The authors declare no financial or intellectual conflicts of interest regarding the publication of this paper.
References
[1] PlasticsEurope, 2023.[2] S. B. Borrelle, J. Ringma, K. L. Law, C. C. Monnahan, et al. , Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515-1518.[3] L. Henderson and C. Green, Making sense of microplastics? Public understandings of plastic pollution. Marine Pollution Bulletin 2020, 152, 110908.[4] M. Bergmann, L. Gutow and M. Klages, Marine anthropogenic litter, Springer Nature 2015.[5] F. Azam and F. Malfatti, Microbial structuring of marine ecosystems. Nature Reviews Microbiology 2007, 5, 782-791.[6] C. E. Lee, L. F. Messer, S. I. Holland, T. Gutierrez, et al. , The primary molecular influences of marine plastisphere formation and function: Novel insights into organism -organism and -co-pollutant interactions. Critical Reviews in Environmental Science and Technology 2024, 54, 138-161.[7] E. R. Zettler, T. J. Mincer and L. A. Amaral-Zettler, Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental science & technology 2013, 47, 7137-7146.[8] A. Delacuvellerie, A. Géron, S. Gobert and R. Wattiez, New insights into the functioning and structure of the PE and PP plastispheres from the Mediterranean Sea. Environmental Pollution 2022, 295, 118678.[9] L. F. Messer, R. Wattiez and S. Matallana-Surget, A closer look at plastic colonisation: Prokaryotic dynamics in established versus newly synthesised marine plastispheres and their planktonic state. Environmental Pollution 2024, 358, 124479.[10] M. Latva, C. J. Dedman, R. J. Wright, M. Polin and J. A. Christie-Oleza, Microbial pioneers of plastic colonisation in coastal seawaters. Marine Pollution Bulletin 2022, 179, 113701.[11] G. Erni-Cassola, R. J. Wright, M. I. Gibson and J. A. Christie-Oleza, Early Colonization of Weathered Polyethylene by Distinct Bacteria in Marine Coastal Seawater. Microbial Ecology 2020, 79, 517-526.[12] J. P. Harrison, M. Schratzberger, M. Sapp and A. M. Osborn, Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiology 2014, 14, 232.[13] C. Lemonnier, M. Chalopin, A. Huvet, F. Le Roux, et al. , Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics. Environmental Pollution 2022, 312.[14] R. Guillonneau, C. Baraquet, A. Bazire and M. Molmeret, Multispecies Biofilm Development of Marine Bacteria Implies Complex Relationships Through Competition and Synergy and Modification of Matrix Components. Frontiers in Microbiology 2018, 9.[15] J. Herschend, Z. B. V. Damholt, A. M. Marquard, B. Svensson, et al. , A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Scientific Reports 2017, 7, 16483.[16] L. F. Messer, C. E. Lee, R. Wattiez and S. Matallana-Surget, Novel functional insights into the microbiome inhabiting marine plastic debris: critical considerations to counteract the challenges of thin biofilms using multi-omics and comparative metaproteomics. Microbiome 2024, 12, 36.[17] S. Oberbeckmann, D. Bartosik, S. Huang, J. Werner, et al. , Genomic and proteomic profiles of biofilms on microplastics are decoupled from artificial surface properties. Environmental Microbiology 2021, 23, 3099-3115.[18] L. C. M. Omeyer, E. M. Duncan, K. Aiemsomboon, N. Beaumont, et al. , Priorities to inform research on marine plastic pollution in Southeast Asia. Science of The Total Environment 2022, 841, 156704.[19] M. Eguchi, T. Nishikawa, K. MacDonald, R. Cavicchioli, et al. , Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Applied and Environmental Microbiology 1996, 62, 1287-1294.[20] L. Bushnell and H. Haas, The utilization of certain hydrocarbons by microorganisms. Journal of bacteriology 1941, 41, 653-673.[21] Q. De Meur, A. Deutschbauer, M. Koch, R. Wattiez and B. Leroy, Genetic plasticity and ethylmalonyl coenzyme A pathway during acetate assimilation in Rhodospirillum rubrum S1H under photoheterotrophic conditions. Applied and Environmental Microbiology 2018, 84, e02038-02017.