The authors declare no financial or intellectual conflicts of
interest regarding the publication of this paper.
References
[1] PlasticsEurope, 2023.[2] S. B. Borrelle, J. Ringma, K. L.
Law, C. C. Monnahan, et al. , Predicted growth in plastic waste
exceeds efforts to mitigate plastic pollution. Science 2020, 369,
1515-1518.[3] L. Henderson and C. Green, Making sense of
microplastics? Public understandings of plastic pollution. Marine
Pollution Bulletin 2020, 152, 110908.[4] M. Bergmann, L. Gutow and
M. Klages, Marine anthropogenic litter, Springer Nature 2015.[5] F.
Azam and F. Malfatti, Microbial structuring of marine ecosystems. Nature
Reviews Microbiology 2007, 5, 782-791.[6] C. E. Lee, L. F. Messer,
S. I. Holland, T. Gutierrez, et al. , The primary molecular
influences of marine plastisphere formation and function: Novel insights
into organism -organism and -co-pollutant interactions. Critical Reviews
in Environmental Science and Technology 2024, 54, 138-161.[7] E. R.
Zettler, T. J. Mincer and L. A. Amaral-Zettler, Life in the
“plastisphere”: microbial communities on plastic marine debris.
Environmental science & technology 2013, 47, 7137-7146.[8] A.
Delacuvellerie, A. Géron, S. Gobert and R. Wattiez, New insights into
the functioning and structure of the PE and PP plastispheres from the
Mediterranean Sea. Environmental Pollution 2022, 295, 118678.[9] L.
F. Messer, R. Wattiez and S. Matallana-Surget, A closer look at plastic
colonisation: Prokaryotic dynamics in established versus newly
synthesised marine plastispheres and their planktonic state.
Environmental Pollution 2024, 358, 124479.[10] M. Latva, C. J.
Dedman, R. J. Wright, M. Polin and J. A. Christie-Oleza, Microbial
pioneers of plastic colonisation in coastal seawaters. Marine Pollution
Bulletin 2022, 179, 113701.[11] G. Erni-Cassola, R. J. Wright, M. I.
Gibson and J. A. Christie-Oleza, Early Colonization of Weathered
Polyethylene by Distinct Bacteria in Marine Coastal Seawater. Microbial
Ecology 2020, 79, 517-526.[12] J. P. Harrison, M. Schratzberger, M.
Sapp and A. M. Osborn, Rapid bacterial colonization of low-density
polyethylene microplastics in coastal sediment microcosms. BMC
Microbiology 2014, 14, 232.[13] C. Lemonnier, M. Chalopin, A. Huvet,
F. Le Roux, et al. , Time-series incubations in a coastal
environment illuminates the importance of early colonizers and the
complexity of bacterial biofilm dynamics on marine plastics.
Environmental Pollution 2022, 312.[14] R. Guillonneau, C. Baraquet,
A. Bazire and M. Molmeret, Multispecies Biofilm Development of Marine
Bacteria Implies Complex Relationships Through Competition and Synergy
and Modification of Matrix Components. Frontiers in Microbiology 2018,
9.[15] J. Herschend, Z. B. V. Damholt, A. M. Marquard, B.
Svensson, et al. , A meta-proteomics approach to study the
interspecies interactions affecting microbial biofilm development in a
model community. Scientific Reports 2017, 7, 16483.[16] L. F.
Messer, C. E. Lee, R. Wattiez and S. Matallana-Surget, Novel functional
insights into the microbiome inhabiting marine plastic debris: critical
considerations to counteract the challenges of thin biofilms using
multi-omics and comparative metaproteomics. Microbiome 2024, 12,
36.[17] S. Oberbeckmann, D. Bartosik, S. Huang, J. Werner, et
al. , Genomic and proteomic profiles of biofilms on microplastics are
decoupled from artificial surface properties. Environmental Microbiology
2021, 23, 3099-3115.[18] L. C. M. Omeyer, E. M. Duncan, K.
