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1 | INTRODUCTION

In the era of digital economy, data centers have become a pow-
erful engine to support innovation and development of cloud
computing industry!. As a result, data centers will consume
volumes of electricity energy to keep cloud computers work-
ingf. Because the supported electricity is mainly generated by
carbon-emission plants burning coal, oil, and natural gas, data
centers are indirectly becoming carbon-emission plants. For in-
stance, in 2023, the total equivalent carbon emission of data
centers in China reaches 163 million tons?. Therefore, to make
use of the rich zero-carbon electricity generated by wind and
solar energy in western China, a national project called Chan-
neling Computing Resources from the East to the West is put
forward in China (called the CCREW project in this paper),
which will push zero-carbon data centers in China®. However,
the wind and solar electricity (referred as zero-carbon electric-
ity in this paper) depends on instable weather. Simultaneously,
computing tasks from users are inherently instable because it
is difficult to surely know who and when will use the com-
puters in data centers. Unfortunately, they both will cause the
availability of computing resources (e.g., CPUs) also fluctuate

Currently, the electricity to run cloud computers is usually generated from fossil fuels (e.g., petroleum,
natural gas), which will cause carbon pollution. Therefore, data centers, as places to accommodate cloud
computers, are now facing a serious problem of high carbon pollution. In this letter, an operational method
is proposed to achieve zero-carbon data centers by carefully matching delay tolerant tasks to computing re-
sources (e.g., CPU) when zero-carbon electricity (wind and solar energy) is available. We designed a unified
measurement called CPUXTime, by which the complex matching problem involving tasks, computing re-
sources, and zero-carbon electricity is simplified into a bin-packing scheduling. Simulations show that the

proposed bin-packing scheduling method can achieve high resource utilization without carbon pollution.

cloud computers, carbon pollution, delay tolerant task, zero-carbon electricity

irregularly over time. Therefore, to find a good match among
three instable parts (i.e., instable zero-carbon electricity, insta-
ble computing tasks, and instable computing resources) is com-
plex, and we formulate it as a multi-dimensional uncertainty
matching problem.

To deal with the instability of zero-carbon electricity, Khos-
ravi et al. proposed a composite VM (Virtual Machine) place-
ment approach by scheduling hybrid electricity to achieve
low-carbonf. Abbas Kiani et al. proposed a workload dis-
tribution algorithm that maximizes the use of zero-carbon
electricity to achieve low-carbon work through load distribu-
tionf. R. Tripathi et al. designed an electricity usage model
to integrate zero-carbon electricity into data centers to re-
duce carbon footprint. To solve the instability of computing
tasks and computing resources, many works focused on har-
nessing algorithms, particularly machine learning, to achieve
efficient scheduling by aligning tasks with available comput-
ing resources . These complex algorithms depend heavily on
parameter adjustment by trial and error, and historical data for
training, which will easily fall into local optima and unreliable
random solution.

Fortunately, we find that the computing tasks for the
CCREW project are mainly delay tolerant, such as large model
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training, which can tolerate the computing latency in minutes,
hours, even in days!Y. Consequently, the delay tolerant tasks
can be easily matched to available computing resources during
the time when zero-carbon electricity is available. Reference !!
demonstrates the feasibility and efficacy of this method. Based
on the above ideas, a measurement spelled as CPU x Time is
proposed to quantify the volume of a computing task and re-
sources by multiplying the number of CPUs used and the time
these CPUs worked. With the CPU x Time measurement, the
tasks and the available computing resources will be modeled
as items and rectangle bins respectively. Because the volume
of each bin is restricted by the availability of zero-carbon elec-
tricity, the task can be allocated with available resources within
the available time window of zero-carbon electricity.

The remainder of this letter is organized as follows: The pro-
posed bin-packing scheduling method is presented in Section
II, and its performance is simulated in Section III. Finally, in
Section IV, we draw conclusions.

2 | THE BIN-PACKING SCHEDULING
METHOD

This section introduces the CPU X Time measurement, how to
use the bin-packing scheduling method to solve the proposed
multi-dimensional uncertainty matching problem. Based on
the matching problem and bin-packing scheduling method, a
mathematical model is established, which will be solved by
Gurobi.

