1. He, X., Burgess, K. S., Gao, L. M., & Li, D. Z. (2019a). Distributional responses to climate change for alpine species ofCyananthus and Primula endemic to the Himalaya–Hengduan Mountains. Plant Diversity, 41(1), 26–32. https://doi.org/10.1016/j.pld.2019.01.004
  2. He, X., Burgess, K. S., Yang, X., Ahrends, A., Gao, L., & Li, D. (2019b). Upward elevation and northwest range shifts for alpineMeconopsis species in the Himalaya–Hengduan Mountains region.Ecology and Evolution, 9(7), 4055–4064. https://doi.org/10.1002/ece3.5034
  3. Huang, E., Chen, Y., Fang, M., Zheng, Y., & Yu, S. (2021). Environmental drivers of plant distributions at global and regional scales. Global Ecology and Biogeography, 30(3), 697–709. https://doi.org/10.1111/geb.13251
  4. Gaur, U. N., Raturi, G. P., & Bhatt, A. B. (2003). Quantitative Response of Vegetation in Glacial Moraine of Central Himalaya. The Environmentalist, 23(3), 237–247. https://doi.org/10.1023/B:ENVR.0000017378.55926.a7
  5. Gómez, J. M., González-Megías, A., Lorite, J., Abdelaziz, M., & Perfectti, F. (2015). The silent extinction: Climate change and the potential hybridization–mediated extinction of endemic high–mountain plants. Biodiversity and Conservation, 24(8), 1843–1857. https://doi.org/10.1007/s10531-015-0909-5
  6. Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M. R., Kazakis, G., Krajči, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., … Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change,2(2), 111–115. https://doi.org/10.1038/nclimate1329
  7. Intergovernmental Panel On Climate Change (Ipcc). (2023).Climate Change 2021-The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896
  8. Jonas, T., Rixen, C., Sturm, M., & Stoeckli, V. (2008). How alpine plant growth is linked to snow cover and climate variability.Journal of Geophysical Research: Biogeosciences,113(G3), 2007JG000680. https://doi.org/10.1029/2007JG000680
  9. Kelly, A. E., & Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33), 11823–11826. https://doi.org/10.1073/pnas.0802891105
  10. Law, W., & Salick, J. (2005). Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae).Proceedings of the National Academy of Sciences,102(29), 10218–10220. https://doi.org/10.1073/pnas.0502931102
  11. Li, Q., Sun, H., Boufford, D. E., Bartholomew, B., Fritsch, P. W., Chen, J., Deng, T., & Ree, R. H. (2021). Grade of Membership models reveal geographical and environmental correlates of floristic structure in a temperate biodiversity hotspot. New Phytologist,232(3), 1424–1435. https://doi.org/10.1111/nph.17443
  12. Liang, Q., Xu, X., Mao, K., Wang, M., Wang, K., Xi, Z., & Liu, J. (2018). Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains.Journal of Biogeography, 45(6), 1334–1344. https://doi.org/10.1111/jbi.13229
  13. Liu, J., Milne, R. I., Zhu, G.F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Boufford, D. E., Luo, Y. H., Provan, J., Yi, T. S., Cai, J., Wang, H., Gao, L. M., & Li, D. Z. (2022). Name and scale matter: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, 215, 103893. https://doi.org/10.1016/j.gloplacha.2022.103893
  14. Liu, D. T., Chen, J. Y., & Sun, W. B. (2023). Distributional responses to climate change of two maple species in southern China.Ecology and Evolution, 13(9), e10490. https://doi.org/10.1002/ece3.10490
  15. Liu, W., Xie, C., Zhao, L., Li, R., Liu, G., Wang, W., Liu, H., Wu, T., Yang, G., Zhang, Y., & Zhao, S. (2021). Rapid expansion of lakes in the endorheic basin on the Qinghai-Tibet Plateau since 2000 and its potential drivers. CATENA, 197, 104942. https://doi.org/10.1016/j.catena.2020.104942
  16. Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052–1055. https://doi.org/10.1038/nature08649
  17. Luo, D., Xu, B., Li, Z. M., & Sun, H. (2017). The ‘Ward Line-Mekong-Salween Divide’ is an important floristic boundary between the eastern Himalaya and Hengduan Mountains: Evidence from the phylogeographical structure of subnival herbs Marmoritis complanatum (Lamiaceae). Botanical Journal of the Linnean Society, 185(4), 482–496. https://doi.org/10.1093/botlinnean/box067
