 (1), 185–208. https://doi.org/10.1146/annurev-ento-040320-074933Biluca, F. C., Bernal, J., Valverde, S., Ares, A. M., Gonzaga, L. V., Costa, A. C. O., & Fett, R. 2019. Determination of Free Amino Acids in Stingless Bee (Meliponinae) Honey. Food Analytical Methods , 12 (4), 902–907. https://doi.org/10.1007/s12161-018-01427-xBiluca, F. C., Braghini, F., Gonzaga, L. V., Costa, A. C. O., & Fett, R. 2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis , 50 , 61–69. https://doi.org/10.1016/j.jfca.2016.05.007Blamires, S. J., Martens, P. J., & Kasumovic, M. M. 2018. Fitness consequences of plasticity in an extended phenotype. Journal of Experimental Biology ,221 (4), jeb167288. https://doi.org/10.1242/jeb.167288Bueno, F. G. B., Kendall, L., Alves, D. A., Tamara, M. L., Heard, T., Latty, T., & Gloag, R. 2023. Stingless bee floral visitation in the global tropics and subtropics. Global Ecology and Conservation , 43 , e02454. https://doi.org/10.1016/j.gecco.2023.e02454Cáceres, M. D., & Legendre, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology , 90 (12), 3566–3574. https://doi.org/10.1890/08-1823.1Camargo, R. C. R. de, Oliveira, K. L. de, & Berto, M. I. 2017. Mel de abelhas sem ferrão: proposta de regulamentação. Brazilian Journal of Food Technology ,20 . https://doi.org/10.1590/1981-6723.15716Camargo, J. M. F., & Pedro, S. R. M. 2003. Neotropical Meliponini: the genus Partamona Schwarz, 1939 (Hymenoptera, Apidae, Apinae) - bionomy and biogeography.Revista Brasileira de Entomologia , 47 , 311–372. https://doi.org/10.1590/S0085-56262003000300001Cannizzaro, C., Keller, A., Wilson, R., Elliott, B., Newis, R., Ovah, R., Inae, K., Kerlin, D., Bar, I., Kämper, W., Shapcott, A., & Wallace, H. 2022. Forest landscapes increase diversity of honeybee diets in the tropics.Forest Ecology and Management , 504 , 119869. https://doi.org/10.1016/j.foreco.2021.119869Cerqueira, A. E. S., Lima, H. S., Silva, L. C. F., Veloso, T. G. R., de Paula, S. O., Santana, W. C., & da Silva, C. C. 2024. Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission. FEMS Microbiology Ecology , fiae063. https://doi.org/10.1093/femsec/fiae063Chemurot, M., Otim, A. S., Namayanja, D., Onen, H., Angiro, C., Mugume, R., Kajobe, R., MacHaria, J., Gikungu, M., Abila, P. P., & Kasangaki, P. 2021. Stingless Beekeeping in Uganda: An Industry in Its Infancy. African Entomology , 29 (1), 165–172. https://doi.org/10.4001/003.029.0165Chuah, W. C., Lee, H. H., Ng, D. H. J., Ho, A. L., Sulaiman, M. R., & Chye, F. Y. 2023. Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods ,12 (12). https://doi.org/10.3390/foods12122404Chuttong, B., Chanbang, Y., Sringarm, K., & Burgett, M. 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry , 192 , 149–155. Chuttong, B., Lim, K., Praphawilai, P., Danmek, K., Maitip, J., Vit, P., Wu, M.-C., Ghosh, S., Jung, C., Burgett, M., & Hongsibsong, S. 2023. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects.Foods , 12 , 3909. https://doi.org/10.3390/foods12213909Chuttong, B., Phongphisutthinant, R., Sringarm, K., Burgett, M., & Barth, O. 2018. Nutritional Composition of Pot-Pollen from Four Species of Stingless Bees (Meliponini) in Southeast Asia. In Pot-Pollen in Stingless Bee Melittology , 313–324. https://doi.org/10.1007/978-3-319-61839-5_22Codex Alimentarius Commission. 