not-yet-known not-yet-known not-yet-known unknown Author contributions Junmin Li : Writing-original draft, data curation, methodology, project administration. Dezhong Zhang : Writing-original draft, data curation. Yan Meng : project administration. Yongqing Chang : project administration. Jingjing Fang : Supervision, writing - review & editing, methodology, resources. Keming Zhu : Supervision, writing - review & editing, methodology, resources. Xiaojian Wan : Supervision, funding acquisition, writing - review & editing, methodology, resources. Wenbo Wei : Funding acquisition, project administration. Peng Wu : Project administration. Lin Peng : Project administration. Wei Chang : Funding acquisition, project administration. Wei Wang : Resources. Jie Huang : Resources. References [1] RECZYNSKA K, THARKAR P, KIM S Y, et al. Animal models of smoke inhalation injury and related acute and chronic lung diseases[J]. Adv Drug Deliv Rev, 2018,123: 107-134. [2] ENKHBAATAR P, PRUITT B J, SUMAN O, et al. Pathophysiology, research challenges, and clinical management of smoke inhalation injury[J]. Lancet, 2016,388(10052): 1437-1446. [3] SOOD A, PETERSEN H, BLANCHETTE C M, et al. Wood smoke exposure and gene promoter methylation are associated with increased risk for COPD in smokers[J]. Am J Respir Crit Care Med, 2010,182(9): 1098-1104. [4] YOON S H, SONG M K, KIM D I, et al. Comparative study of lung toxicity of E-cigarette ingredients to investigate E-cigarette or vaping product associated lung injury[J]. J Hazard Mater, 2023,445: 130454. [5] COHEN M A, GUZZARDI L J. Inhalation of products of combustion[J]. Ann Emerg Med, 1983,12(10): 628-632. [6] ALBRIGHT J M, DAVIS C S, BIRD M D, et al. The acute pulmonary inflammatory response to the graded severity of smoke inhalation injury[J]. Crit Care Med, 2012,40(4): 1113-1121. [7] XU X, PAN R, CHEN R. Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis[J]. Appl Biochem Biotechnol, 2021,193(5): 1427-1446. [8] MERCEL A I, GILLIS D C, SUN K, et al. A comparative study of a preclinical survival model of smoke inhalation injury in mice and rats[J]. Am J Physiol Lung Cell Mol Physiol, 2020,319(3): L471-L480. [9] ZHANG F, LI M Y, LAN Y T, et al. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury[J]. Sci Rep, 2016,6: 21348.[10] MATHIS C, POUSSIN C, WEISENSEE D, et al. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers[J]. Am J Physiol Lung Cell Mol Physiol, 2013,304(7): L489-L503.[11] UPADHYAY S, PALMBERG L. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity[J]. Toxicol Sci, 2018,164(1): 21-30.[12] INGBER D E. Human organs-on-chips for disease modelling, drug development and personalized medicine[J]. Nat Rev Genet, 2022,23(8): 467-491.[13] BENAM K H, NOVAK R, NAWROTH J, et al. Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip[J]. Cell Syst, 2016,3(5): 456-466.[14] ZHANG M, XU C, JIANG L, et al. A 3D human lung-on-a-chip model for nanotoxicity testing[J]. Toxicol Res (Camb), 2018,7(6): 1048-1060.[15] BENAM K H, VILLENAVE R, LUCCHESI C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro[J]. Nat Methods, 2016,13(2): 151-157.[16] VAZQUEZ-ARMENDARIZ A I, TATA P R. Recent advances in lung organoid development and applications in disease modeling[J]. J Clin Invest, 2023,133(22).[17] HAN B, HAITSMA J J, ZHANG Y, et al. Long pentraxin PTX3 deficiency worsens LPS-induced acute lung injury[J]. Intensive Care Med, 2011,37(2): 334-342.