2.1 | CPU x Time measurement

The energy consumed by computers in data centers mainly
comes from CPUs and memories'? where the part for CPUs
is usually more than that for memory, and the cost of mem-
ories is lower than that of CPUs. Therefore, in this work, we
assume that memories are always available, and we do not
consider memory availability but its energy consumption. The
volumes of computing resources and computing tasks both can
be unified by the measurement CPU X Time. For one piece of
computing resource, its volume can be measured by the num-
ber of available CPUs and their available time. For example,
when a data center has 5 available CPUs from 0:00 to 9:00 as
illustrated in Figure , we model these computing resources as
a rectangle bin with volume as a size of 5 X 9. Similarly, for a
computing task, its volume can be predicted based on its inher-
ent attribute!? and measured by the number of CPUs assigned
and their working time. As an example, illustrated in Fig. 2,
where a task No.4 is assigned 3 CPUs and each will work 4

Zero-carbon generator
power (KW)

CPU number

Time (hour)

FIGURE 1 Schematic diagram of the bin-packing
scheduling solutions for the multi-dimensional matching

hours, then we quantify this task as a rectangle item with vol-
ume of 3 X 4, where the CPU side of the rectangle is 3 and the
Time side is 4.

The electricity to fuel computers in data centers, can also
be measured by CPU X Time X P, where P denotes the work-
ing power for a CPU quantified in watt. When all CPUs are
working at the same power P, the electricity consumed by these
CPUs can be measured by CPU x Time. Consequently, the
size of the aforementioned rectangular can also be used to
quantify the electricity used and the zero-carbon power supply.
And in our method, the data center should forecast the zero-
carbon electricity generation over an upcoming period based
on weather predictions (i.e., wind force and solar radiation)!4.
For this way, if the zero-carbon electricity supply from 3:00
p-m. to 4:00 p.m. can afford up to four computers with the
same power P, the maximum allowable size of total items to
be placed in bin within this time span would be 4 X 1.

2.2 | Bin-packing scheduling process

The process of solving the matching problem through the Bin-
packing scheduling method is divided into six stages: shown
in Figure P,

Step 1 Collect data of tasks, computing resources, and zero-
carbon electricity from users, data center operators, and
grid operators respectively.

Step 2 Translate the data into items or bin using the united
CPU X Time measurement.

Step 3 Set CPU side as the vertical axis and set the time side
as the horizontal axis, by which, the items and bin are
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FIGURE 2 The process of bin-packing scheduling method.

mapped as a planar coordinate system and divided into
CPU X Time units.

Step 4 Match constraints to bin-packing
straints.(Reference section 2.3 for detail).

Step 5 Use Gurobi to place items in bin and obtain their posi-
tion information in coordinate system meeting constrains.

Step 6 Translate the bin-packing scheduling result back to the
multi-dimensional matching solution. Taking Figure m as
an example, five CPUs labeled as A to E and their working
time in hours are resources to be matched to items indexed
as 01 to 06. Item No. 3 in Figure H occupies four Unit Time
and one Unit CPU, with its bottom-left coordinate point
is (5,3), which means Task No. 3 is processed by CPU D
from 5:00 (to 9:00).

con-
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Formulation of Bin-packing scheduling

We formulate the bin-packing problem solved by Gurobi as
a mathematical model. Table lists the symbols used in the
model.

We set maximize the quility of completing tasks in the Bin-
packing scheduling problem as the objective function. In
CCREVW, some tasks are strong delay-tolerant with long dead-
line, while others are weak delay-tolerant needed to be sched-
uled quickly. We set Pr; to reflect the priority of tasks. This
means that the objective function needs to maximize the sum
of the Pr; values for packing items. In the model, it is reflected

TABLE 1 The symbols used in the model.

Symbol  Definition

T; number task i

P; number time slice j

Cr number CPU k

NP total time slice of scheduling cycle
NC the total amount of CPU

NI the total amount of task

CC; required cpus for task i
CT; completed time for task i
Pr; Priority for completing task i
P; the energy consumption of task i
E; available zero-carbon electricity at time silce j
Xijik task 7 is processed by begin CPU k at begin time slice j
as (m):
NI NP NC
maXZ E E (xi,i,k X Pr,-) (1)
i=1 j=1 k=1

Constraint 1 (Excess constraints).