[22] P. Menzel, K. L. Ng and A. Krogh, Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature communications 2016, 7, 11257.[23] M. Kolmogorov, D. M. Bickhart, B. Behsaz, A. Gurevich, et al. , metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 2020, 17, 1103-1110.[24] V. Gambarini, O. Pantos, J. M. Kingsbury, L. Weaver, et al. , PlasticDB: a database of microorganisms and proteins linked to plastic biodegradation. Database 2022, 2022, baac008.[25] B. Liu, D. Zheng, Q. Jin, L. Chen and J. Yang, VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019, 47, D687-D692.[26] B. P. Alcock, A. R. Raphenya, T. T. Lau, K. K. Tsang, et al. , CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020, 48, D517-D525.[27] J. Werner, A. Géron, J. Kerssemakers and S. Matallana-Surget, mPies: a novel metaproteomics tool for the creation of relevant protein databases and automatized protein annotation. Biology Direct 2019, 14, 21.[28] R. J. Wright, R. Bosch, M. G. I. Langille, M. I. Gibson and J. A. Christie-Oleza, A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. Microbiome 2021, 9, 141.[29] C. Dussud, C. Hudec, M. George, P. Fabre, et al. , Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Frontiers in microbiology 2018, 9, 1571.[30] A. Peix, M.-H. Ramírez-Bahena and E. Velázquez, The current status on the taxonomy of Pseudomonas revisited: An update. Infection, Genetics and Evolution 2018, 57, 106-116.[31] E. E. Mann and D. J. Wozniak, Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiology Reviews 2012, 36, 893-916.[32] I. V. Kirstein, A. Wichels, E. Gullans, G. Krohne and G. Gerdts, The Plastisphere – Uncovering tightly attached plastic “specific” microorganisms. PLOS ONE 2019, 14, e0215859.[33] S. Matallana-Surget, L. M. Nigro, L. A. Waidner, P. Lebaron, et al. , Clarifying the murk: unveiling bacterial dynamics in response to crude oil pollution, Corexit-dispersant, and natural sunlight in the Gulf of Mexico. Frontiers in Marine Science 2024, 10.[34] R. L. Mugge, J. L. Salerno and L. J. Hamdan, Microbial Functional Responses in Marine Biofilms Exposed to Deepwater Horizon Spill Contaminants. Front Microbiol 2021, 12, 636054.[35] C. A. Molina-Cárdenas and M. d. P. Sánchez-Saavedra, Inhibitory effect of benthic diatom species on three aquaculture pathogenic vibrios. Algal Research 2017, 27, 131-139.[36] S. B. Primrose and S. R. Primrose, Microbiology of Infectious Disease: Integrating Genomics with Natural History, Oxford University Press 2022, p. 0.[37] R. Nassar, M. Hachim, M. Nassar, E. G. Kaklamanos, et al. , Microbial Metabolic Genes Crucial for S. aureus Biofilms: An Insight From Re-analysis of Publicly Available Microarray Datasets. Frontiers in Microbiology 2021, 11.[38] T. Pisithkul, J. W. Schroeder, E. A. Trujillo, P. Yeesin, et al. , Metabolic remodeling during biofilm development of Bacillus subtilis. MBio 2019, 10, 10.1128/mbio. 00623-00619.[39] T. R. D. Costa, C. Felisberto-Rodrigues, A. Meir, M. S. Prevost, et al. , Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Reviews Microbiology 2015, 13, 343-359.[40] M. Bouteiller, C. Dupont, Y. Bourigault, X. Latour, et al. , Pseudomonas Flagella: Generalities and Specificities. Int J Mol Sci 2021, 22.[41] P. Klemm and M. A. Schembri, Bacterial adhesins: function and structure. International Journal of Medical Microbiology 2000, 290, 27-35.[42] V. G. Preda and O. Săndulescu, Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova) 2019, 7, e100.[43] K. Forchhammer, Glutamine signalling in bacteria. Frontiers in Bioscience-Landmark 2007, 12, 358-370.[44] S. E. Barnett, N. D. Youngblut, C. N. Koechli and D. H. Buckley, Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. Proceedings of the National Academy of Sciences 2021, 118, e2115292118.[45] A. Prindle, J. Liu, M. Asally, S. Ly, et al. , Ion channels enable electrical communication in bacterial communities. nature 2015, 527, 59-63.