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Abstract 11 
 12 
Cline theory has a central place in speciation studies. Cline locations delimit taxon 13 
boundaries, cline widths scale with barrier strength, and the shapes of clines (smooth or 14 
stepped) suggest whether species barriers are mono- or polygenic. How cline shapes 15 
vary along chromosomes therefore forms part of the genome species barrier landscape. 16 
Further, asymmetric moving clines (wave fronts) can mark adaptive introgression 17 
puncturing species barriers, potentially leading to their collapse or decay. Here we review 18 
the development of cline and wavefront models and relate this to the use of dispersal 19 
kernels in epidemiology and ecology. We contrast classical results to those for a thick-20 
tailed kernel, showing how cline shape aZects the speed of spatial process, including the 21 
widening of neutral clines and the spatial coalescent. We critique current cline models 22 
used for inference (both spatial and genomic clines) and address Barton’s question: Why 23 
(after decades of cline fitting) is there so little evidence of stepped clines? We suggest 24 
evidence is weak because stepped cline models are over-parameterised. We propose 25 
minimum parameter stepped cline models, and discuss non-parametric approaches, 26 
that may help resolve the issue. This broadens to a discussion of the future of, and 27 
alternatives to, cline fitting. 28 
 29 
Introduction 30 
 31 

“Those forms which possess in some considerable degree the character of species, but 32 
which are so closely similar to some other forms, or are so closely linked to them by 33 
intermediate gradations, that naturalists do not like to rank them as distinct species are 34 
in several respects the most important to us.” (Darwin 1859) 35 

 36 
“Although the early writers thought a good deal about the effects of geography and 37 
dispersal […], intense geographic differentiation and speciation was thought to require 38 
some kind of island or complete isolation situation. Only in the last few years have 39 
population geneticists become seriously concerned with the effects of gene flow in 40 
continuous populations.” Endler ((Endler 1977), p3) 41 
 42 
“How many genomic regions differentiate during speciation? How small are regions 43 
where divergence significantly exceeds the genomic average ([…])? How are regions 44 
of exceptional divergence dispersed around the genome? We suggest that recent 45 
discussions of these issues in the context of ecological speciation would benefit from 46 
closer attention to well-established cline theory.” (Abbott, Albach et al. 2013) 47 