2019. CODEX standard for honey (CXS 12-1981). FAO/WHO.Cortopassi-Laurino, M., Imperatriz-Fonseca, V. L., Roubik, D. W., Dollin, A., Heard, T., Aguilar, I., Venturieri, G. C., Eardley, C., & Nogueira-Neto, P. 2006. Global meliponiculture: challenges and opportunities. Apidologie , 37 (2), 275–292. https://doi.org/10.1051/apido:2006027Cui, Y., Schmid, B. V., Cao, H., Dai, X., Du, Z., Ryan Easterday, W., Fang, H., Guo, C., Huang, S., Liu, W., Qi, Z., Song, Y., Tian, H., Wang, M., Wu, Y., Xu, B., Yang, C., Yang, J., Yang, X., … Yang, R. 2020. Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nature Communications , 11 (1), 281. https://doi.org/10.1038/s41467-019-14099-wCurtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. 2018. Classifying drivers of global forest loss. Science , 361 (6407), 1108–1111. https://doi.org/10.1126/science.aau3445Dalsgaard, B. 2020. Land-Use and Climate Impacts on Plant–Pollinator Interactions and Pollination Services. Diversity , 12 (5), 168. https://doi.org/10.3390/d12050168Dawkins, R. 1982. The extended phenotype: the long reach of the gene . Oxford University Press.Dawkins, R. 2004. Extended Phenotype – But Not Too Extended. A Reply to Laland, Turner and Jablonka. Biology and Philosophy , 19 (3), 377–396. https://doi.org/10.1023/B:BIPH.0000036180.14904.96de Araújo, G. F., Moioli, R. C., & de Souza, S. J. 2021. The Shared Use of Extended Phenotypes Increases the Fitness of Simulated Populations.Frontiers in Genetics , 12 , 617915. https://doi.org/10.3389/fgene.2021.617915de Paula, G. T., Menezes, C., Pupo, M. T., & Rosa, C. A. 2021. Stingless bees and microbial interactions. Current Opinion in Insect Science , 44 , 41–47. https://doi.org/10.1016/j.cois.2020.11.006de Sousa, J. M. B., de Souza, E. L., Marques, G., Benassi, M. D. T., Gullón, B., Pintado, M. M., & Magnani, M. 2016. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT - Food Science and Technology ,65 , 645–651. https://doi.org/10.1016/j.lwt.2015.08.058Delgado, C., Mejía, K., & Rasmussen, C. 2020. Management practices and honey characteristics of Melipona eburnea in the Peruvian Amazon.Ciência Rural , 50 (12), e20190697. https://doi.org/10.1590/0103-8478cr20190697DeLong, J. P., Al-Sammak, M. A., Al-Ameeli, Z. T., Dunigan, D. D., Edwards, K. F., Fuhrmann, J. J., Gleghorn, J. P., Li, H., Haramoto, K., Harrison, A. O., Marston, M. F., Moore, R. M., Polson, S. W., Ferrell, B. D., Salsbery, M. E., Schvarcz, C. R., Shirazi, J., Steward, G. F., Van Etten, J. L., & Wommack, K. E. 2022. Towards an integrative view of virus phenotypes. Nature Reviews Microbiology , 20 (2), 83–94. https://doi.org/10.1038/s41579-021-00612-wDezmirean, D. S., Mărghitaş, L. A., Chirilă, F., Copaciu, F., Simonca, V., Bobiş, O., & Erler, S. 2017. Influence of geographic origin, plant source and polyphenolic substances on antimicrobial properties of propolis against human and honey bee pathogens. Journal of Apicultural Research ,56 (5), 588–597. https://doi.org/10.1080/00218839.2017.1356205Edelaar, P., Otsuka, J., & Luque, V. J. 2023. A generalised approach to the study and understanding of adaptive evolution. Biological Reviews , 98 (1), 352–375. https://doi.org/10.1111/brv.12910Elizalde, L., Arbetman, M., Arnan, X., Eggleton, P., Leal, I. R., Lescano, M. N., Saez, A., Werenkraut, V., & Pirk, G. I. 2020. The ecosystem services provided by social insects: traits, management tools and knowledge gaps.Biological Reviews , 95 (5), 1418–1441. https://doi.org/10.1111/brv.12616Ellis, E. C., Antill, E. C., & Kreft, H. 2012. All Is Not Loss: Plant Biodiversity in the Anthropocene.PLOS ONE , 7 (1), e30535. https://doi.org/10.1371/journal.pone.0030535Engel, M. S., Rasmussen, C., Ayala, R., & Oliveira, F. F. de. 