Aiemsomboon, N. Beaumont, et al. , Priorities to inform research
on marine plastic pollution in Southeast Asia. Science of The Total
Environment 2022, 841, 156704.[19] M. Eguchi, T. Nishikawa, K.
MacDonald, R. Cavicchioli, et al. , Responses to stress and
nutrient availability by the marine ultramicrobacterium Sphingomonas sp.
strain RB2256. Applied and Environmental Microbiology 1996, 62,
1287-1294.[20] L. Bushnell and H. Haas, The utilization of certain
hydrocarbons by microorganisms. Journal of bacteriology 1941, 41,
653-673.[21] Q. De Meur, A. Deutschbauer, M. Koch, R. Wattiez and B.
Leroy, Genetic plasticity and ethylmalonyl coenzyme A pathway during
acetate assimilation in Rhodospirillum rubrum S1H under
photoheterotrophic conditions. Applied and Environmental Microbiology
2018, 84, e02038-02017.[22] P. Menzel, K. L. Ng and A. Krogh, Fast
and sensitive taxonomic classification for metagenomics with Kaiju.
Nature communications 2016, 7, 11257.[23] M. Kolmogorov, D. M.
Bickhart, B. Behsaz, A. Gurevich, et al. , metaFlye: scalable
long-read metagenome assembly using repeat graphs. Nature Methods 2020,
17, 1103-1110.[24] V. Gambarini, O. Pantos, J. M. Kingsbury, L.
Weaver, et al. , PlasticDB: a database of microorganisms and
proteins linked to plastic biodegradation. Database 2022, 2022,
baac008.[25] B. Liu, D. Zheng, Q. Jin, L. Chen and J. Yang, VFDB
2019: a comparative pathogenomic platform with an interactive web
interface. Nucleic Acids Res 2019, 47, D687-D692.[26] B. P. Alcock,
A. R. Raphenya, T. T. Lau, K. K. Tsang, et al. , CARD 2020:
antibiotic resistome surveillance with the comprehensive antibiotic
resistance database. Nucleic Acids Res 2020, 48, D517-D525.[27] J.
Werner, A. Géron, J. Kerssemakers and S. Matallana-Surget, mPies: a
novel metaproteomics tool for the creation of relevant protein databases
and automatized protein annotation. Biology Direct 2019, 14, 21.[28]
R. J. Wright, R. Bosch, M. G. I. Langille, M. I. Gibson and J. A.
Christie-Oleza, A multi-OMIC characterisation of biodegradation and
microbial community succession within the PET plastisphere. Microbiome
2021, 9, 141.[29] C. Dussud, C. Hudec, M. George, P. Fabre, et
al. , Colonization of non-biodegradable and biodegradable plastics by
marine microorganisms. Frontiers in microbiology 2018, 9, 1571.[30]
A. Peix, M.-H. Ramírez-Bahena and E. Velázquez, The current status on
the taxonomy of Pseudomonas revisited: An update. Infection, Genetics
and Evolution 2018, 57, 106-116.[31] E. E. Mann and D. J. Wozniak,
Pseudomonas biofilm matrix composition and niche biology. FEMS
Microbiology Reviews 2012, 36, 893-916.[32] I. V. Kirstein, A.
Wichels, E. Gullans, G. Krohne and G. Gerdts, The Plastisphere –
Uncovering tightly attached plastic “specific” microorganisms. PLOS
ONE 2019, 14, e0215859.[33] S. Matallana-Surget, L. M. Nigro, L. A.
Waidner, P. Lebaron, et al. , Clarifying the murk: unveiling
bacterial dynamics in response to crude oil pollution,
Corexit-dispersant, and natural sunlight in the Gulf of Mexico.
