REFERENCES
  1. Dho-Moulin, M. and Fairbrother, J.M., 1999. Avian pathogenic Escherichia coli (APEC). Veterinary research , 30 (2-3), pp.299-316
  2. Kathayat D, Lokesh D, Ranjit S, Rajashekara G. Avian PathogenicEscherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies.Pathogens . 2021;10(4):467. Published 2021 Apr 12. doi:10.3390/pathogens10040467.
  3. Allan B, Wheler C, Köster W, et al. In Ovo Administration of Innate Immune Stimulants and Protection from Early Chick Mortalities due to Yolk Sac Infection. Avian Dis . 2018;62(3):316-321. doi:10.1637/11840-041218-Reg.1
  4. Kunert Filho, H. C., K. C. T. Brito, L. S. Cavalli, and B. G. Brito. ”Avian Pathogenic Escherichia coli (APEC)-an update on the control.”The battle against microbial pathogens: basic science, technological advances and educational programs, A Méndez-Vilas Ed 1 (2015): 598-618.
  5. Hu J, Afayibo DJA, Zhang B, et al. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front Microbiol . 2022;13:1049391. Published 2022 Dec 13. doi:10.3389/fmicb.2022.1049391
  6. Dziva F, Stevens MP. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol . 2008;37(4):355-366. doi:10.1080/03079450802216652.
  7. Christensen H, Bachmeier J, Bisgaard M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathol . 2021;50(5):370-381. doi:10.1080/03079457.2020.1845300.
  8. Osman KM, Kappell AD, Elhadidy M, et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci Rep . 2018;8(1):5859. Published 2018 Apr 11. doi:10.1038/s41598-018-23962-7
  9. Xia H, Tang Q, Song J, Ye J, Wu H, Zhang H. A yigP mutant strain is a small colony variant of E. coli and shows pleiotropic antibiotic resistance. Can J Microbiol . 2017;63(12):961-969. doi:10.1139/cjm-2017-0347
  10. Chansiripornchai, Niwat. ”Comparative efficacy of enrofloxacin and oxytetracycline by different administration methods in broilers after experimental infection with avian pathogenic Escherichia coli.”The Thai Journal of Veterinary Medicine 39, no. 3 (2009): 231-236.
  11. Kathayat D, Antony L, Deblais L, Helmy YA, Scaria J, Rajashekara G. Small Molecule Adjuvants Potentiate Colistin Activity and Attenuate Resistance Development in Escherichia coli by Affectingpmr AB System. Infect Drug Resist . 2020;13:2205-2222. Published 2020 Jul 10. doi:10.2147/IDR.S260766
  12. Fancher, Courtney A., Li Zhang, Aaron S. Kiess, Pratima A. Adhikari, Thu TN Dinh, and Anuraj T. Sukumaran. ”Avian pathogenic Escherichia coli and Clostridium perfringens: Challenges in no antibiotics ever broiler production and potential solutions.” Microorganisms 8, no. 10 (2020): 1533.
  13. Fancher CA, Thames HT, Colvin MG, et al. Prevalence and Molecular Characteristics of Avian Pathogenic Escherichia coli in ”No Antibiotics Ever” Broiler Farms. Microbiol Spectr . 2021;9(3):e0083421. doi:10.1128/Spectrum.00834-21
  14. Ghunaim H, Abu-Madi MA, Kariyawasam S. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations. Vet Microbiol . 2014;172(1-2):13-22. doi:10.1016/j.vetmic.2014.04.019
  15. Watts A, Wigley P. Avian Pathogenic Escherichia coli : An Overview of Infection Biology, Antimicrobial Resistance and Vaccination. Antibiotics (Basel) . 2024;13(9):809. Published 2024 Aug 26. doi:10.3390/antibiotics13090809
  16. Subedi M, Luitel H, Devkota B, et al. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal [published correction appears in BMC Vet Res. 2018 May 22;14(1):166. doi: 10.1186/s12917-018-1453-9]. BMC Vet Res . 2018;14(1):113. Published 2018 Mar 27. doi:10.1186/s12917-018-1442-z
  17. Awad AM, El-Shall NA, Khalil DS, et al. Incidence, Pathotyping, and Antibiotic Susceptibility of Avian Pathogenic Escherichia coli among Diseased Broiler Chicks. Pathogens . 2020;9(2):114. Published 2020 Feb 12. doi:10.3390/pathogens9020114
  18. Grakh K, Mittal D, Prakash A, Jindal N. Characterization and antimicrobial susceptibility of biofilm-producing Avian Pathogenic Escherichia coli from broiler chickens and their environment in India.Vet Res Commun . 2022;46(2):537-548. doi:10.1007/s11259-021-09881-5
  19. McPeake SJ, Smyth JA, Ball HJ. Characterisation of avian pathogenic Escherichia coli (APEC) associated with colisepticaemia compared to faecal isolates from healthy birds. Vet Microbiol . 2005;110(3-4):245-253. doi:10.1016/j.vetmic.2005.08.001
  20. Wang S, Peng Q, Jia HM, et al. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1.Poult Sci . 2017;96(8):2576-2586. doi:10.3382/ps/pex061
  21. Joseph J, Zhang L, Adhikari P, Evans JD, Ramachandran R. Avian Pathogenic Escherichia coli (APEC) in Broiler Breeders: An Overview. Pathogens . 2023;12(11):1280. Published 2023 Oct 26. doi:10.3390/pathogens12111280
  22. Kaikabo AA, AbdulKarim SM, Abas F. Evaluation of the efficacy of chitosan nanoparticles loaded ΦKAZ14 bacteriophage in the biological control of colibacillosis in chickens. Poult Sci . 2017;96(2):295-302. doi:10.3382/ps/pew255
  23. Dou X, Gong J, Han X, et al. Characterization of avian pathogenic Escherichia coli isolated in eastern China. Gene . 2016;576(1 Pt 2):244-248. doi:10.1016/j.gene.2015.10.012
  24. Kathayat D, Helmy YA, Deblais L, Rajashekara G. Novel small molecules affecting cell membrane as potential therapeutics for avian pathogenic Escherichia coli. Sci Rep . 2018;8(1):15329. Published 2018 Oct 17. doi:10.1038/s41598-018-33587-5
  25. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol . 2016;6:194. Published 2016 Dec 27. doi:10.3389/fcimb.2016.00194
  26. Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol . 2012;113(4):723-736. doi:10.1111/j.1365-2672.2012.05338.x
  27. Clifton LA, Skoda MW, Le Brun AP, et al. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir . 2015;31(1):404-412. doi:10.1021/la504407v
  28. Wang S, Zeng X, Yang Q, Qiao S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int J Mol Sci . 2016;17(5):603. Published 2016 May 3. doi:10.3390/ijms17050603
  29. Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: a review [published correction appears in Protein Expr Purif. 2012 Mar;82(1):252]. Protein Expr Purif . 2011;80(2):260-267. doi:10.1016/j.pep.2011.08.001
  30. Lofton H, Pränting M, Thulin E, Andersson DI. Mechanisms and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLoS One . 2013;8(7):e68875. Published 2013 Jul 23. doi:10.1371/journal.pone.0068875
  31. Antão EM, Glodde S, Li G, et al. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb Pathog . 2008;45(5-6):361-369. doi:10.1016/j.micpath.2008.08.005