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Abstract (150 words)

Species with shared geographic history may co-evolve, with interactions leading to niche
differentiation and improved resource capture. Thus, plant communities assembled from
sympatric sources (shared geographic origins) are predicted to be more productive and invasion
resistant than those from allopatric sources (different origins), even with identical species
composition. We compared performance among communities of four species from 15 locations,
assembled from allopatric or sympatric sources. Unexpectedly, allopatric-sourced communities
had 29-35% more inflorescences, 19% higher survival, 19% longer growing season, 26-53%
greater size, and 108% lower invader biomass than sympatric-sources. Sympatric populations
showed trait convergence consistent with strong environmental selection, with trait variation
higher in allopatric communities. Variation was associated with higher productivity and invasion
resistance, suggesting an advantage of allopatric sources for community reassembly when
environmental filters are strong. These findings challenge assumptions about the advantages of
shared origins and have implications for understanding competition, community assembly, and

ecosystem restoration.
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Introduction

Plants share demands for common resources such as water, nutrients, and light (Gause
1934; Silvertown 2004), but can reduce competition by evolving strategies that reduce direct
overlap in resource use such as offset phenology or variation in rooting depths or leaf
morphology (Aarssen 1983; Bakker et al. 2021; Godoy et al. 2020; Hector et al. 2010;
Kulmatiski et al. 2020). This niche differentiation can result in reduced negative interactions and
even facilitation between plant neighbors, where interacting plants not only experience reduced
direct competition but may also promote each other’s persistence (e.g., nurse plants, hydraulic
lift; Camarretta et al. 2020; Grady et al. 2017; van Moorsel et al. 2018). The results of such plant
interactions affect individual fitness and population trajectories but can also have cascading
effects on community functions such as productivity and invasion resistance (van Moorsel et al.
2019; Whitham et al., 2020). Indeed, there is a breadth of literature demonstrating that
community function is influenced by species-level diversity (Isbell et al. 2015; Mahaut et al.
2020; Tilman et al. 2014).

In addition to the important effects of diversity at the species level, population-level
diversity, or ecotypic variation, can also affect plant interactions and thus communities. The
existence of intraspecific trait variation has long been recognized (Siefert et al. 2015) and is often
correlated with environment and interpreted as evidence of local adaptation (Baughman et al.
2019; Leimu & Fischer 2008). Given substantial phenotypic variation among populations, the
same niche partitioning mechanisms that lead to diversity-function relationships at the species
level could also be associated with intraspecific differences among populations. Indeed,
modeling and manipulative studies have found that growing with neighbors that share site-level

origins (hereafter referred to as sympatric populations) can increase community functions such as
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productivity and invasion tolerance (Aubree et al. 2020; Chen et al. 2022; Dietrich et al. 2024;
Grady et al. 2017; van Moorsel et al. 2018), though other studies have found species-specific
effects, but no consistent community level responses (e.g., Agneray et al. 2023a; Lopez-Angulo
et al. 2023).

Whether at the species or population level, differentiated traits that arise from a shared
interaction history may lead to desirable community properties (Germain et al. 2016; van
Moorsel et al. 2021; Westerband et al. 2021a; Zuppinger-Dingley et al. 2014). For example, if
strong biotic interactions result in niche differentiation and complementarity, we might expect
sympatric communities to have the greatest trait diversity and thus show greater productivity and
less susceptibility to invasion due to more complete use of resources (Figure 1, high resources;
Funk et al. 2008; Moore et al. 2001; van Moorsel et al. 2021). Alternately, strong environmental
filters in low resource or otherwise challenging environments could result in greater trait
similarity, i.e., convergence, among species in sympatric communities, with multiple species
evolving similar characteristics in response to selection (Figure 1, low resources; Bruelheide et
al. 2018; Drenovsky et al. 2012; Westerband et al. 2021b), and thus allopatric mixtures could
display more trait variability due to their divergent environmental backgrounds. If trait variation
is important for community-level functions such as invasion resistance, the relative ability of
sympatric or allopatric communities to demonstrate desirable community functions may not be
constant across all levels of resource availability. Note that we use the phrases “sympatric
communities” and “allopatric communities” throughout to refer to suites of species
experimentally assembled from either the same source location or different source locations.