Frontiers in Marine Science 2024, 10.[34] R. L. Mugge, J. L. Salerno
and L. J. Hamdan, Microbial Functional Responses in Marine Biofilms
Exposed to Deepwater Horizon Spill Contaminants. Front Microbiol 2021,
12, 636054.[35] C. A. Molina-Cárdenas and M. d. P. Sánchez-Saavedra,
Inhibitory effect of benthic diatom species on three aquaculture
pathogenic vibrios. Algal Research 2017, 27, 131-139.[36] S. B.
Primrose and S. R. Primrose, Microbiology of Infectious Disease:
Integrating Genomics with Natural History, Oxford University Press 2022,
p. 0.[37] R. Nassar, M. Hachim, M. Nassar, E. G. Kaklamanos,
et al. , Microbial Metabolic Genes Crucial for S. aureus Biofilms: An
Insight From Re-analysis of Publicly Available Microarray Datasets.
Frontiers in Microbiology 2021, 11.[38] T. Pisithkul, J. W.
Schroeder, E. A. Trujillo, P. Yeesin, et al. , Metabolic
remodeling during biofilm development of Bacillus subtilis. MBio 2019,
10, 10.1128/mbio. 00623-00619.[39] T. R. D. Costa, C.
Felisberto-Rodrigues, A. Meir, M. S. Prevost, et al. , Secretion
systems in Gram-negative bacteria: structural and mechanistic insights.
Nature Reviews Microbiology 2015, 13, 343-359.[40] M. Bouteiller, C.
Dupont, Y. Bourigault, X. Latour, et al. , Pseudomonas Flagella:
Generalities and Specificities. Int J Mol Sci 2021, 22.[41] P. Klemm
and M. A. Schembri, Bacterial adhesins: function and structure.
International Journal of Medical Microbiology 2000, 290, 27-35.[42]
V. G. Preda and O. Săndulescu, Communication is the key: biofilms,
quorum sensing, formation and prevention. Discoveries (Craiova) 2019, 7,
e100.[43] K. Forchhammer, Glutamine signalling in bacteria.
Frontiers in Bioscience-Landmark 2007, 12, 358-370.[44] S. E.
Barnett, N. D. Youngblut, C. N. Koechli and D. H. Buckley,
Multisubstrate DNA stable isotope probing reveals guild structure of
bacteria that mediate soil carbon cycling. Proceedings of the National
Academy of Sciences 2021, 118, e2115292118.[45] A. Prindle, J. Liu,
M. Asally, S. Ly, et al. , Ion channels enable electrical
communication in bacterial communities. nature 2015, 527, 59-63.[46]
E. Cabiscol Català, J. Tamarit Sumalla and J. Ros Salvador, Oxidative
stress in bacteria and protein damage by reactive oxygen species.
International Microbiology, 2000, vol. 3, núm. 1, p. 3-8 2000.[47]
G. Ji and S. Silver, Bacterial resistance mechanisms for heavy metals of
environmental concern. Journal of industrial microbiology 1995, 14,
61-75.[48] S. Liu, W. Huang, J. Yang, Y. Xiong, et al. ,
Formation of environmentally persistent free radicals on microplastics
under UV irradiations. Journal of Hazardous Materials 2023, 453,
131277.[49] Z. Yao, H. J. Seong and Y.-S. Jang, Environmental
toxicity and decomposition of polyethylene. Ecotoxicology and
Environmental Safety 2022, 242, 113933.[50] A. Chaudhary, P. K.
Chaurasia, S. Kushwaha, P. Chauhan, et al. , Correlating
multi-functional role of cold shock domain proteins with intrinsically
disordered regions. International Journal of Biological Macromolecules
2022, 220, 743-753.[51] A. Prieto, I. F. Escapa, V. Martínez, N.
Dinjaski, et al. , A holistic view of polyhydroxyalkanoate
metabolism in Pseudomonas putida. Environmental Microbiology 2016, 18,
341-357.[52] B. M. Kyaw, R. Champakalakshmi, M. K. Sakharkar, C. S.