[18] WICK K D, MCAULEY D F, LEVITT J E, et al. Promises and challenges of personalized medicine to guide ARDS therapy[J]. Crit Care, 2021,25(1): 404.[19] DUBICK M A, CARDEN S C, JORDAN B S, et al. Indices of antioxidant status in rats subjected to wood smoke inhalation and/or thermal injury[J]. Toxicology, 2002,176(1-2): 145-157.[20] ZHU F, QIU X, WANG J, et al. A rat model of smoke inhalation injury[J]. Inhal Toxicol, 2012,24(6): 356-364.[21] INGBER D E. Human organs-on-chips for disease modelling, drug development and personalized medicine[J]. Nat Rev Genet, 2022,23(8): 467-491.[22] ZHANG F, LIN D, RAJASEKAR S, et al. Pump-Less Platform Enables Long-Term Recirculating Perfusion of 3D Printed Tubular Tissues[J]. Adv Healthc Mater, 2023,12(27): e2300423.[23] ZHANG L, XU C, MA Y, et al. SOCS-1 ameliorates smoke inhalation-induced acute lung injury through inhibition of ASK-1 activity and DISC formation[J]. Clin Immunol, 2018,191: 94-99.[24] MERCEL A I, GILLIS D C, SUN K, et al. A comparative study of a preclinical survival model of smoke inhalation injury in mice and rats[J]. Am J Physiol Lung Cell Mol Physiol, 2020,319(3): L471-L480.[25] YAMAMOTO Y, SOUSSE L E, ENKHBAATAR P, et al. gamma-tocopherol nebulization decreases oxidative stress, arginase activity, and collagen deposition after burn and smoke inhalation in the ovine model[J]. Shock, 2012,38(6): 671-676.[26] LEIPHRAKPAM P D, WEBER H R, OGUN T, et al. Rat model of smoke inhalation-induced acute lung injury[J]. BMJ Open Respir Res, 2021,8(1).[27] XU W, DENG H, HU S, et al. Role of Ferroptosis in Lung Diseases[J]. J Inflamm Res, 2021,14: 2079-2090.[28] HOLGUIN F, MOSS I, BROWN L A, et al. Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats[J]. J Clin Invest, 1998,101(4): 761-768.[29] PASCOLO L, GIANONCELLI A, KAULICH B, et al. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues[J]. Part Fibre Toxicol, 2011,8(1): 7.[30] MAO L, HU M, PAN B, et al. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation[J]. Part Fibre Toxicol, 2016,13: 7.[31] YANG Y, WU J, CAI J, et al. PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells[J]. Int J Cancer, 2015,136(4): E39-E50.[32] RYTER S W, CHOI A M. Autophagy in lung disease pathogenesis and therapeutics[J]. Redox Biol, 2015,4: 215-225.[33] PEHOTE G, VIJ N. Autophagy Augmentation to Alleviate Immune Response Dysfunction, and Resolve Respiratory and COVID-19 Exacerbations[J]. Cells, 2020,9(9).[34] SPIX B, JERIDI A, ANSARI M, et al. Endolysosomal Cation Channels and Lung Disease[J]. Cells, 2022,11(2).[35] LIU Z, GAO F, HOU L, et al. Network clusters analysis based on protein-protein interaction network constructed in phosgene-induced acute lung injury[J]. Lung, 2013,191(5): 545-551.[36] HANSON P J, LIU-FEI F, NG C, et al. Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort[J]. Lab Invest, 2022,102(8): 814-825.[37] ZHAO J Y, PU J, FAN J, et al. Tanshinone IIA prevents acute lung injury by regulating macrophage polarization[J]. J Integr Med, 2022,20(3): 274-280.[38] EL-AARAG S A, MAHMOUD A, HASHEM M H, et al. In silico identification of potential key regulatory factors in smoking-induced lung cancer[J]. BMC Med Genomics, 2017,10(1): 40.[39] DONG H, QIANG Z, CHAI D, et al. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1[J]. Aging (Albany NY), 2020,12(13): 12943-12959.[40] SUNDAR I K, YIN Q, BAIER B S, et al. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD[J]. Clin Epigenetics, 2017,9: 38.[41] AMELIO I, CUTRUZZOLA F, ANTONOV A, et al. Serine and glycine metabolism in cancer[J]. Trends Biochem Sci, 2014,39(4): 191-198.