The time span of a task must be scheduled within the CPU
available time window. And the number of CPUs allocated for
all simultaneous tasks cannot exceed the number of available
CPUs. This means that items cannot go out of the boundary
of the bin. As illustrated in Figure , Task i = 1 is scheduled
before the CPU available time, so it makes a packing error.
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In the model, it is reflected as (ﬁ):

NP
> xijx=0,Vk € NCVi € NI

j=NP—CT;
Ne 2

> Xijx=0,Yj € NPYi € NI
k=NC-CC;

Constraint 2 (Task match constraints).

Each task can only be matched once. As illustrated in
Figure , Task i = 6 is matched twice, so it makes a packing
error.

In the model, it is reflected as (E):

NP NC

DO xiju < LVieNI

j=1 k=1

3)

Constraint 3 (CPU usage constraints).

One CPU should not work for more than one tasks at the
same time. This means that items cannot overlap each other.
As in Figure [l Task i = 2 shares CPU k = 1 with task i = 1
from time j = 1 to j = 4, so they make a packing error.

In the model, it is reflected as (E):

NI k J

Z Z Xijoxo < 1,Vk € NC,Yj € NP (4)
i=1 K0=k-CCi+1jO=j-CTi+1

Constraint 4 (Zero-carbon electricity constraints).

The scheduled working time must be fall inside the avail-
able time window of zero-carbon electricity. As illustrated in
Figure , the red line is the forecast zero-carbon generator
power. So, the green area is the available zero-carbon elec-
tricity according to the concept of calculus. The electricity
consumed by processing tasks at any time must be less than
the current available zero-carbon electricity. This means that
at any time slice, the total area of all items must be less than
the green coverage area. The ¢ = 6 CPU does not exist. And
Task i = 5 results in the electricity consumption from ¢ = 0
to t = 1 to be larger than current zero-carbon electricity, so it
makes a packing error.

In the model, it is reflected as (ﬁ):

j NC
ﬁ': (Xlomj-cra1 2= Xijok) X Pi
CGC;

<E,YjeNP (5)
i=1

3 | EVALUATION

We simulate the proposed bin-packing scheduling with the ob-
jective of maximizing the number of tasks packed by Gurobi
11.02 Optimization Tools. The number of CPUs required and

their working time for 154 tasks(NI=154) is taken from the
open-source data set of Alibabald. The power of each single-
CPU computers is 193.3 W according to literature'S. Each
single time slice is set to 30 minutes and total simulation time
is set to 24 hours(NP=48). Based on the zero-carbon elec-
tricity prediction model in literatureﬂ, we produced available
zero-carbon electricity as shown in Figure El following the
zero-carbon energy data set in literature 3.
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FIGURE 3 The matching scheme of tasks to available resources
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FIGURE 4 Utilization of zero-carbon electricity

TABLE 2 Carbon Emission Parameter

Type of energy  Carbon emission parameter
Natural gas 440 g/(kWh)
Petroleum 890 g/(kWh)

As illustrated in Figure E Items are distinguished by color.
The bottom-left cells of the high-priority or low-priority items
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FIGURE 5 Carbon emissions

are marked with red circle or blue circle, respectively. The
blank part represents the unused time slice of computing re-
sources. Based on the ratio of the area occupied by the item
to the total area of the bin, we get the resource utilization ef-
ficiency of 34.4%. Items has a completion rate of 94.8%. In
Figure H, red line represents the consumed zero-carbon elec-
tricity by processing tasks. The 24-hours total available zero-
carbon electricity is 171.88 kWh, of which the 162.72 kWh
electricity is used. The zero-carbon power average utilization
rate is 94.67%.

The carbon emission parameters are listed in Table Elg. If
the 154 tasks are processed in 24-hour by a data center powered
by plants burning fossil fuels, the carbon emissions generated
per hour would be as shown in Figure H The 24-hour cumula-
tive of the total carbon emissions are respectively 71595.18 g
with natural gas or 144817.53 g with petroleum.

4 | CONCLUSIONS
To solve the multi-dimensional uncertainty matching problem
for zero-carbon data centers in CCREW project, the CPU
X Time measurement is proposed, by which the complex
problem is simplified into a bin-packing scheduling.

Considering all data centers across China will be connected
by CCREW in the future, the method can be extended to
schedule tasks, resources, and zero-carbon electricity among
multiple data centers.
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