10.1006/anbe.1998.0824
Kihslinger, R.L., Lema, S.C., and Nevitt, G.A. (2006). Environmental rearing conditions produce forebrain differences in wild Chinook salmonOncorhynchus tschawytscha . Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 145 (2), 145–151. https://doi.org/10.1016/j.cbpa.2006.06.041
Klemetsen, A. (2013). The most variable vertebrate on Earth.Journal of Ichthyology 53 (10), 781–791. https://doi.org/10.1134/S0032945213100044
Kodric-Brown, A., and Brown, J.H. (1984). Truth in advertising: the kinds of traits favored by sexual selection. The American Naturalist 124 (3), 309–325. https://doi.org/10.1086/284275
Koene, J.P., Elmer, K.R., and Adams, C.E. (2020). Intraspecific variation and structuring of phenotype in a lake-dwelling species are driven by lake size and elevation. Biological Journal of the Linnean Society 131 (3), 585–599. https://doi.org/10.1093/biolinnean/blaa137
Koljonen, J., Huusko, A., Mäki-Petäys, A., Mykra, H., and Muotka, T. (2012). Body mass and growth of overwintering brown trout in relation to stream habitat complexity. River Research and Applications 28 , 62–70. https://doi.org/10.1002/rra.1435
Kondoh, M. (2010). Linking learning adaptation to trophic interactions: a brain size-based approach. Functional Ecology 24 , 35–43. https://doi.org/10.1111/j.1365-2435.2009.01631.x
Kotrschal, A. and Kotrschal, K. (2020). Fish brains: anatomy, functionality, and evolutionary relationships. In: Kristiansen, T., Fernö, A., Pavlidis, M. van de Vis, H. (eds), The Welfare of Fish. Animal Welfare, vol. 20 . Springer, Cham. https://doi.org/10.1007/978-3-030-41675-5_6
Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I., Immler, S., Maklakov, A.A., and Kolm, N. (2013). Artificial selection on relative brain size in the guppy reveals cost and benefits of evolving a larger brain. Current Biology 23 , 168–171. https://doi.org/10.1016/j.cub.2012.11.058
Lacombe, R.J.S., Chouinard-Watkins, R., and Bazinet, R.P. (2018). Brain docosahexaenoic acid uptake and metabolism. Molecular Aspects of Medicine 64, 109–134. https://doi.org/ 10.1016/j.mam.2017.12.004
Lavender, E., Hunziker, Y., McLennan, D., Dermond, P., Stalder, D., Selz, O., and Brodersen, J. (2024). Sex- and length-dependent variation in migratory propensity in brown trout. Ecology of Freshwater Fish 33 (1), e12745. https://doi.org/10.1111/eff.12745
Layé, S. (2010). Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukotrienes and Essential Fatty Acids 82 (4–6), 295–303. https://doi.org/10.1016/ j.plefa.2010.02.006
Lund, I., Skov, P.V., and Hansen, B.W. (2012). Dietary supplementation of essential fatty acids in larval pikeperch (Sander lucioperca ); short and long term effects on stress tolerance and metabolic physiology. Comparative Biochemistry and Physiology A 162 , 340–348. https://doi.org/10.1016/j.cbpa.2012.04.004
Malcicka, M., Visser, B., and Ellers, J. (2018). An evolutionary perspective on linoleic acid synthesis in animals. Evolutionary Biology 45 , 15–26. https://doi.org/10.1007/s11692-017-9436-5
Marhounová, L., Kotrschal, A., Kverková, K., Kolm, N., and Němec, P. (2019). Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 73 (9), 2003-2012. https://doi.org/10.1111/evo.13805
Nakamura, M.T., and Nara, T.Y. (2004). Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annual Review of Nutrition 24 , 345–376. https://doi.org/10.1146/ annurev.nutr.24.121803.063211
Näslund, J., Aarestrup, K., Thomassen, S.T., and Johnsson, J.I. (2012). Early enrichment effects on brain development in hatchery-reared Atlantic salmon (Salmo salar ): no evidence for a critical period.Canadian Journal of Fisheries and Aquatic Sciences 69 , 1481–1490. https://doi.org/10.1139/f2012-074
Pifferi, F., Laurent, B., and Plourde, M. (2021). Lipid transport and metabolism at the blood-brain interface: implications in health and disease. Frontiers in Physiology 12 , 645646. https://doi.org/10.3389/fphys.2021.645646
Pilecky, M., Kämmer, S.K., Mathieu‐Resuge, M., Wassenaar, L.I., Taipale, S.J., Martin‐Creuzburg, D., and Kainz, M.J. (2022). Hydrogen isotopes (δ 2H) of polyunsaturated fatty acids track bioconversion by zooplankton. Functional Ecology 36 (3), 538–549. https://doi.org/10.1111/1365-2435.13981
Pilecky, M., Wassenaar, L.I., Taipale, S., and Kainz, M.J. (2023). Protocols for sample preparation and compound-specific stable-isotope analyses (δ 2H,δ 13C) of fatty acids in biological and environmental samples. MethodsX 11 , 102283. https://doi.org/10.1016/ j.mex.2023.102283
Pilecky, M., Závorka, L., Arts, M.T., and Kainz, M.J. (2021). Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences – implications for systemic changes in trophic interactions. Biological Reviews 96 , 2127–2145. https://doi.org/10.1111/brv.12747
Pollen, A.A., Dobberfuhl, A.P., Scace, J., Igulu, M.M., Renn, S.C., Shumway, C.A., and Hofmann, H.A. (2007). Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behavior and Evolution 70, 21–39. https://doi.org/10.1159/000101067