[46] E. Cabiscol Català, J. Tamarit Sumalla and J. Ros Salvador, Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 2000, vol. 3, núm. 1, p. 3-8 2000.[47] G. Ji and S. Silver, Bacterial resistance mechanisms for heavy metals of environmental concern. Journal of industrial microbiology 1995, 14, 61-75.[48] S. Liu, W. Huang, J. Yang, Y. Xiong, et al. , Formation of environmentally persistent free radicals on microplastics under UV irradiations. Journal of Hazardous Materials 2023, 453, 131277.[49] Z. Yao, H. J. Seong and Y.-S. Jang, Environmental toxicity and decomposition of polyethylene. Ecotoxicology and Environmental Safety 2022, 242, 113933.[50] A. Chaudhary, P. K. Chaurasia, S. Kushwaha, P. Chauhan, et al. , Correlating multi-functional role of cold shock domain proteins with intrinsically disordered regions. International Journal of Biological Macromolecules 2022, 220, 743-753.[51] A. Prieto, I. F. Escapa, V. Martínez, N. Dinjaski, et al. , A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environmental Microbiology 2016, 18, 341-357.[52] B. M. Kyaw, R. Champakalakshmi, M. K. Sakharkar, C. S. Lim and K. R. Sakharkar, Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology 2012, 52, 411-419.[53] S. Nanda, S. Sahu and J. Abraham, Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management 2010, 14.[54] M. G. Yoon, H. J. Jeon and M. N. Kim, Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation 2012, 3, 1-8.[55] P. K. Arora and H. Bae, Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 2014, 13, 31.[56] B. Setlhare, A. Kumar, O. A. Aregbesola, M. P. Mokoena and A. O. Olaniran, 2,4-dichlorophenol Degradation by Indigenous Pseudomonas sp. PKZNSA and Klebsiella pneumoniae KpKZNSA: Kinetics, Enzyme Activity and Catabolic Gene Detection. Applied Biochemistry and Microbiology 2021, 57, 656-665.[57] D. J. Dwyer, P. A. Belenky, J. H. Yang, I. C. MacDonald, et al. , Antibiotics induce redox-related physiological alterations as part of their lethality. Proceedings of the National Academy of Sciences 2014, 111, E2100-E2109.[58] S. G. van Creveld, S. Rosenwasser, D. Schatz, I. Koren and A. Vardi, Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. The ISME Journal 2014, 9, 385-395.[59] T. E. Wood, S. A. Howard, A. Förster, L. M. Nolan, et al. , The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Rep 2019, 29, 187-201.e187.[60] F. Vandenesch, G. Lina and T. Henry, Staphylococcus aureus Hemolysins, bi-component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors? Frontiers in Cellular and Infection Microbiology 2012, 2.[61] A. B. Russell, S. B. Peterson and J. D. Mougous, Type VI secretion system effectors: poisons with a purpose. Nature Reviews Microbiology 2014, 12, 137-148.[62] M. A. Alford, S. Mann, N. Akhoundsadegh and R. E. W. Hancock, Competition between Pseudomonas aeruginosa and Staphylococcus aureus is dependent on intercellular signaling and regulated by the NtrBC two-component system. Sci Rep 2022, 12, 9027.[63] L. Yang, Y. Liu, H. Wu, N. Høiby, et al. , Current understanding of multi‐species biofilms. International journal of oral science 2011, 3, 74-81.[64] B.-L. Tang, J. Yang, X.-L. Chen, P. Wang, et al. , A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nature Communications 2020, 11, 285.[65] A. Santos-López, J. Rodríguez-Beltrán and Á. San Millán, The bacterial capsule is a gatekeeper for mobile DNA. PLoS Biol 2021, 19, e3001308.[66] X. Tao, H. Ouyang, A. Zhou, D. Wang, et al. , Polyethylene Degradation by a Rhodococcous Strain Isolated from Naturally Weathered Plastic Waste Enrichment. Environmental Science & Technology 2023, 57, 13901-13911.[67] H. M. Alvarez, Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. International Biodeterioration & Biodegradation 2003, 52, 35-42.[68] T. Chen, J. Ma, Y. Liu, Z. Chen, et al. , iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res 2021, 50.[69] J. Ma, T. Chen, S. Wu, C. Yang, et al. , iProX: an integrated proteome resource. Nucleic Acids Res 2019, 47, D1211-D1217.