While we are beginning to understand the importance of plant-plant interactions in

natural and experimental communities (Genung et al. 2012; Grady et al. 2017; van Moorsel et al.
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2018; Zaiats et al. 2021), these interactions are often overlooked when establishing new
communities for ecological restoration, a practice essential for recovering biodiversity loss and
long considered the “acid test” of ecological knowledge (Bradshaw 1987). There is reason to
question if our knowledge of community function is passing this test, as in many cases, restored
communities fall short of practitioner goals (Atkinson et al. 2022; Holl et al. 2022; Shackelford
et al. 2021). Due to myriad practical constraints, restoration projects may include a limited
number of target species with seed sourced from disparate sites (Erickson & Halford 2020; Holl
et al. 2022), resulting in low diversity allopatric communities, i.e., a restoration mix composed of
a few dominant species established from populations with no co-occurrence history. While some
restoration techniques, such as hay transfer in grasslands, include transferring propagules from a
single community into restoration sites en masse (Wagner et al. 2021), it is not always possible
to employ community-based approaches to seed sourcing, due to a lack of intact sites and the
species-specific nature of seed collection and production (e.g., NASEM 2023). Observing the
disconnect between restoration practice and the growing evidence that locally adapted plant-
plant interactions can affect community outcomes such as productivity and response to invasion
(Aubree et al. 2020; Grady et al. 2017; van Moorsel et al. 2018), we investigated whether
preserving the shared origin of seed mixes by collecting seeds from multiple species from one
location could improve restoration outcomes, based on the potential for a co-evolutionary history
to increase community function.

Here we asked how community function is affected by population origin, creating 12
different communities from populations of three common native grasses and a native shrub. We
worked in the semi-arid, western region of the Great Basin Desert, which has experienced

extensive conversion to annual invasive communities and undergoes extensive ecological
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restoration (Bradley et al. 2018). These communities were composed of the same plant species,
but seeds were sourced from populations with a variety of origins (sympatric or allopatric), trait
composition, and source environment variation (Agneray et al. 2023b). We asked four specific
questions: 1) how do community-level responses (aboveground productivity, facilitation,
inflorescence production, and invasive suppression) differ among community mixtures? 2) Do
communities with either allopatric or sympatric origins differ in trait variation? 3) Did any a
priori measurements (source environment or seedling traits) predict community-level
performance? and 4) What plant characteristics are most strongly associated with invasion
resistance?

We began this experiment expecting that sympatric communities would demonstrate
more desirable community-level responses (greater productivity, facilitation, reproduction, and
invasive suppression), due to the potential for coevolved communities to have greater niche
differentiation and efficiency in resource use (Aubree et al. 2020; Silvertown 2004). However, in
a previous study with cold desert plants, we were surprised to find that when origin affected
community outcomes, it was an allopatric community that had the highest biomass and invasion
suppression (Agneray et al. 2023a). Hence, we approached this experiment with some
uncertainty and were curious if a broader assembly of allopatric communities sourced from a
greater number of locations would demonstrate this unexpected phenomenon, or if predictions

about desirable properties in sympatric communities would hold true.

Material and Methods
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Species, site selection and seed collection

We chose native species that co-occur in the Great Basin Desert and are used in restoration: three
perennial grasses (Elymus spp. L., Eriocoma thurberiana (Piper) Romasch, Poa secunda J.
Presl), and one shrub (4rtemisia tridentata Nutt.). Since Elymus elymoides (Raf.) Swezey and E.
multisetus (J.G. Sm.) Burtt Davy co-occur and hybridize in the western Great Basin (Barkworth
et al. 2007), our sampling locations included this complexity. For simplicity, we refer to each of
the four taxa as “species,” though eight Elymus spp. collections contain a combination of the two
species and refer to each collection as a “population.” We collected seeds from 15 sites (Figure
2) where all species co-occur in lower elevation sagebrush steppe communities, with average
annual precipitation between 232 and 388 mm (Table S1; Supplemental Methods; PRISM

Climate Group 2004).