2023. Stingless bee classification and biology (Hymenoptera, Apidae): a review, with an updated key to genera and subgenera. ZooKeys , 1172 , 239–312. https://doi.org/10.3897/zookeys.1172.104944Favela, A., Bohn, M. O., & Kent, A. D. 2023. Application of plant extended phenotypes to manage the agricultural microbiome belowground. Frontiers in Microbiomes ,2 . https://doi.org/10.3389/frmbi.2023.1157681Fernandes, K., Frost, E., Remnant, E., Schell, K., Cokcetin, N., & Carter, D. 2022. The role of honey in the ecology of the hive: Nutrition, detoxification, longevity, and protection against hive pathogens. Frontiers in Nutrition , 9 , 954170. https://doi.org/10.3389/fnut.2022.954170Fernandez, M., Vernay, A., Henneron, L., Adamik, L., Malagoli, P., & Balandier, P. 2022. Plant N economics and the extended phenotype: Integrating the functional traits of plants and associated soil biota into plant–plant interactions.Journal of Ecology , 110 (9), 2015–2032. https://doi.org/10.1111/1365-2745.13934Fick, S. E., & Hijmans, R. J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology ,37 (12), 4302–4315. https://doi.org/10.1002/joc.5086Fleites-Ayil, F., Medina-Medina, L., Quezada-Euán, J. J., Stolle, E., Theodorou, P., Tragust, S., & Paxton, R. 2023. Trouble in the tropics: Pathogen spillover is a threat for native stingless bees. Biological Conservation , 284 , 110150.Fletcher, M., Hungerford, N., Webber, D., Carpinelli de Jesus, M., Zhang, J., Stone, I., Blanchfield, J., & Zawawi, N. 2020. Stingless bee honey, a novel source of trehalulose: a biologically active disaccharide with health benefits. Scientific Reports , 10 , 12128. https://doi.org/10.1038/s41598-020-68940-0Gadge, A. S., Shirsat, D. V., Soumia, P. S., Pote, C. L., Pushpalatha, M., Pandit, T. R., Dutta, R., Kumar, S., Ramesh, S. V., Mahajan, V., & Karuppaiah, V. 2024. Physiochemical, biological, and therapeutic uses of stingless bee honey.Frontiers in Sustainable Food Systems , 7 , 1324385. https://doi.org/10.3389/fsufs.2023.1324385Giannini, T. C., Maia-Silva, C., Acosta, A. L., Jaffé, R., Carvalho, A. T., Martins, C. F., Zanella, F. C. V., Carvalho, C. A. L., Hrncir, M., Saraiva, A. M., Siqueira, J. O., & Imperatriz-Fonseca, V. L. 2017. Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie ,48 (6), 784–794. Scopus. https://doi.org/10.1007/s13592-017-0523-5Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences , 107 (38), 16732–16737. https://doi.org/10.1073/pnas.0910275107Héger, M., Noiset, P., Nkoba, K., & Vereecken, N. J. 2023. Traditional ecological knowledge and non-food uses of stingless bee honey in Kenya’s last pocket of tropical rainforest. Journal of Ethnobiology and Ethnomedicine ,19 (1), 42. https://doi.org/10.1186/s13002-023-00614-3Hughes, D. P. 2008. The extended phenotype within the colony and how it obscures social communication. In P. d’Ettorre & D. P. Hughes (Eds.),Sociobiology of Communication: an interdisciplinary perspective (p. 0). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199216840.003.0010Hunter, P. 2018. The revival of the extended phenotype. EMBO Reports ,19 (7), e46477. https://doi.org/10.15252/embr.201846477Ismail, N. F., Maulidiani, M., Omar, S., Zulkifli, M. F., Mohd Radzi, M. N. F., Ismail, N., Jusoh, A. Z., Roowi, S., Yew, W. M., Rudiyanto, R., & Ismail, W. I. W. 2021. Classification of stingless bee honey based on species, dehumidification process and geographical origins using physicochemical and ATR-FTIR chemometric approach. Journal of