 48 
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The first mathematical treatment of migration and selection in continuous populations 49 
was by R.A. Fisher (Fisher 1937), who studied the wave of advance of favourable genes. 50 
The next year Huxley coined the term ‘cline’ (Huxley 1938), and a decade later, by allowing 51 
selection coeZicients to depend on location, Haldane (Haldane 1948) developed an 52 
equilibrium model of gene flow and selection in a cline, closely related to Fisher’s model 53 
(Nagylaki 1975), and used it to estimate the intensity of natural selection in deer mice. 54 
Thus wavefronts, clines, and inference from them, lie at the roots of the modern 55 
evolutionary synthesis, and here we will use cline theory as a catch-all for this body of 56 
work. While (Nagylaki 1975) was setting out to “relate clearly the theory of clines to the 57 
diZusion methods […] which have been very productive in population genetics”, tropical 58 
ecologists were formulating a very diZerent treatment of migration and selection: the 59 
Janzen-Connell  model (See(Terborgh 2020)) arose from the empirical observation that 60 
seedfall is most concentrated around fruiting trees, whereas sapling recruitment fails 61 
close to parent trees and succeeds at a distance. These and analogous empirical 62 
observations inspired the use of dispersal kernels to summarise dispersal probabilities 63 
in ecology (Nathan, Klein et al. 2012) epidemiology (Pybus, Suchard et al. 2012) and 64 
invasion biology (Kot, Lewis et al. 1996, Lindström, Håkansson et al. 2011). 65 
 66 
It would seem then that dispersal kernels should also appear at the heart of cline theory, 67 
but this was not to be. This is because the diZusion method made famous by Einstein’s 68 
description of Brownian motion (Einstein 1905), has an implicit dispersal kernel: the 69 
Normal distribution. The first part of Einstein's argument was to determine how far a 70 
Brownian particle travels in a given time interval. He found the density of particles at a 71 
given time satisfies a diZusion equation, the solution of which is the Normal distribution, 72 
a stable distribution which widens over time, changing scale without changing shape 73 
(Figure1a). In this way Einstein demonstrated that the displacement of a Brownian 74 
particle increases with the square root of time (Einstein 1905). The mission of Nagylaki 75 
and others to “relate clearly the theory of clines to the diZusion methods” (Nagylaki 1975) 76 
tied early spatial genetics to the implicit Normal dispersal kernel of the Brownian particle 77 
at the same time as ecologists were confirming early suggestions (e.g. (Bateman 1950)) 78 
that biological dispersal often diZered from that of a Brownian particle, with thicker tails 79 
than Normal (leptokurtotic). Despite discussion of a diversity of approaches (e.g. 80 
(Diekmann 1978)), the parent-oZspring displacement distribution, keystone of spatial 81 
population genetics, was almost always described only in terms of a variance (a proxy for 82 
scale, explored later) because it was implicitly assumed to only ever have one shape: the 83 
Brownian Normal (Bateman 1950, Nathan, Klein et al. 2012). But Normal is just one 84 
dispersal kernel – other kernel shapes are possible, and kernel shape makes a diZerence.  85 
 86 
Neutral clines 87 
The eZect of dispersal kernels on cline shape can be illustrated in the neutral case by 88 
contrasting two stable distributions for parent-oZspring displacement: Normal vs 89 
Cauchy (with thicker tails), and the clines they generate (Figure 1). As with the 90 
displacement of a Brownian particle, the width of a Brownian cline increases with the 91 
square root of time (Figure 1a,b). In contrast, the width of clines for the thick-tailed 92 
Cauchy kernel increases faster – linearly with time (Figure 1c,d). If we were going to infer 93 
time since neutral contact between populations from the widths of clines in traits, we 94 
could reduce our error by co-estimating the shape of the clines. If we were going to infer 95 



the existence of a polygenic species barrier from stepped clines, we should be aware that 96 
a thick-tailed dispersal kernel can give stepped (thick tailed) clines even in the neutral 97 
case (Figure 1d). But we are getting ahead of ourselves: Figure 1 shows neutral clines 98 
which are CDFs of stable location dispersal kernels, and the only selection mentioned so 99 
far is that of Fisher’s wave of advance of an advantageous gene. While that work gave rise 100 
to its own entire field of endeavour (Invasion Biology, (Skellam 1951, Kot, Lewis et al. 101 
1996, Lindström, Håkansson et al. 2011, Phillips 2015)), it is selection against admixture 102 
which has been key to understanding the body of cline theory most entangled with 103 
speciation: hybrid zone clines. 104 
 105 
 106 
 107 
 108 

 109 
Figure 1: The neutral contact case for stable dispersal kernels over four discrete generations: Two 110 
populations (purple arriving from x -ve, teal from x +ve) meet centrally and (left panes) their alleles spread 111 
across the contact following a dispersal location kernel. Top panes: When the kernel is (a) the Normal 112 
distribution PDF, the expected neutral cline is (b) the ‘sigmoid’ Normal Distribution CDF. The Normal PDF 113 
(a) can be convoluted over generations to give the characteristic widening bell-shaped curves of the 114 
diJusion of Brownian particles. The Brownian cline width (b) increases with the square root of time, as with 115 
the displacement of a Brownian particle (Einstein 1905). Bottom panes: When the kernel is (c) the thick-116 
tailed Cauchy distribution PDF, the expected neutral cline is (d) the ‘stepped’ Cauchy Distribution CDF. The 117 
Cauchy PDF (c) can also be convoluted over generations to give widening leptokurtotic curves. The neutral 118 
Cauchy kernel cline width (d) increases linearly with time, faster than Normal. All panes: initial PDFs are 119 
scaled (see Table 1) such that CDF clines have unit width at unit time. (Right panes) Cline widths are the 120 
inverse of the central gradients of the CDFs, and so by definition equal to the denominators of the central 121 
values of the PDFs (left panes). Only rising (teal) clines are shown; the complementary (purple) falling 122 
clines are redundant, and omitted for clarity. 123 
 124 
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Glossary     (Concepts in approximate order of first occurrences, as underlined in the text) 
 
PDF:  Probability density function 
 
CDF:  Cumulative distribution function. In 1D: convolution of a step function with a PDF. 
 