Experimental mesocosms

We established an outdoor planting site with 151 mesocosms filled with local topsoil
(Table S2; 200L, 0.9m depth) at the University of Nevada, Reno (39.537924, -119.804757).
Mesocosm locations were randomized and planted with one of 12 possible mixtures, 6 sympatric
and 6 allopatric, with 11 replicates each, with 19 mesocosms serving as unplanted control
treatments for the invasion experiment

In fall 2019, seeds were planted inside the greenhouse and seedlings were transplanted
into outdoor mesocosms starting in spring 2020. Planting density approximated a typical
sagebrush shrubland community with one individual of 4. tridentata, Elymus spp., and E.
thurberiana, and two individuals of the smaller-statured P. secunda. We monitored survival

weekly from March 2020 to November 2020 (growing season one) and November 2020 through
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August 2021 (growing season two) and monitored green days (presence or absence of
photosynthetic tissue) in growing season one. We initially watered to maximum water holding
capacity and thereafter, lightly watered once weekly if there had been no precipitation. In
November 2020 and March 2021, perished individuals were replaced to ensure complete
community establishment. At the end of August 2020 and 2021, every plant was assessed for
height, crown size (length x width), senescence (an index between 0-3 from least to most live
green tissue), and number of inflorescences.

In December 2020, each container was invaded with Bromus tectorum L. (cheatgrass), a
competitive invasive annual grass in the Great Basin (Bradley et al. 2018; Monaco et al. 2017).
Mesocosms were planted with 130 B. tectorum seeds, based on natural seed production assessed
in a moderately invaded field site. All B. fectorum individuals were harvested at the end of the

second growing season, August 2021, oven-dried, and weighed.

Community responses

We use the word “community” to refer to one of 12 possible mixtures for the individual
mesocosms (Table S2) and community response variables are the aggregated responses across
the five plants in each mesocosm. Productivity was measured as aboveground native plant
volume at the end of the first and second growing seasons. Reproductive output was represented
by the total number of inflorescences produced by all plants in the mesocosm. The total mass of
B. tectorum per mesocosm was used as a metric of invasion resistance, with lower values
indicating greater suppression. We also quantified potential facilitation, measured by the total
mortality experienced by any plant in a mesocosm. We aggregated the number of days plants

were photosynthetically active (i.e., green days) in their first growing season prior to invasion as
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a measure for the community’s potential to capture resources, which is particularly important in

semi-arid systems with pulsed resource availability (Chesson et al. 2004).

Environmental data

Climate normals, soil, and site characteristics for each collection site were gathered from
the PRISM Data Explorer, SSURGO Web Soil Survey, and USGS Digital Elevation Models
(PRISM Climate Group 2004; Soil Survey Staff NRCS-USDA 2021; USGS 2019; Table S1) and
used to calculate a suite of functionally relevant climate variables. We retained 11 variables with

relatively low (|| < 0.6) correlation for analysis (Table S1).

Quantifying seed and seedling traits

We focused on comparing seed and seedling traits among populations, as these
characteristics are important for plant recruitment in the Great Basin Desert (James et al. 2011;
Larson et al. 2023; Leger et al. 2019). We weighed seeds and grew seedlings of each species and
population in a controlled greenhouse environment and measured root, shoot, and phenological
traits, employing methods previously used to describe perennial grass seedlings, and reduced
these measurements to a selected set of traits (Agneray et al. 2023b; Leger et al. 2021;

Supplemental Methods; Tables S3 and S4).

Statistical analysis

Q1: How did community-level responses differ among community mixtures?

We evaluated whether origin (allopatric or sympatric) or individual communities

influenced each response using R version 4.4.2 (R Core Team 2024). Model factors included
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origin and community (nested within origin), with separate linear regression models built for
each response variable, transformed as needed to better fit a Gaussian distribution (Table S5).
Community was included as a fixed term, rather than random, because some communities were
deliberately selected based on their performance in previous experiments (Supplemental
Methods). However, it is also the case that all combinations can be viewed as a subset of a much
larger pool of possible combinations, thus we present a complementary set of models
(Supplemental Methods) in which community was modeled as a random term; this approach
does not precisely reflect our original design but the more limited degrees of freedom for testing
the main effect in the mixed model provided a conservative and thus informative test of our main
hypothesis involving evolutionary history (allopatric vs sympatric origins).

