Rigaud, C., Kahilainen, K.K., Calderini, M.L., Pilecky, M., Kainz,
M.J., Tiirola, M., and Taipale, S.J. (2023). Preparing for the future
offspring: European perch (Perca fluviatilis) biosynthesis of
physiologically required fatty acids for the gonads happens already in
the autumn. Oecologia 203, 477–489.
https://doi.org/10.1007/s00442-023-05480-0
Roy, J., Terrier, F., Marchand, M., Herman, A., Heraud, C., Surget, A.,
Lanuque, A., Sandres, F., and Marandel, L. (2021). Effects of low
stocking densities on zootechnical parameters and physiological
responses of rainbow trout (Oncorhynchus mykiss ) juveniles.Biology 10 , 1040.
https://doi.org/10.3390/biology10101040
Salena, M.G., Turka, A.J., Singh, A., Pathak, A., Hughes, E., Brown, C.,
and Balshine, S. (2021). Understanding fish cognition: a review and
appraisal of current practices. Animal Cognition 24 ,
395–406. https://doi.org/10.1007/s10071-021-01488-2
Sánchez-Hernández, J., and Cobo, F. (2018). Examining the link between
dietary specialization and foraging modes of stream-dwelling brown troutSalmo trutta . Journal of Fish Biology 93 ,
143–146. https://doi.org/10.1111/jfb.13672
Scharnweber, K., and Gårdmark, A. (2020). Feeding specialists on fatty
acid-rich prey have higher gonad weights: pay-off in Baltic perch?Ecosphere 11 (8), e03234.
https://doi.org/10.1002/ecs2.3234
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2021). NIH
Image to ImageJ: 25 years of image analysis. Nature Methods 9,
671–675. https://doi.org/10.1038/nmeth.2089
Shettleworth, S.J. (2010a). Cognition, Evolution and Behaviour,
2nd edn. Oxford University Press, Oxford.
Shettleworth, S.J. (2010b). Clever animals and killjoy explanations in
comparative psychology. Trends in Cognitive Sciences 14 (11), 477–481.
https://doi.org/10.1016/j.tics.2010.07.002
Sloman, K.A., Gilmour, K.M., Taylor, A.C., and Metcalfe, N.B.
(2000). Physiological effects of dominance hierarchies within groups of
brown trout, Salmo trutta, held under simulated natural conditions. Fish
Physiology and Biochemistry 22, 11–20. https://doi.org/10.1023/A: 1007837400713
Sprecher, H. (2000). Metabolism of highly unsaturated n -3 andn -6 fatty acids. Biochimica et Biophysica Acta 1486 (2–3), 219–231.
https://doi.org/10.1016/S1388-1981(00)00077-9
Sundbaum, K., and Näslund, I. (1997). Effects of woody debris on the
growth and behaviour of brown trout in experimental stream channels.Canadian Journal of Zoology 76 , 56–61.
https://doi.org/10.1139/z97-174
Syrjänen, J., Korsu, K., Louhi, P., Paavola, R., and Muotka, T. (2011).
Stream salmonids as opportunistic foragers: the importance of
terrestrial invertebrates along a stream-size gradient. Canadian
Journal of Fisheries and Aquatic Sciences 68 , 2164–2156.
https://doi.org/10.1139/f2011-118
Triki, Z., Aellen, M., van Schaik, C.P., and Bshary, R. (2021). Relative
brain size and cognitive equivalence in fishes. Brain Behavior and
Evolution 96 , 124–136.
https://doi.org/10.1159/
000520741
Triki, Z., Granell-Ruiz, M., Fong, S., Amcoff, M., and Kolm, N. (2022).
Brain morphology correlates of learning and cognitive flexibility in a
fish species (Poecilia reticulata ). Proceedings of the
Royal Society B 289 , 20220844.
https://doi.org/10.1098/rspb.2022.0844
Twining, C.W., Bernhardt, J.R., Derry, A.M., Hudson, C.M., Ishikawa, A.,
Kabeya, N., Kainz, M.J., Kitano. J., Kowarik. C., Nemiah Ladd, S., Leal,
M.C., Scharnweber, K., Shipley, J.R., and Matthews, B. (2021). The
evolutionary ecology of fatty-acid variation: implications for consumer
adaptation and diversification. Ecology Letters 24 ,
1709–1731. https://doi.org/10.1111/ele.13771
Twining, C.W., Brenna, J.T., Hairston Jr, N.G., and Flecker, A.S.
(2016). Highly unsaturated fatty acids in nature: what we know and what
we need to learn. Oikos 125 (6), 749-760.
https://doi.org/10.1111/oik.02910
Wang, C-c., Liu, W-b., Huang, Y-y., Wang, X., Li, X-f., Zhang, D-d., and
Jiang, G-z. (2020). Dietary DHA affects muscle fiber development by
activating AMPK/Sirt1 pathway in blunt snout bream
(Magalobrama amblycephala ). Aquaculture 518 ,
734835. https://doi.org/10.1016/j.aquaculture.2019.734835
Wang, S-h., Pan, Y., Li, J., Chen, H-q., Zhang, H., Chen, W., Gu, Z-n.,
and Che, Y.Q. (2017). Endogenous omega-3 long-chain fatty acid
biosynthesis from alpha-linolenic acid is affected by substrate levels,
gene expression, and product inhibition. RSC Advances 7 ,
40946–40951. https://doi.org/10.1039/c7ra06728c
Závorka, L., Blanco, A., Chaguaceda, F., Cucherousset, J., Killen, S.S.,
Liénart. C., Mathieu-Resuge, M., Nĕmec, P., Pilecky, M., Scharnweber,
K., Kainz, M.J. (2023). The role of vital dietary biomolecules in
eco-evo-devo dynamics. Trends in Ecology and Evolution 38, 7–84.
https://doi.org/10.1016/j.tree.2022.08.010
Závorka, L., Crespel, A., Dawson, N.J., Papatheodoulou, M., Killen,
S.S., and Kainz, M.J. (2021). Climate change-induced deprivation of
dietary essential fatty acids can reduce growth and mitochondrial
efficiency of wild juvenile salmon. Functional Ecology 35 , 1960–1971. https://doi.org/10.1111/1365-2435.13860
Závorka, L., Koene, J.P., Armstrong, T.A., Fehlinger, L., and
Adams, C.E. (2022a). Differences in brain morphology of brown trout
across stream, lake, and hatchery environments. Ecology and Evolution12, e8684.
https:// doi.org/0.1002/ece3.8684
Závorka, L., Lovén Wallerius, M., Kainz, M.J., and Höjesjö, J. (2022b).
Linking omega-3 polyunsaturated fatty acids in natural diet with brain
size of wild consumers. Oecologia 199 , 797–807.
https://doi.org/10.1007/s00442-022-05229-1
Zhu, Y., Tan, Q., Zhang, L., Yao, J., Zhou, H., Hu, P., Liang, X., and
Liu, H. (2019). The migration of docosahexenoic acid (DHA). To the
developing ovary of female zebrafish (Danoi rerio ).Comparative biochemistry and Physiology Part A: Molecular &
Integrative Physiology 233 , 97–105.
https://doi.org/10.1016/j.cbpa.2019.04.005