Dispersal kernel: The contribution of a specific core (source point, parent, parental copy) to the re-
organisation of certain units (e.g. oJspring) in a larger entity (population). See (Nathan, Klein et al. 2012) 
for history and proposed usage in ecology and evolution. Herein ‘dispersal kernel’, unless otherwise 
stated, will mean dispersal location kernel. 
Dispersal location kernel: The PDF for the end location of a dispersal vector. In an n-dimensional field 
area this is a n-dimensional PDF (See Box 1, first pane). The Normal dispersal location kernel has a zero-
centred bell shape in any dimension. 
Dispersal distance kernel: The PDF for distance covered by a dispersal vector. (See Box 1, second pane). 
No information is lost when summarising a radially symmetrical dispersal location kernel in any 
dimension as a dispersal distance kernel of one dimension. The Normal dispersal distance kernel is a 
half bell shape in 1D, but this shape changes as the mode shifts away from zero in higher dimensions. 
EJective dispersal kernel: the dispersal location kernel as observed after the eJects of selection. 
 
Shape of a distribution: All moments of a distribution other than the first two, location and scale. This 
leaves skewness (asymmetry), kurtosis (thick-tailed-ness), and further moments with increasingly 
subtle descriptions. Kurtosis exceeding that of the Normal distribution is leptokurtosis. 
 
Cline width: The inverse of the maximum gradient of a smooth change in trait. 
Cline centre: The turning point of maximum gradient of a smooth change in trait. 
Shape of a cline: By analogy with the shape of a distribution, all aspects of a cline other than centre and 
width. In particular asymmetry and stepped-ness (leptokurtotic kernel distributions give rise to stepped 
clines, figure 1c,d). 
Unit cline: A zero-centred cline of unit width (unit central gradient). Distinct unit clines diJer only in 
shape. Any unit cline 𝑈(𝑥) can be {recentered,rescaled} to any {centre,width} {𝑐, 𝑤} as 𝑈 *!"#

$
+. See unit 

time clines in Figure 1, black and grey zone clines in Box 1. 
MAD: Maximum absolute diJerence: a comparison of two functions across a set of points. Here, unless 
otherwise stated, unit clines are compared for points −4 ≤ 𝑥 ≤ +4; 	Δ𝑥 = 0.01, i.e. over 8 cline widths. 
 
Stable distributions: A distribution is stable if a linear combination of two independent random 
variables with this distribution has a distribution of the same shape, i.e. diJering at most in location and 
scale parameters. 
Convolution of a distribution: A linear combination of n independent random variables with this 
distribution has a distribution described by its n-fold convolution. The 2-fold convolution of 1D 
continuous dispersal kernel 𝑘(∙) is 𝑘%(𝑥) = ∫𝑘(𝑧). 𝑘(𝑥 − 𝑧)	𝑑𝑧 (note that for all values of 𝑧 the sum of 
the arguments of 𝑘 is 𝑥). Only stable distributions do not change shape under convolution. Only a small 
proportion of distributions have analytic solution under convolution, however convolution is simple to 
approximate to arbitrary accuracy by simulating (large) arrays of random variates and adding them. 
 
Exogenous/endogeneous (extrinsic/intrinsic) selection: The cause of exogeneous selection is tied to the 
environment (e.g. taxa or genes are adapted to diJerent regions or niches). Endogeneous selection is 
caused by genome interactions independent of environment. See (Kruuk, Baird et al. 1999) on 
expectations for clines maintained by endogeneous vs exogeneous selection. 
Tension zone: A hybrid zone maintained by endogeneous selection, and thus free to move across the 
environment. Tension zones move down density gradients to become trapped in density troughs or at 
physical barriers to geneflow (Barton 1979). 
 