When considering invasion suppression, mesocosms with B. tectorum growing alone
were not included in the models due to their extremely high production values, but information is

presented to illustrate how native communities impacted B. tectorum growth.

0Q2: Do communities with either allopatric or sympatric origins differ in trait variation?

Seed and seedling trait variation within each community mixture was analyzed using
general linear models to ask whether there were overall differences in variation between
allopatric or sympatric communities; trait values were measured from field-collected seeds and
greenhouse-grown seedlings. These models included origin type (either allopatric or sympatric)
with the variation in each seed or seedling trait (Table S3) as response variables, assuming a
Gaussian distribution of residuals. Variation in traits was assessed with the coefficient of
variation of an individual trait among the populations included in a mesocosm, using population-

level means (Table S3; Supplemental Methods).
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Q3: Did any a priori measurements predict community-level performance?

After finding significant differences among community mixtures and between origin
types for nearly every response variable, we asked whether seedling traits measured at the
population-level in the greenhouse or environmental characteristics of the original collection site
could predict a subset of community-level responses (productivity, number of green days,
inflorescence production, survival or B. tectorum biomass) using random forest analysis. We
performed the analysis using the randomForest package in R (Breiman et al. 2018), with 10,000
trees and all other parameters set to the package defaults. We considered the total trait values
(e.g., the sum of seedling root lengths included in a particular community, estimated from the
population averages described in an initial greenhouse experiment) and the variation in each trait
value (e.g., variation in total root length among species in a mesocosm, calculated from
greenhouse measurements) to determine whether traits or trait variation predicted community
responses. For environmental variables, we included the sum of values for each plant’s collection
sites for both sympatric and allopatric communities (e.g., sum of the mean annual precipitation
from represented sites for each plant).

Models were created separately for each community response including totals and
variation of trait values alongside total environmental values and the community type (either
sympatric or allopatric). We then reported the top ten variables ranked by importance, as
measured by the percent increase in Mean Squared Error (MSE), along with the percent of
variance explained by the full model. Additionally, we examined the partial dependence plots for
each of the top ten variables of each response to report the direction of the observed marginal

effects.
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Q4: What plant characteristics are best correlated with invasion resistance?

Focusing on invasion suppression, we sought to explain the marked differences in
performance among communities using structural equation modeling (SEM; Supplemental
Methods). Unlike question 3, which asked whether previously measured traits or environment of
origin predicted community outcomes, this analysis focused on the influence of plant
characteristics within individual mesocosms. Specifically, we evaluated whether the size,
survival, period of active photosynthesis, or reproductive output of plants within a mesocosm
had a measurable influence on invasion resistance. For each species, we selected a single
variable from within the mesocosm that was most strongly correlated with B. tectorum biomass,
selecting one variable from measurements taken prior to invasion in the first growing season and
one variable measured during invasion in the second growing season, and moved these forward
in the SEM. We included potential competitive relationships among native species in the second
growing season in the model, along with origin as a potential predictor of native plant

characteristics in the first growing season.

Results

Q1: How did community-level responses differ among community mixtures?

Origin types (allopatric or sympatric; Figure 2) and unique community mixtures (Figures
3 and S4) differed in nearly every community response (results were consistent across two
modeling approaches with community as a fixed or random effect; Tables 1 and S6). Differences
between allopatric and sympatric communities were all in unexpected directions. Allopatric

mixtures had 19% fewer deaths and in the first growing season were 53% larger, had 35% more
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inflorescences, and 19% more green days than sympatric communities overall. In the second
growing season, allopatric mixtures were 26% larger, made 29% more inflorescences, and
invasion resulted in 108% less B. tectorum biomass.