  18. Miladin, J. R., Steven, J. C., & Collar, D. C. (2022). A Comparative Approach to Understanding Floral Adaptation to Climate and Pollinators During Diversification in European and MediterraneanSilene. Integrative And Comparative Biology,62(3), 496–508. https://doi.org/10.1093/icb/icac118
  19. Morgan, J. W., & Venn, S. E. (2017). Alpine plant species have limited capacity for long-distance seed dispersal. Plant Ecology, 218(7), 813–819. https://doi.org/10.1007/s11258-017-0731-0
  20. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501
  21. Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
  22. Niu, Y., Stevens, M., & Sun, H. (2021). Commercial Harvesting Has Driven the Evolution of Camouflage in an Alpine Plant.Current Biology, 31(2), 446–449.e4. https://doi.org/10.1016/j.cub.2020.10.078
  23. Nogués–Bravo, D., Araújo, M. B., Errea, M. P., & Martínez–Rica, J. P. (2007). Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 17(3-4), 420–428. https://doi.org/10.1016/j.gloenvcha.2006.11.007
  24. Noroozi, J., Talebi, A., Doostmohammadi, M., Rumpf, S. B., Linder, H. P., & Schneeweiss, G. M. (2018). Hotspots within a global biodiversity hotspot-Areas of endemism are associated with high mountain ranges. Scientific Reports, 8(1), 10345. https://doi.org/10.1038/s41598-018-28504-9
  25. Pateiro-López, B., & Rodríguez-Casal, A. (2010). Generalizing the Convex Hull of a Sample: The R Package alphahull. Journal of Statistical Software, 34(5), 1–28. https://doi.org/10.18637/jss.v034.i05
  26. Peng, D. L., Niu, Y., Song, B., Chen, J. G., Li, Z. M., Yang, Y., & Sun, H. (2015). Woolly and overlapping leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb. Journal of Plant Ecology, 8(2), 159–165. https://doi.org/10.1093/jpe/rtv014
  27. Peng, D., Sun, L., Pritchard, H. W., Yang, J., Sun, H., & Li, Z. (2019). Species distribution modelling and seed germination of four threatened snow lotus (Saussurea), and their implication for conservation. Global Ecology and Conservation, 17, e00565. https://doi.org/10.1016/j.gecco.2019.e00565
  28. Peterson, A. T., & Vieglais, D. A. (2001). Predicting Species Invasions Using Ecological Niche Modeling: New Approaches from Bioinformatics Attack a Pressing Problem. BioScience,51(5), 363. https://doi.org/10.1641/0006-3568(2001)051\%5b0363:PSIUEN\%5d2.0.CO;2
  29. Petit, R. J., Hu, F. S., & Dick, C. W. (2008). Forests of the Past: A Window to Future Changes. Science, 320(5882), 1450–1452. https://doi.org/10.1126/science.1155457
  30. Pu, J. Y., Guo, W. W., Zhang, H. T., & Wang, W. T. (2024). Shifting distribution patterns of an endemic conifer species in the Himalayan region under climate change: Past, present, and future.Global Ecology and Conservation, 55, e03250. https://doi.org/10.1016/j.gecco.2024.e03250
  31. Rana, S. K., Rana, H. K., Stöcklin, J., Ranjitkar, S., Sun, H., & Song, B. (2022). Global warming pushes the distribution range of the two alpine ‘glasshouse’ Rheum species north-and upwards in the Eastern Himalayas and the Hengduan Mountains. Frontiers in Plant Science, 13, 925296. https://doi.org/10.3389/fpls.2022.925296
  32. Seddon, A. W. R., Macias–Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593), 229–232. https://doi.org/10.1038/nature16986
  33. Schneider Von Deimling, T., Ganopolski, A., Held, H., & Rahmstorf, S. (2006). How cold was the Last Glacial Maximum?Geophysical Research Letters, 33(14), 2006GL026484. https://doi.org/10.1029/2006GL026484
  34. Shackleton, S., Baggenstos, D., Menking, J. A., Dyonisius, M. N., Bereiter, B., Bauska, T. K., Rhodes, R. H., Brook, E. J., Petrenko, V. V., McConnell, J. R., Kellerhals, T., Häberli, M., Schmitt, J., Fischer, H., & Severinghaus, J. P. (2020). Global ocean heat content in the Last Interglacial. Nature Geoscience,13(1), 77–81. https://doi.org/10.1038/s41561-019-0498-0
  35. Song, B., Zhang, Z. Q., Stöcklin, J., Yang, Y., Niu, Y., Chen, J. G., & Sun, H. (2013). Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas. Oecologia ,172 (2), 359–370. https://doi.org/10.1007/s00442-012-2518-2