Indirect selection: Change in allele frequency at one locus due to selection acting at another locus (or 
loci) in statistical association (linkage disequilibrium). As admixture generates linkage disequilibrium 
genome-wide, indirect selection will a:ect unlinked loci. Calling indirect selection ‘linked selection’ is 
therefore unnecessarily confusing (Stankowski, Chase et al. 2019). 
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Table 1: Symmetric 𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒𝑠 and their inverses. ‘Scale’: For distribution 𝜑, 𝐶𝐷𝐹[𝜑(𝑆𝑐𝑎𝑙𝑒), 𝑥] 	=127 
	𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒&[𝑥]. Blue: alternate forms. MAD Maximum absolute diJerence (between a 𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒 and the 128 
closest T-cline). Key to functions:  {𝐸𝑟𝑓𝑐, 𝐸𝑟𝑓𝑐"'} the complementary error function and its inverse;  𝑇𝑎𝑛   129 
tangent;  𝐿𝑜𝑔 natural logarithm; 𝑇𝑎𝑛ℎ Hyperbolic tangent; 𝑆𝑔𝑛[𝑥] the sign function; {𝐼(, 𝐼"'} the incomplete 130 
beta function and its inverseS	𝐼"'[		𝐼([𝑎, 𝑏]		, 𝑎, 𝑏] 	= 𝑧,					𝑧"'S𝑧(𝑥)U = 𝑥	U;	𝛽  the beta function.131 
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Selection  132 
 133 
Can selection against genome admixture arrest the ever-widening neutral clines of Figure 134 
1(b,d) to produce a stable ‘gradation’ between populations of the sort Darwin envisaged 135 
in the opening quote? For the Normal dispersal kernel, diploid genomes, no 136 
recombination, and selection against F1s, Bazykin showed the answer is yes (Bazykin 137 
1969). Bazykin’s selection-stabilised clines can also be described in terms of free 138 
recombination with selection against heterozygotes at one single locus. This might seem 139 
a simpler description, but it must be caveated that no indirect selection is acting. 140 
Because admixture generates genome-wide associations across loci (Baird 2015), 141 
potential sources of indirect selection could lie anywhere in the genome, and so the 142 
Bazykin cline, when framed in terms of heterozygotes, is an expectation for the causal 143 
locus of a monogenic species barrier. In both these framing of the Bazykin result, only 144 
one non-recombining genome region is under selection, and only three genome types are 145 
distinguished: two pure and one eqi-admixed (a heterozygous diploid locus or an entire 146 
F1 individual’s genome). Selection against the admixed type arrests cline spread and 147 
distorts the equilibrium cline shape from that of the neutral Normal CDF to that of the 148 
CDF of the logistic distribution (See Table 1). Despite this change in shape both Normal 149 
and logistic clines are called sigmoid. The Bazykin result applies at two recombination 150 
extremes, and it is useful to bear both in mind, for while a species barrier maintained by 151 
selection against heterozygotes at a single locus may sound infeasible, one maintained 152 
by selection against F1 individuals, genome wide, may not. At the F1 extreme the 153 
potential for indirect selection is maximal because cis associations between all genes in 154 
diverged genomes are maintained, while every site of the genome is heterozygous by 155 
source. Then, even in the presence of recombination, strong selection against F1-like 156 
individuals will reduce the eZective recombination rate, slowing the decay of pure cis-157 
genome associations, and increasing the potential for indirect selection at multiple loci 158 
to further distort cline shape. The paths of these initial changes in multilocus cline shape, 159 
dependent on both hybrid indices and degree of heterozygosity by source, are spatially 160 
explicit cousins of the paths taken through Fisher’s geometric fitness space during 161 
admixture (Simon, Bierne et al. 2018). Returning to the no-recombination case, Bazykin 162 
not only demonstrated a spatial dispersal-selection equilibrium existed, but also 163 
calculated, to a weak selection approximation, the expected width of his clines as ./