Most mesocosms planted with native plant mixtures suppressed B. tectorum, relative to
the controls growing B. tectorum alone. In mesocosms with native plants, B. tectorum biomass
ranged from 0.02-73.99g, with an average of 12.43g, which was much lower than B. fectorum
biomass in control mesocosms (mean: 71.40g, range: 55.75-83.67g). Two communities differed
from their treatment group (sympatric or allopatric) in invasion resistance: S2 had low B.
tectorum biomass, relative to other sympatric communities, and A5 had greater B. tectorum

biomass, relative to other allopatric communities (Figure 3).

Q2: Do communities with either allopatric or sympatric origins differ in trait variation?

We asked whether species from sympatric populations were more likely to show
divergent or convergent traits, relative to allopatric populations. Of the seven seed and seedling
traits considered, four differed strongly (average diameter, FRL, RMR, and SRL,; all p <0.05)
and one differed somewhat (days to emergence; p = 0.078) among allopatric and sympatric
communities (Table S7). Of the traits that differed, the sympatric mixtures had less variability in
all measured traits (i.e., trait convergence), though the magnitude of differences was small (mean
CV for allopatric vs. sympatric communities: average diameter, 0.26 vs. 0.24; days to

emergence, 0.37 vs. 0.34; FRL, 0.26 vs. 0.24; RMR, 0.4 vs. 0.22; SRL, 1.17 vs. 1.07; Figure S2).
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Q3: Did any a priori measurements predict community-level performance?

Prior population-level measurements somewhat predicted community-level performance

with all models explaining < 20.15% of the variance (Figure 4). Several community-level

performance responses were associated with population-level environmental variables, seedling
traits, or origin type (Figure 4). The four models with reasonable fits contained trait totals, trait
variation, and environmental variables, and trait totals were in the top ten important variables 10
times, trait variation 11 times, and environmental variables 19 times. Several variables emerged
as key predictors of performance across multiple responses. For example, mesocosms with plants
from sites with lower mean annual precipitation resulted in larger plants and longer
photosynthesis periods during the first growing season, more inflorescences and greater B.
tectorum suppression in the second growing season, among other environmental predictors
(Supplemental Results). Similarly, specific root length appeared in the top ten variables for each
reported response. Higher specific root length, which typically means longer, thinner roots,
resulted in more inflorescences and B. tectorum suppression along with higher volume and more
green days in the first growing season, among other important traits (Supplemental Results).
Finally, variation in seed and seedling traits was in the top variables for every response: greater
variability in root diameter was associated with higher first-season plant volume, longer growing
periods, and greater B. tectorum suppression, while higher variability in root mass ratio was
predictive of B. tectorum suppression and greater inflorescence numbers, while lower variability

in total root biomass was associated with greater B. fectorum suppression.
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Q4: What plant characteristics are best correlated with invasion resistance?

Structural equation modeling confirmed that within-mesocosm factors contributed to 5.
tectorum suppression (Figure 5), and our model showed good fit to the data (x> =26.9, p = 0.308;
lower test statistic and higher p value indicate better fit) and high explanatory power for B.
tectorum biomass (R? = 0.61). Notably, all species benefited from growing in allopatric mixes
during the first growing season, though the strength of the relationship varied. Specifically, in
allopatric mixes, A. tridentata was on average 67% larger, Elymus spp. made 35% more
inflorescences, E. thurberiana was 11% larger, and P. secunda had 26% more green days than
plants grown in sympatric mixes. All four species influenced the biomass of B. tfectorum to some
degree, but the largest suppressive effects were observed for A. tridentata and Elymus spp. with
size (season one, pre-invasion for A. tridentata, season two, post-invasion for Elymus spp.) and
propensity to produce inflorescences (post-invasion for A. tridentata, pre-invasion for Elymus
spp.) negatively associated with B. tectorum biomass. For these two influential species, the
indirect effect of allopatry mediated through A. tridentata was -0.66, while the indirect effect for
Elymus spp. was -0.38. In contrast to the strong competitive interactions between some native
species and B. tectorum, there was weaker evidence of competitive interactions among native
species in the second growing season, with A. tridentata having the strongest direct negative

effect (-0.26) on Elymus spp.