Lim and K. R. Sakharkar, Biodegradation of Low Density Polythene (LDPE)
by Pseudomonas Species. Indian Journal of Microbiology 2012, 52,
411-419.[53] S. Nanda, S. Sahu and J. Abraham, Studies on the
biodegradation of natural and synthetic polyethylene by Pseudomonas spp.
Journal of Applied Sciences and Environmental Management 2010,
14.[54] M. G. Yoon, H. J. Jeon and M. N. Kim, Biodegradation of
polyethylene by a soil bacterium and AlkB cloned recombinant cell.
Journal of Bioremediation & Biodegradation 2012, 3, 1-8.[55] P. K.
Arora and H. Bae, Bacterial degradation of chlorophenols and their
derivatives. Microb Cell Fact 2014, 13, 31.[56] B. Setlhare, A.
Kumar, O. A. Aregbesola, M. P. Mokoena and A. O. Olaniran,
2,4-dichlorophenol Degradation by Indigenous Pseudomonas sp. PKZNSA and
Klebsiella pneumoniae KpKZNSA: Kinetics, Enzyme Activity and Catabolic
Gene Detection. Applied Biochemistry and Microbiology 2021, 57,
656-665.[57] D. J. Dwyer, P. A. Belenky, J. H. Yang, I. C.
MacDonald, et al. , Antibiotics induce redox-related physiological
alterations as part of their lethality. Proceedings of the National
Academy of Sciences 2014, 111, E2100-E2109.[58] S. G. van Creveld,
S. Rosenwasser, D. Schatz, I. Koren and A. Vardi, Early perturbation in
mitochondria redox homeostasis in response to environmental stress
predicts cell fate in diatoms. The ISME Journal 2014, 9,
385-395.[59] T. E. Wood, S. A. Howard, A. Förster, L. M.
Nolan, et al. , The Pseudomonas aeruginosa T6SS Delivers a
Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Rep
2019, 29, 187-201.e187.[60] F. Vandenesch, G. Lina and T. Henry,
Staphylococcus aureus Hemolysins, bi-component Leukocidins, and
Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence
Factors? Frontiers in Cellular and Infection Microbiology 2012,
2.[61] A. B. Russell, S. B. Peterson and J. D. Mougous, Type VI
secretion system effectors: poisons with a purpose. Nature Reviews
Microbiology 2014, 12, 137-148.[62] M. A. Alford, S. Mann, N.
Akhoundsadegh and R. E. W. Hancock, Competition between Pseudomonas
aeruginosa and Staphylococcus aureus is dependent on intercellular
signaling and regulated by the NtrBC two-component system. Sci Rep 2022,
12, 9027.[63] L. Yang, Y. Liu, H. Wu, N. Høiby, et al. ,
Current understanding of multi‐species biofilms. International journal
of oral science 2011, 3, 74-81.[64] B.-L. Tang, J. Yang, X.-L. Chen,
P. Wang, et al. , A predator-prey interaction between a marine
Pseudoalteromonas sp. and Gram-positive bacteria. Nature Communications
2020, 11, 285.[65] A. Santos-López, J. Rodríguez-Beltrán and Á. San
Millán, The bacterial capsule is a gatekeeper for mobile DNA. PLoS Biol
2021, 19, e3001308.[66] X. Tao, H. Ouyang, A. Zhou, D. Wang,
et al. , Polyethylene Degradation by a Rhodococcous Strain Isolated from
Naturally Weathered Plastic Waste Enrichment. Environmental Science &
Technology 2023, 57, 13901-13911.[67] H. M. Alvarez, Relationship
between β-oxidation pathway and the hydrocarbon-degrading profile in
actinomycetes bacteria. International Biodeterioration & Biodegradation
2003, 52, 35-42.[68] T. Chen, J. Ma, Y. Liu, Z. Chen, et al. ,
iProX in 2021: connecting proteomics data sharing with big data. Nucleic
Acids Res 2021, 50.[69] J. Ma, T. Chen, S. Wu, C. Yang, et
al. , iProX: an integrated proteome resource. Nucleic Acids Res 2019,
47, D1211-D1217.