√1
, 𝑠 164 

being the selection acting against heterozygotes and 𝜎, the scale of per generation 165 
dispersal (see Box 1). With hindsight, and on considering the eZects of kernel shape, we 166 
see the expected width of a cline maintained by Bazykin selection will depend not only 167 
on the selection acting, but also on the dispersal kernel shape. 168 
 169 
While (Nagylaki 1975) showed that Haldane’s (Haldane 1948) exogeneous cline could be 170 
recast as a special case of a Fisher wavefront, it was Barton ((Barton 1979)a, section 3: 171 
(i)) who pointed out that there is a family of solutions between Bazykin’s endogeneous 172 
symmetric cline and Fisher’s (endogeneous) asymmetric travelling wave, depending on 173 
whether two pure genome types are equally fitter than their admixed type. Equality gives 174 
the symmetric Bazykin cline, inequality, traveling clines moving toward the less fit pure 175 
type. Barton (Barton 1979)b also showed that selection on multiple loci (a polygenic 176 
barrier) distorts cline shape through indirect selection, steepening the cline centre 177 
relative to its tails to produce stepped clines. In fact, in those two seminal 1979 papers  178 



Box 1: Scale, speed and neighbourhood size. Scale What are the natural units of cline width? Most 179 
biologists would suspect a 1 km wide hybrid zone (HZ)  is narrow for birds, but wide for snails, i.e. a cline is 180 
not narrow or wide based only on its width in SI units. Instead we use units specific to the study organism: 181 
the per generation scale of dispersal 𝜎 (a length, smaller for snails, larger for birds). Setting the origin of a 182 
frame of reference at a parent, a zero-centered radially symmetrical multivariate PDF can be used to define 183 

a dispersal location kernel 𝐾 with 184 
scale 𝜎 for oJspring: Here, the field 185 
area has 𝑛 = 2	dimensions (e.g. {x,y}) 186 
measured in 𝜎, and two oJspring of 187 
the same parent are joined by a line 188 
length d. The 1 km HZ is narrow for 189 
birds if their 𝜎 is >>1 km, and 190 
conversely wide for snails if their 𝜎 is 191 
<< 1km. If we measured bird and snail 192 
HZs in ‘natural’ 𝜎 units, and they had 193 
similar histories, governed by similar 194 
processes, then they would have 195 
similar width. This is how cline theory 196 
‘scales’ over diverse study systems. 197 
The distance 𝑑 between two oJspring 198 
of the same parent follows the 199 
dispersal distance kernel found by 200 
sampling two location vectors from 𝐾 201 
and adding them to derive 𝐾%, the 2-202 
fold convolution of 𝐾. Speed For the 203 
stable distributions in Figure 1, the 𝑡-204 
fold convolution can be expressed for 205 

any dimension 𝑛 of field area: 206 
Here the PDFs are 207 
𝑆(𝑛, 𝑑)𝐾2(𝑛, 𝑑) for the 208 
respective kernels, and are 209 
plotted for 𝑛 = 𝑡 = 2 where 210 
𝑆(𝑛, 𝑑) is the surface area of the 211 
𝑛-sphere radius 𝑑. The position 212 
of the modal distance (black 213 
verticals) shows us how the 214 
spatial scale of a chain of 215 
inheritance  increases over time: linearly for the Cauchy kernel, but with the root of time for the Normal 216 
kernel, generalizing the (Figure 1) observation that diJerent kernel shapes give diJerent speeds of process, 217 
from the widening of clines in 1D, to spatial inheritance in any dimension of field area. This has 218 
consequences for the rate of coalescence. Neighbourhood size As the probability of pairwise 219 
coalescence in the previous generation, in an idealised population without spatial context, is '

%3
, so in an 220 

idealized spatial population, for the two oJspring above, this coalescence probability is '
4

 𝐾%(𝑛, 𝑑). 𝑁 is 221 
population size, 𝜌 population density (per spatial extent), and 𝐾%(𝑛, 𝑑)  expresses how pairwise parent 222 
sharing probability falls oJ with distance 𝑑 in 𝑛 dimensions. We can remove the dependance on distance 223 
by letting 𝑑 tend to zero (oJspring found in contact). Then, for a 2D field area and Normal dispersal, this 224 
coalescence probability is '