Discussion
Our understanding of how population origin influences plant interactions and community
function is still developing. Results reported here confirm that community properties can vary

dramatically depending on the component source populations, even in relatively simple



346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

communities derived from broadly similar environments. However, our findings are in strong
contrast with the expectation that a history of co-occurrence produces complementarity in
resource use, improved productivity, or reduced opportunity for species invasion (Aubree et al.
2020; Chen et al. 2022; Grady et al. 2017; van Moorsel et al. 2018). Instead, allopatric mixtures
consistently outperformed single-source collections in all metrics, demonstrating lower
mortality, greater aboveground size and flower production, and longer growing seasons, with a
particularly strong impact on invasion resistance. Allopatric communities exhibited larger
phenotypic variation than sympatric communities, consistent with trait convergence, rather than
divergence in interacting species, consistent with the hypothesis that convergence can occur
when abiotic conditions have strong effects on fitness (e.g., Westerband et al. 2021a). Further,
allopatry had overall positive effects on individual native plant size, which we observed in a
previous experiment (Agneray et al. 2023a), and here, the positive effects of allopatry on A.
tridentata were particularly impactful for reducing invader biomass. In addition to the effects of
co-occurrence history, we found that environment, traits, and trait variation were influential for
predicting community outcomes, with more positive community outcomes when plants were
sourced from drier environments, had higher specific root lengths, and greater variation in
multiple traits. By design, allopatric mixtures encompassed a greater range of environmental
variation represented in each mesocosm, which may have contributed to their superior
performance via the unintended effect of increased trait variance among plants from different
sites.

That our results were unexpected may stem from the fact that much of the foundational
diversity-community function literature is from experiments in more productive ecosystems,

with a heavy emphasis on temperate grasslands and forests (Balnavera et al. 2006; Cardinale et
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al. 2011; Duffy et al. 2017). Notably, reviews from drylands have focused on ecosystem
functions other than increased productivity from more diverse systems (Maestre et al. 2009). In
less productive sites, environmental factors may be stronger selective agents than competitive
plant interactions, particularly during early life stages (e.g., Malkinson & Tielborger 2010).
Indeed, we observed little evidence of direct competitive interactions among our native species.
Contrary to expectations that strongly outcompeting neighbors would lead to higher survival and
fitness, it is possible that plants in less productive systems have higher fitness when they avoid
competition, especially during early life stages (Espeland 2018; Atwater et al. 2021). This could
have the unexpected outcome of sympatric populations using fewer of the available resources,
rather than more, if the fitness of individual plants is increased by minimizing interactions in
early life history stages. Our results align with this hypothesis, suggesting that sympatric
populations may not fully utilize all available resources, which could help explain the
significantly higher biomass of the invasive species, Bromus tectorum, in these communities.
Conversely, the allopatric communities, with populations lacking a shared history, may not have
evolved fine-scaled niche partitioning to avoid direct contact and competition, and thus, may
have had the unexpected outcome of a more complete utilization of available resources. A useful
follow-up study could focus on resource capture across communities of varying origins to
provide further insights into these dynamics.

Despite extensive evidence demonstrating local adaptation of traits to climate and
presumably affecting performance in native habitats (Baughman et al. 2019; Hereford 2009;
Leimu & Fischer 2008), we found relatively weak associations between community outcomes
and either source climate or functional traits. One possible explanation is that our selection of