Food Composition and Analysis , 104 , 104126. https://doi.org/10.1016/j.jfca.2021.104126Jombart, T., & Dray, S. 2008. Adephylo: exploratory analyses for the phylogenetic comparative method.Bioinformatics 26, 1907-1909.Kegode, T. M., Mokaya, H. O., Chogo, S. I., Noiset, P., Vereecken, N. J., Tamiru, A., Subramanian, S., & Kiatoko, N. 2023. Differences in the biochemical content and radical scavenging activity of propolis from different parts of aMeliponula ferruginea hive. Royal Society Open Science ,10 (12), 230241. https://doi.org/10.1098/rsos.230241Kunieda, T., Fujiyuki, T., Kucharski, R., Foret, S., Ament, S. A., Toth, A. L., Ohashi, K., Takeuchi, H., Kamikouchi, A., Kage, E., Morioka, M., Beye, M., Kubo, T., Robinson, G. E., & Maleszka, R. 2006. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Molecular Biology , 15 (5), 563–576. https://doi.org/10.1111/j.1365-2583.2006.00677.xLavinas, F., GOMES, B., Silva, M., Nunes, R., Leitão, S., Ribeiro Leite Moura, M., Simas, R., Carneiro, C., & Rodrigues, I. 2023. Discriminant Analysis of Brazilian Stingless Bee Honey Reveals an Iron-Based Biogeographical Origin.Foods , 12 . https://doi.org/10.3390/foods12010180Liaw, A., & Wiener, M. 2002. Classification and Regression by randomForest.R news , 2 .Lima, M. A. P., Martins, G. F., Oliveira, E. E., & Guedes, R. N. C. 2016. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. Journal of Comparative Physiology A , 202 (9), 733–747. https://doi.org/10.1007/s00359-016-1110-3Lowore, J., Meaton, J., & Wood, A. 2018. African Forest Honey: an Overlooked NTFP with Potential to Support Livelihoods and Forests. Environmental Management ,62 (1), 15–28. https://doi.org/10.1007/s00267-018-1015-8Machado, A. M., Miguel, M. G., Vilas-Boas, M., & Figueiredo, A. C. 2020. Honey Volatiles as a Fingerprint for Botanical Origin—A Review on their Occurrence on Monofloral Honeys. Molecules , 25 (2), 374. https://doi.org/10.3390/molecules25020374Malaysian Standards. 2017.Kelulut (stingless bee) Honey-Specification: MS 2683: 2017. Matos, T. T. S., Teixeira, J. F., Macías, L. G., Santos, A. R. O., Suh, S.-O., Barrio, E., Lachance, M.-A., & Rosa, C. A. 2020. Kluyveromyces osmophilus is not a synonym of Zygosaccharomyces mellis; reinstatement as Zygosaccharomyces osmophilus comb. nov. International Journal of Systematic and Evolutionary Microbiology , 70 (5), 3374–3378. https://doi.org/10.1099/ijsem.0.004182Menezes, C., Vollet-Neto, A., Contrera, F. A. F. L., Venturieri, G. C., & Imperatriz-Fonseca, V. L. 2013. The Role of Useful Microorganisms to Stingless Bees and Stingless Beekeeping. In P. Vit, S. R. M. Pedro, & D. Roubik (Eds.),Pot-Honey (pp. 153–171). Springer New York. https://doi.org/10.1007/978-1-4614-4960-7_10Mokaya, H. O., Nkoba, K., Ndunda, R. M., & Vereecken, N. J. 2022. Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chemistry , 366 , 130597. Muhammad, N. I. I., & Sarbon, N. M. 2021. Physicochemical profile, antioxidant activity and mineral contents of honey from stingless bee and honey bee species. Journal of Apicultural Research , 1–8. https://doi.org/10.1080/00218839.2021.1896214Mustafa, M. Z., Yaacob, N. S., & Sulaiman, S. A. 2018. Reinventing the honey industry: Opportunities of the stingless bee. Malaysian Journal of Medical Sciences , 25 (4), 1–5. Scopus. https://doi.org/10.21315/mjms2018.25.4.1Nakamura, D., Koffler, S., Mello, M., & Francoy, T. 2024. Resin foraging interactions in stingless bees: an ecological synthesis using multilayer networks.Apidologie , 55 . https://doi.org/10.1007/s13592-024-01082-8Ngalimat, M. S., Noor, R., Yusof, Mohd. T., Syahir, A., Zawawi, N., & Sabri, S. 2020. A Review on the Association of Bacteria with Stingless Bees. Sains Malaysiana , 49 , 1853–1863. https://doi.org/10.17576/jsm-2020-4908-08Nicolson, S. W. 2022. Sweet solutions: nectar chemistry and quality. Philosophical Transactions of the Royal Society B: Biological Sciences ,377 (1853), 20210163. https://doi.org/10.1098/rstb.2021.0163Nicolson, S. W., & Thornburg, R. W. 2007. Nectar chemistry. In S. W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and Nectar (pp. 215–264). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5937-7_5Noiset, P., Cabirol, N., Rojas-Oropeza, M., Warrit, N., Nkoba, K., & Vereecken, N. J. 2022. Honey compositional convergence and the parallel domestication of social bees. Scientific Reports , 12 (1), 18280. https://doi.org/10.1038/s41598-022-23310-wNoiset, P., Ndunda, R. M., Mokaya, H. O., Chege, M., Ndungu, N. N., Sharifu, N., Vereecken, N. J., & Nkoba, K. 2024. Insularity and its impact on stingless bee honey properties: A case study in the Zanzibar Archipelago (Tanzania).JSFA Reports , 4 (2), 64–71. https://doi.org/10.1002/jsf2.170Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. B., & Idrus, R. B. H. 2018. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. Journal of Food Composition and Analysis , 73 , 91–102. https://doi.org/10.1016/j.jfca.2018.06.002Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T., & Lachenmeier, D. W. 2013. Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics. ISRN Analytical Chemistry , 2013 , 1–9. https://doi.org/MOksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., & Szoecs, E. 2022. Vegan: community ecology package, 2.6-2.Vienna (Austria): R Foundation for Statistical Computing .Page, R., Jr, Fondrk, M., Hunt, G., Guzmán-Novoa, E., Humphries, M., Nguyen, K., & Greene, A. 2000. Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. Journal of Heredity ,91 (6), 474–479. https://doi.org/10.1093/jhered/91.6.474Parachnowitsch, A. L., Manson, J. S., & Sletvold, N. 2019. Evolutionary ecology of nectar. Annals of Botany , 123 (2), 247–261. https://doi.org/10.1093/aob/mcy132Petanidou, T. 2007. Ecological and evolutionary aspects of floral nectars in Mediterranean habitats. In S. W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and Nectar (pp. 343–375). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5937-7_8Petrén, H., Köllner, T. G., & Junker, R. R. 2023. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. New Phytologist , 237 (6), 2478–2492. https://doi.org/10.1111/nph.18685Pimentel, T., Rosset, M., Sousa, J., Oliveira, L., Mafaldo, I., Pintado, M., Souza, E., & Magnani, M. 2021. Stingless bee honey: An overview of health benefits and main market challenges. Journal of Food Biochemistry . https://doi.org/10.1111/jfbc.13883Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., Daily, G., Castilla, J. C., Lubchenco, J., & Paine, R. T. 1996. Challenges in the Quest for Keystones: Identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems.BioScience , 46 (8), 609–620. https://doi.org/10.2307/1312990R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/Raftari, M., Azizi Jalilian, F., Abdulamir, A., Ghafourian, S., Sekawi, Z., Son, R., & Bakar, F. 2012. Antibacterial activity of organic acids on Salmonella andListeria . Asia Life Sciences , 21 , 13–30.Rao, P. V., Krishnan, K. T., Salleh, N., & Gan, S. H. 2016. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Revista Brasileira de Farmacognosia ,26 , 657–664. https://doi.org/10.1016/j.bjp.2016.01.012Rasmussen, C., & Cameron, S. A. 2010. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal.Biological Journal of the Linnean Society , 99 (1), 206–232. https://doi.org/10.1111/j.1095-8312.2009.01341.xRasmussen, C., Cayatopa, L. R., Gáloc, E. M. G., & Gonzalez, V. H. 2024. Stingless Bees of Peru: The Use of Plant Resins, Cerumen, and Propolis. InStingless Bee Nest Cerumen and Propolis, Volume 1 . Springer Nature Switzerland AG 2024.Riitters, K., Wickham, J., O’Neill, R., Jones, K., & Smith, E. 2000. Global-Scale Patterns of Forest Fragmentation. Conservation Ecology , 4 . https://doi.org/10.5751/ES-00209-040203Roubik, D. W. 2006. Stingless bee nesting biology. Apidologie , 37 (2), 124–143. https://doi.org/10.1051/apido:2006026RStudio Team. 2020. RStudio: Integrated Development Environment for R . RStudio. http://www.rstudio.com/Schaedelin, F. C., & Taborsky, M. 2009. Extended phenotypes as signals. Biological Reviews , 84 (2), 293–313. https://doi.org/10.1111/j.1469-185X.2008.00075.xSchievano, E., Stocchero, M., Morelato, E., Facchin, C., & Mammi, S. 2012. An NMR-based metabolomic approach to identify the botanical origin of honey. Metabolomics , 8 (4), 679–690. https://doi.org/10.1007/s11306-011-0362-8Shamsudin, S., Selamat, J., Abdul Shomad, M., Ab Aziz, M. F., & Haque Akanda, M. J. 2022. Antioxidant Properties and Characterization of Heterotrigona itama Honey from Various Botanical Origins according to Their Polyphenol Compounds. Journal of Food Quality , 2022 , e2893401. https://doi.org/10.1155/2022/2893401Shamsudin, S., Selamat, J., Sanny, M., Abd. Razak, S.-B., Jambari, N. N., Mian, Z., & Khatib, A. 2019. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. International Journal of Food Properties , 22 (1), 239–264. https://doi.org/10.1080/10942912.2019.1576730Silva, J., Henrique-Bana, F., Villas-Bôas, J., Pimentel, T., Spinosa, W., & Prudencio, S. 2022. Maturation of honey from Uruçú-Amarela (Melipona mondury): Metagenomics, metabolomics by NMR 1H, physicochemical and antioxidant properties. Food Chemistry: Molecular Sciences ,6 , 100157. https://doi.org/10.1016/j.fochms.2022.100157Silva, T. M. S., Camara, C. A., Lins, A. C. S., Agra, M. de F., Silva, E. M. S., Reis, I. T., & Freitas, B. M. 2009. Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees Melipona rufiventris (Uruçu-amarela). Anais Da Academia Brasileira de Ciências ,81 (2), 173–178. https://doi.org/10.1590/S0001-37652009000200003Smith, M. L., Ostwald, M. M., & Seeley, T. D. 2015. Adaptive tuning of an extended phenotype: honeybees seasonally shift their honey storage to optimize male production. Animal Behaviour , 103 , 29–33. https://doi.org/10.1016/j.anbehav.2015.01.035Sousa, J. M., de Souza, E. L., Marques, G., Meireles, B., de Magalhães Cordeiro, Â. T., Gullón, B., Pintado, M. M., & Magnani, M. 2016. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Research International , 84 , 61–68. https://doi.org/10.1016/j.foodres.2016.03.012Souza, E. C. A., Menezes, C., & Flach, A. 2021. Stingless bee honey (Hymenoptera, Apidae, Meliponini): a review of quality control, chemical profile, and biological potential. Apidologie , 52 (1), 113–132. https://doi.org/10.1007/s13592-020-00802-0The World Bank Group. 2023.Global Solar Atlas . https://globalsolaratlas.info/mapTitle, P. O., & Bemmels, J. B. 2018. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography , 41 (2), 291–307. https://doi.org/10.1111/ecog.02880Turska, M., Paluszkiewicz, P., Turski, W. A., & Parada-Turska, J. 2022. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients , 14 (19), 4182. https://doi.org/10.3390/nu14194182Turski, M. P., Chwil, S., Turska, M., Chwil, M., Kocki, T., Rajtar, G., & Parada-Turska, J. 2016. An exceptionally high content of kynurenic acid in chestnut honey and flowers of chestnut tree. Journal of Food Composition and Analysis , 48 , 67–72. https://doi.org/10.1016/j.jfca.2016.02.003Vannette, R. L., Mohamed, A., & Johnson, B. R. 2015. Forager bees (Apis mellifera ) highly express immune and detoxification genes in tissues associated with nectar processing. Scientific Reports , 5 (1), 16224. https://doi.org/10.1038/srep16224Villagomez, G., Keller, A., Rasmussen, C., Lozano, P., Donoso, D., Blüthgen, N., & Leonhardt, S. 2024. Nutrients or resin? -The relationship between resin and food foraging in stingless bees. Ecology and Evolution , 14 . https://doi.org/10.1002/ece3.10879Vit, P., Medina, M., & Eunice Enríquez, M. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World ,85 (1), 2–5. https://doi.org/10.1080/0005772X.2004.11099603Vit, P., van der Meulen, J., Pedro, S. R., Esperança, I., Zakaria, R., Beckh, G., & Maza, F. 2022. Impact of genus (Geotrigona , Melipona , Scaptotrigona ) in the 1 H-NMR organic profile and authenticity test of honey processed in cerumen pots by stingless bees in Ecuador [Preprint]. Biochemistry. https://doi.org/10.1101/2022.05.17.492391Vit, P., Vassya, B., Popova, M., & Roubik, D. W. 2024. Stingless Bee Nest Cerumen and Propolis, Volume 1 (Vol. 1). Springer Charm, Springer Nature Switzerland. https://link.springer.com/book/9783031432736Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. A. 2008. Functional Properties of Honey, Propolis, and Royal Jelly. Journal of Food Science , 73 (9), R117–R124. https://doi.org/10.1111/j.1750-3841.2008.00966.xWhitehead, S. R., Bass, E., Corrigan, A., Kessler, A., & Poveda, K. 2021. Interaction diversity explains the maintenance of phytochemical diversity. Ecology Letters , 24 (6), 1205–1214. https://doi.org/10.1111/ele.13736Whitham, T. G., Young, W. P., Martinsen, G. D., Gehring, C. A., Schweitzer, J. A., Shuster, S. M., Wimp, G. M., Fischer, D. G., Bailey, J. K., Lindroth, R. L., Woolbright, S., & Kuske, C. R. 2003. Community and Ecosystem Genetics: A Consequence of the Extended Phenotype. Ecology , 84 (3), 559–573. https://doi.org/10.1890/0012-9658(2003)084[0559:CAEGAC]2.0.CO;2Wickham, H. 2016. ggplot2: elegant graphics for data analysis.Https://Ggplot2. Tidyverse. Org. Doi , 10 , 978–3.Woods, H. A., Pincebourde, S., Dillon, M. E., & Terblanche, J. S. 2021. Extended phenotypes: buffers or amplifiers of climate change? Trends in Ecology & Evolution , 36 (10), 889–898. https://doi.org/10.1016/j.tree.2021.05.010Yu, G. 2020. Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics , 69 (1), e96. https://doi.org/10.1002/cpbi.96Zamri, N. A., Ghani, N., Ismail, C. A. N., Zakaria, R., & Shafin, N. 2023. Honey on brain health: A promising brain booster. Frontiers in Aging Neuroscience , 14 , 1092596. https://doi.org/10.3389/fnagi.2022.1092596Zawawi, N., Zhang, J., Hungerford, N. L., Yates, H. S. A., Webber, D. C., Farrell, M., Tinggi, U., Bhandari, B., & Fletcher, M. T. 2022. Unique physicochemical properties and rare reducing sugar trehalulose mandate new international regulation for stingless bee honey. Food Chemistry , 373 , 131566. https://doi.org/10.1016/j.foodchem.2021.131566