10.1006/anbe.1998.0824
Kihslinger, R.L., Lema, S.C., and Nevitt, G.A. (2006). Environmental
rearing conditions produce forebrain differences in wild Chinook salmonOncorhynchus tschawytscha . Comparative Biochemistry and
Physiology Part A: Molecular & Integrative Physiology 145 (2),
145–151. https://doi.org/10.1016/j.cbpa.2006.06.041
Klemetsen, A. (2013). The most variable vertebrate on Earth.Journal of Ichthyology 53 (10), 781–791.
https://doi.org/10.1134/S0032945213100044
Kodric-Brown, A., and Brown, J.H. (1984). Truth in advertising: the
kinds of traits favored by sexual selection. The American
Naturalist 124 (3), 309–325. https://doi.org/10.1086/284275
Koene, J.P., Elmer, K.R., and Adams, C.E. (2020). Intraspecific
variation and structuring of phenotype in a lake-dwelling species are
driven by lake size and elevation. Biological Journal of the
Linnean Society 131 (3), 585–599.
https://doi.org/10.1093/biolinnean/blaa137
Koljonen, J., Huusko, A., Mäki-Petäys, A., Mykra, H., and Muotka, T.
(2012). Body mass and growth of overwintering brown trout in relation to
stream habitat complexity. River Research and Applications 28 , 62–70. https://doi.org/10.1002/rra.1435
Kondoh, M. (2010). Linking learning adaptation to trophic interactions:
a brain size-based approach. Functional Ecology 24 ,
35–43. https://doi.org/10.1111/j.1365-2435.2009.01631.x
Kotrschal, A. and Kotrschal, K. (2020). Fish brains: anatomy,
functionality, and evolutionary relationships. In: Kristiansen, T.,
Fernö, A., Pavlidis, M. van de Vis, H. (eds), The Welfare of Fish.
Animal Welfare, vol. 20 . Springer, Cham.
https://doi.org/10.1007/978-3-030-41675-5_6
Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S.,
Brännström, I., Immler, S., Maklakov, A.A., and Kolm, N. (2013).
Artificial selection on relative brain size in the guppy reveals cost
and benefits of evolving a larger brain. Current Biology 23 , 168–171. https://doi.org/10.1016/j.cub.2012.11.058
Lacombe, R.J.S., Chouinard-Watkins, R., and Bazinet, R.P. (2018). Brain
docosahexaenoic acid uptake and metabolism. Molecular Aspects of
Medicine 64, 109–134.
https://doi.org/
10.1016/j.mam.2017.12.004
Lavender, E., Hunziker, Y., McLennan, D., Dermond, P., Stalder, D.,
Selz, O., and Brodersen, J. (2024). Sex- and length-dependent variation
in migratory propensity in brown trout. Ecology of Freshwater
Fish 33 (1), e12745. https://doi.org/10.1111/eff.12745
Layé, S. (2010). Polyunsaturated fatty acids, neuroinflammation and well
being. Prostaglandins Leukotrienes and Essential Fatty Acids 82 (4–6), 295–303. https://doi.org/10.1016/
j.plefa.2010.02.006
Lund, I., Skov, P.V., and Hansen, B.W. (2012). Dietary supplementation
of essential fatty acids in larval pikeperch (Sander lucioperca );
short and long term effects on stress tolerance and metabolic
physiology. Comparative Biochemistry and Physiology A 162 , 340–348. https://doi.org/10.1016/j.cbpa.2012.04.004
Malcicka, M., Visser, B., and Ellers, J. (2018). An evolutionary
perspective on linoleic acid synthesis in animals. Evolutionary
Biology 45 , 15–26. https://doi.org/10.1007/s11692-017-9436-5
Marhounová, L., Kotrschal, A., Kverková, K., Kolm, N., and Němec, P.
(2019). Artificial selection on brain size leads to matching changes in
overall number of neurons. Evolution 73 (9), 2003-2012.
https://doi.org/10.1111/evo.13805
Nakamura, M.T., and Nara, T.Y. (2004). Structure, function, and dietary
regulation of Δ6, Δ5, and Δ9 desaturases. Annual Review of
Nutrition 24 , 345–376.
https://doi.org/10.1146/
annurev.nutr.24.121803.063211
Näslund, J., Aarestrup, K., Thomassen, S.T., and Johnsson, J.I. (2012).
Early enrichment effects on brain development in hatchery-reared
Atlantic salmon (Salmo salar ): no evidence for a critical period.Canadian Journal of Fisheries and Aquatic Sciences 69 ,
1481–1490. https://doi.org/10.1139/f2012-074
Pifferi, F., Laurent, B., and Plourde, M. (2021). Lipid transport and
metabolism at the blood-brain interface: implications in health and
disease. Frontiers in Physiology 12 , 645646.
https://doi.org/10.3389/fphys.2021.645646
Pilecky, M., Kämmer, S.K., Mathieu‐Resuge, M., Wassenaar, L.I., Taipale,
S.J., Martin‐Creuzburg, D., and Kainz, M.J. (2022). Hydrogen isotopes
(δ 2H) of polyunsaturated fatty acids track
bioconversion by zooplankton. Functional Ecology 36 (3),
538–549. https://doi.org/10.1111/1365-2435.13981
Pilecky, M., Wassenaar, L.I., Taipale, S., and Kainz, M.J.
(2023). Protocols for sample preparation and compound-specific
stable-isotope analyses (δ 2H,δ 13C) of fatty acids in biological and
environmental samples. MethodsX 11 , 102283.
https://doi.org/10.1016/
j.mex.2023.102283
Pilecky, M., Závorka, L., Arts, M.T., and Kainz, M.J. (2021). Omega-3
PUFA profoundly affect neural, physiological, and behavioural
competences – implications for systemic changes in trophic
interactions. Biological Reviews 96 , 2127–2145.
https://doi.org/10.1111/brv.12747
Pollen, A.A., Dobberfuhl, A.P., Scace, J., Igulu, M.M., Renn,
S.C., Shumway, C.A., and Hofmann, H.A. (2007). Environmental complexity
and social organization sculpt the brain in Lake Tanganyikan cichlid
fish. Brain Behavior and Evolution 70, 21–39. https://doi.org/10.1159/000101067