plant collections from ecologically similar plant communities truncated the degree of variation
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that one would typically see across a species’ occupied area, thereby reducing the predictive
power of either traits or environment relative to other studies (Baughman et al. 2019; Leimu &
Fischer 2008). Further, we measured traits at very early stages and asked if they could predict
outcomes for older plants, though traits are known to shift ontogenetically as plants develop
(Urza et al. 2019; Zaiats et al. 2021). Nevertheless, even among plants from relatively similar
source environments, we found seed and seedling traits and environmental factors that were
associated with several desirable community outcomes. Specifically, lower mean annual
precipitation and higher specific root length (SRL) among populations in a mesocosm were most
often linked to positive community outcomes (larger native plants, more inflorescences, longer
active growth periods, and less B. tectorum biomass). SRL quantifies the proportional investment
of plants towards root length as a proportion of the dry weight of the roots, thus higher SRL
indicates a greater investment in thinner, longer roots focused on underground resource capture,
but higher SRL also reduces a plant’s chance for uprooting and overturning (Freschet et al.
2021). Additionally, our findings align with previous research showing variability in root traits
(i.e., root mass, diameter, root mass ratio, and SRL), strongly promote soil resource partitioning
and species coexistence (Kulmatiski et al. 2020; Silvertown et al. 2015). The surprise here was
that, in order to create communities with variation in important belowground traits, we had to
assemble previously isolated populations. It is worth noting that our traits were derived from
very young plants (10-35 days old), and the fact they were at all predictive of outcomes multiple
years later underscores the importance of early life stages. It is possible that the small differences
in trait variability observed at the seedling stage were magnified in older plants. For future
studies, we recommend measuring phenotypic traits and trait variation of 1- and 2-year-old

plants, as this may provide even stronger predictive insight into final community outcomes.
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We found clear evidence of interactions between the invasive B. tectorum and our native
plants, with native species suppressing the invader (Colautti & Lau 2015; Leger & Goergen
2017; Oduor 2013). Regardless of origin and functional group, native plants suppressed 5.
tectorum biomass, relative to the controls, though the result was strongest in the allopatric
communities. While our expectation was that Elymus spp. would compete the most directly with
B. tectorum, we found evidence that A. tridentata was a very important component of B.
tectorum suppression, and all members of the native plant community had a negative impact on
B. tectorum to some degree, supporting the idea that species diversity confers greater resistance
to invasion (Funk et al. 2008; Peng et al. 2019). In the hopes that exceptions could prove the rule,
we examined the results for the two community mixtures that defied the overall pattern for their
origin type (S2, which was particularly suppressive, and A5, which was not). Anecdotally, S2
was the coldest sympatric site and A5 was the warmest overall allopatric site, but mean annual
temperature was not particularly explanatory for any of the community outcomes, so it is not
clear that this explains their aberrant behavior. Other differences that may have contributed to the
poor invasion suppression of A5 were that those communities had the smallest overall
aboveground volume in the first growing season (but not in the second) along with having the
largest seeds and the lowest SRL (thicker and fewer roots per gram), all factors that were
predictive of invasion suppression to some degree. We did not examine belowground biomass in
these mesocosms, due to the challenge of extracting whole plants, but future experiments using a
different design may be used to understand whether belowground factors are influencing
invasion resistance.

In conclusion, the sympatric or allopatric origin of plant neighbors affected many

elements of community performance, though these effects were more difficult to predict across
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unique mixtures than expected. While we found that community outcomes differed based on
their source environment and traits, the measured variables had limited explanatory power,
suggesting that other, unaccounted factors may be at work. From an applied perspective, our
results suggest that sourcing from sympatric communities for ecological restoration would not
yield benefits in this system. Instead, the trait diversity found in allopatric communities may
have clear benefits for invasion resistance. It is important to note that our allopatric populations
were selected from relatively similar environments, which is possible in the Great Basin Desert
where natural plant communities span relatively large areas. However, this approach might not
be replicable in other ecosystems that are more degraded or naturally occur over a smaller land
area, and assembling allopatric communities may be a poor approach in highly productive
environments, as suggested by the results of others (Aubree et al. 2020; Chen et al. 2022; Grady
et al. 2017; van Moorsel et al. 2018). Finally, we acknowledge our experiment was conducted
under highly controlled conditions different from a typical restoration scenario, and field results
may differ. Nonetheless, our results demonstrate it is possible to manipulate community function
simply by assembling mixtures of the same species from different source populations, with
compelling evidence that niche differentiation may evolve differently in less productive systems.
We recommend further mechanistic mesocosm studies and field trials that test our findings by
incorporating higher-than-average trait variation through sourcing seeds from different sites with
similar environmental conditions and including a broader range of species could further validate

our results.
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Tables

Table 1. Differences among origin types, either allopatric or sympatric, and communities nested
within origin types for the sum (total of all plants in each mesocosm) and CV (variation in each
response among plants in each mesocosm) for each response variable. Values reported are from
linear regression models, and include the degrees of freedom, a coefficient estimate for the effect
of allopatry compared to sympatry, F-test statistics, and the significance of differences; p values