[42] YANG M, VOUSDEN K H. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer, 2016,16(10): 650-662.[43] BAI J, WANG H, YANG S, et al. Dust fall PM(2.5)-induced lung inflammation in rats is associated with hypermethylation of the IFN-gamma gene promoter via the PI3K-Akt-DNMT3b pathway[J]. Environ Toxicol Pharmacol, 2022,95: 103942.[44] RECZYNSKA K, THARKAR P, KIM S Y, et al. Animal models of smoke inhalation injury and related acute and chronic lung diseases[J]. Adv Drug Deliv Rev, 2018,123: 107-134.[45] ENKHBAATAR P, PRUITT B J, SUMAN O, et al. Pathophysiology, research challenges, and clinical management of smoke inhalation injury[J]. Lancet, 2016,388(10052): 1437-1446.[46] MORTON N M, BELTRAM J, CARTER R N, et al. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness[J]. Nat Med, 2016,22(7): 771-779.[47] PERACCHI A, VEIGA-DA-CUNHA M, KUHARA T, et al. Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione[J]. Proc Natl Acad Sci U S A, 2017,114(16): E3233-E3242.[48] HUSSEY D J, NICOLA M, MOORE S, et al. The (4;11)(q21;p15) translocation fuses the NUP98 and RAP1GDS1 genes and is recurrent in T-cell acute lymphocytic leukemia[J]. Blood, 1999,94(6): 2072-2079.[49] KELLY M R, KOSTYRKO K, HAN K, et al. Combined Proteomic and Genetic Interaction Mapping Reveals New RAS Effector Pathways and Susceptibilities[J]. Cancer Discov, 2020,10(12): 1950-1967.[50] QIAN G, ADEYANJU O, ROY S, et al. DOCK2 Promotes Pleural Fibrosis by Modulating Mesothelial to Mesenchymal Transition[J]. Am J Respir Cell Mol Biol, 2022,66(2): 171-182.[51] XU X, SU Y, WU K, et al. DOCK2 contributes to endotoxemia-induced acute lung injury in mice by activating proinflammatory macrophages[J]. Biochem Pharmacol, 2021,184: 114399.[52] PARK J H, MANGAL D, TACKA K A, et al. Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells[J]. Proc Natl Acad Sci U S A, 2008,105(19): 6846-6851.[53] ZEMANS R L, MATTHAY M A. Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury[J]. Crit Care, 2004,8(6): 469-477.[54] WANG Y, YUAN Y, WANG W, et al. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking[J]. Comput Biol Med, 2022,145: 105454.[55] MARIK P E, KHANGOORA V, RIVERA R, et al. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study[J]. Chest, 2017,151(6): 1229-1238.[56] ORAY M, ABU S K, EBRAHIMIADIB N, et al. Long-term side effects of glucocorticoids[J]. Expert Opin Drug Saf, 2016,15(4): 457-465.[57] ZHAO L, CHEN Z, CHENG J, et al. Remote preconditioning combined with nebulized budesonide alleviate lipopolysaccharide induced acute lung injury via regulating HO-1 and NF-kappaB in rats[J]. Pulm Pharmacol Ther, 2023,80: 102215.[58] SHI R, RADULOVICH N, NG C, et al. Organoid Cultures as Preclinical Models of Non-Small Cell Lung Cancer[J]. Clin Cancer Res, 2020,26(5): 1162-1174. [59] P. G. Miller and M. L. Shuler, 2016. Design and demonstration of a pumpless 14 compartment microphysiological system[J]. Biotechnology and Bioengineering. 11310. 2213-2227.[60] P. G. Miller, C.-Y. Chen, et al., 2020. Multiorgan microfluidic platform with breathable lung chamber for inhalation or intravenous drug screening and development[J]. Biotechnology and Bioengineering. 1172. 486-497. [61] M. T. Herrera, C. Toledo, et al., 2003. Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model[J]. Intensive Care Medicine. 298. 1345-1353. [62 ]D. Huh, B. D. Matthews, et al., 2010. Reconstituting organ-level lung functions on a chip[J]. Science (New York, N.Y.). 3285986. 1662-1668.