  36. Song, B., Stöcklin, J., Peng, D., Gao, Y., & Sun, H. (2015). The bracts of the alpine ‘glasshouse’ plant R heum alexandrae (Polygonaceae) enhance reproductive fitness of its pollinating seed-consuming mutualist: Rheum Bracts Enhance Pollinator Fitness. Botanical Journal of the Linnean Society,179(2), 349–359. https://doi.org/10.1111/boj.12312
  37. Steinbauer, M. J., Grytnes, J. A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjorkman, A. D., Breiner, F. T., Burg, S., Czortek, P., Dawes, M. A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V. A., … Wipf, S. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature,556(7700), 231–234. https://doi.org/10.1038/s41586-018-0005-6
  38. Sun, H., Niu, Y., Chen, Y., Song, B., Liu, C., Peng, D., Chen, J., & Yang, Y. (2014). Survival and reproduction of plant species in the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 52(3), 378–396. https://doi.org/10.1111/jse.12092
  39. Taberlet, P., Fumagalli, L., Wust‐saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x
  40. Telwala, Y., Brook, B. W., Manish, K., & Pandit, M. K. (2013). Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre. PLoS ONE, 8(2), e57103. https://doi.org/10.1371/journal.pone.0057103
  41. Thuiller, W., Georges, D., Gueguen, M., Engler, R., Breiner, F., Lafourcade, B., Patin, R., & Blancheteau, H. (2024). biomod2: Ensemble Platform for Species Distribution Modeling. R package version 4.2-6-2, https://biomodhub.github.io/biomod2/.
  42. Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD-a platform for ensemble forecasting of species distributions. Ecography, 32, 369–373. https://doi.org/10.1111/j.1600–0587.2008.05742.x.
  43. Tian, L., Fu, W., Tao, Y., Li, M., & Wang, L. (2022). Dynamics of the alpine timberline and its response to climate change in the Hengduan mountains over the period 1985-2015. Ecological Indicators, 135, 108589. https://doi.org/10.1016/j.ecolind.2022.108589
  44. Tomiolo, S., & Ward, D. (2018). Species migrations and range shifts: A synthesis of causes and consequences. Perspectives in Plant Ecology, Evolution and Systematics, 33, 62–77. https://doi.org/10.1016/j.ppees.2018.06.001
  45. Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571–573. https://doi.org/10.1126/science.aaa4984
  46. VanDerWal, J., Shoo, L. P., Graham, C. H., & Williams, S. E. (2009). Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?Ecological Modelling, 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010
  47. Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications,7(1), 12558. https://doi.org/10.1038/ncomms12558
  48. Wang, H., Liu, H., Cao, G., Ma, Z., Li, Y., Zhang, F., Zhao, X., Zhao, X., Jiang, L., Sanders, N. J., Classen, A. T., & He, J. (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 23(4), 701–710. https://doi.org/10.1111/ele.13474
  49. Xing, Y., & Ree, R. H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot.Proceedings of the National Academy of Sciences,114(17). https://doi.org/10.1073/pnas.1616063114
  50. Xu, W. B., Svenning, J. C., Chen, G. K., Zhang, M. G., Huang, J. H., Chen, B., Ordonez, A., & Ma, K. P. (2019). Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proceedings of the National Academy of Sciences, 116(52), 26674–26681. https://doi.org/10.1073/pnas.1911851116
  51. You, J., Qin, X., Ranjitkar, S., Lougheed, S. C., Wang, M., Zhou, W., Ouyang, D., Zhou, Y., Xu, J., Zhang, W., Wang, Y., Yang, J., & Song, Z. (2018). Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Scientific Reports, 8(1), 5879. https://doi.org/10.1038/s41598-018-24360-9
  52. Yu, F., Groen, T. A., Wang, T., Skidmore, A. K., Huang, J., & Ma, K. (2017a). Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants.International Journal of Geographical Information Science,31(1), 190–212. https://doi.org/10.1080/13658816.2016.1195502
  53. Yu, H., Miao, S., Xie, G., Guo, X., Chen, Z., & Favre, A. (2020). Contrasting Floristic Diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China.Frontiers in Ecology and Evolution, 8, 136. https://doi.org/10.3389/fevo.2020.00136
  54. Yuke, Z. (2019). Characterizing the Spatio-Temporal Dynamics and Variability in Climate Extremes Over the Tibetan Plateau during 1960–2012. Journal of Resources and Ecology, 10(4), 397. https://doi.org/10.5814/j.issn.1674-764x.2019.04.007