<0.05 are in bold.
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Figures

Figure 1. Hypothesized mechanisms for community-level outcomes based on whether founding
plant communities are sourced from allopatric or sympatric collection locations, with
expectations varying based on resource availability. Belowground differentiation in root
morphology is used as an example trait, though any trait or combination of traits could apply.
Similarly, susceptibility to invasion is the community response, though other responses could be
included (productivity, growing duration, etc.). In high-resource environments, strong biotic
interactions lead to greater niche differentiation, enabling sympatric communities to capture
belowground resources more effectively and reduce resource availability for invasive species,
conferring an advantage during community re-assembly if sympatry is maintained. In contrast, in
low-resource environments, abiotic filters have a greater effect on plant fitness, leading to
convergence in adaptive traits among native species, since similar traits are required to access
limited resources. Thus, when establishing communities after disturbance in these low-resource
settings, allopatric communities have greater trait variation and potential for resource uptake,
reducing the available resources for invasive species. Over time, in undisturbed conditions, these
allopatric communities may undergo selection for trait convergence, but there is a potential

advantage of allopatry in the initial community assembly stage when abiotic filters dominate.
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Figure 2. (a) Fifteen sites (yellow circles) where seeds were collected for all four species used in
these experiments, and the location of mesocosms (green triangle). (b-e) Overall differences
among allopatric and sympatric communities in volume, survival, and invasion resistance. Native
plant size is represented by total plant volume (1 x w x h) in the (b) first and (c) second growing
season. Overall mortality (d) of native plants in each mesocosm is shown along with (e) B.
tectorum aboveground biomass from invaded mesocosms. Box plots indicate medians, first to

third quartiles, and outliers shown as black points.
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Figure 3. Differences among unique allopatric (A) and sympatric (S) communities ordered by
rank in volume, survival, and invasion resistance. Native plant size is represented by total plant
volume (1 x w x h) in the (a) first and (b) second growing season; note the change in y axis scale.
Overall mortality (c) of all native plants in each mesocosm is shown along with (d) B. tectorum
aboveground biomass from invaded mesocosms, (¢) the number of inflorescences in the second
growing season, and (f) the number of green days. Box plots indicate medians, first to third
quartiles, and outliers shown as black points; specific source populations included in each

community are in Table S2.
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729  Figure 4: Influence of seedling and environmental variables across both allopatric and sympatric
730  communities on (A) volume in the first growing season, (B) B. tectorum biomass, (C) number of
731 inflorescences in the second growing season, and (D) number of green days in the first growing
732  season. Variables shown are the top ten most important traits as measured by the percent increase
733 in MSE calculated using Random Forest with 10,000 trees, along with the total percent variance
734  explained.
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Figure 5. Path diagram illustrating coefficients estimated in structural equation model predicting
B. tectorum biomass from plant measurements within mesocosms. Plants include A. tridentata
(ARTR), Elymus spp. (ELYMU), E. thurberiana (ERTH), and P. secunda (POSE), with
measurements taken pre-invasion (the first growing season, S1) and post-invasion (the second
growing season, S2). A single characteristic was selected among measures of size (volume),
number of inflorescences (inflors.) or phenology (number of green days; green), and in-box
numbers show corresponding R? values. Negative effects are indicated by red lines, and positive
effects by black lines; width of lines is scaled to the magnitude of the coefficients, which are
shown alongside arrows. Scatterplots are semi-partial plots showing example relationships
between a native plant characteristic and B. fectorum biomass, with the y-axis adjusted for other
variables included in the SEM. The x-axis has no such adjustment. Photos correspond to the
scatterplot above. Photo credits: 4. tridentata, Shannon Swim; Elymus spp. and E. thurberiana,

Elizabeth Leger.
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