*546"
, the inverse of Wright’s neighbourhood size. For a 2D field area and Cauchy 225 

dispersal, the inverse of the neighbourhood size is '
7546"

; the rate of coalescence is halved by changing the 226 
shape. Neighbourhood size is aJected by both the dimension and shape of the dispersal kernels as 227 
28𝜋8/%𝜌	𝜎8 and		28𝜋(8:')/%𝜌	𝜎8	ΓS!#$" U respectively. Note 1: The scale 𝜎 is always raised to the dimension 228 
of spatial extent, whereas the density is always per spatial extent, leaving neighbourhood size a non-spatial 229 
quantity commensurate with population size 𝑁. Note 2: The Normal distribution is special in that its 230 
variance is equal to its scale squared: 𝜎%. Where other dispersal kernels are considered, the variance is no 231 
longer a useful proxy for scale.  232 
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 233 
 234 
Barton laid out the properties of spatial genome admixture as we understand it today, 235 
and went on to show, with Hewitt (Barton and Hewitt 1985), that the majority of hybrid 236 
zones had cline widths too narrow to be consistent with maintenance at the scale of 237 
environmental change (as explored by Haldane), and so instead were likely to be tension 238 
zones maintained by endogeneous barriers. Here we see how deeply species and cline 239 
concepts can become entangled, as it is tempting to define species as only those taxa 240 
kept distinct by intrinsic barriers (all other barriers being context dependent, and 241 
therefore potentially ephemeral). Arguments for a more operational taxonomy (e.g. 242 
(Mallet 1995)) have largely fallen on deaf ears, with one exception: It appears acceptable 243 
to describe multilocus endogeneous barriers as species barriers irrespective of how 244 
taxonomists rank the organisms on either side (see (Krieber and Rose 1986) e.g. Mus 245 
‘subspecies’ (Albrechtová, Albrecht et al. 2012)). 246 
 247 
With (Barton 1979)a came the possibility of inferring the existence of a multilocus 248 
species barrier (polygenic selection) by deciding whether or not an observed cline had a 249 
steepened central portion. (Barton and Bengtsson 1986) developed a continuous explicit 250 
model of stepped cline shape, and (Kruuk, Baird et al. 1999) went on to show this stepped 251 
shape was similar whether multilocus selection was endogeneous or exogeneous. The 252 
Kruuk result is not for one cline shape, but rather a continuum of multilocus stepped 253 
shapes with the Bazykin shape at the single locus limit. In the meantime, (Gavrilets 1997) 254 
had shown how viability selection, even acting on a single locus, can also result in 255 
stepped cline shapes. As with Kruuk, the Gavrilets result is for a continuum of stepped 256 
shapes, Bazykin-shaped at one extreme of the selection model, but with the CDF of the 257 
Student’s-t distribution (with 2 degrees of freedom, or shape parameter 2) at the other 258 
extreme ((Gavrilets 1997) Equation 14a). I will use 𝑇(2) to refer to the unit cline with the 259 
shape of this CDF (see Table 1).  260 
 261 
All of these selection cline results assume the Normal dispersal kernel implicit in the 262 
diZusion method. Together with the previous section we now see that stepped cline 263 
shapes can be expected with or without selection (given variation in dispersal kernels), 264 
and with or without multiple loci (for Normal dispersal kernels, given a diversity of 265 
selection regimes). What then can we hope to infer if we observe a stepped cline shape?  266 
Further: Neither the Kruuk nor the Gavrilets stepped result is even expressed as a cline 267 
function that could be fitted to data – this is why they have no entries in Table 1. The Kruuk 268 
result ((Kruuk, Baird et al. 1999) eq. 14) is in the form of an ordinary diZerential equation 269 
parameterised by a coupling coeZicient 𝜙 = (𝐿 − 1)1; summed over the joins between 𝐿 270 
loci. Instances of the equation can be numerically solved using e.g. the NDSolve tool in 271 
Mathematica (Wolfram Research 2019). The Gavrilets result ((Gavrilets 1997), Eq 14b) 272 
takes the form of the inverse function of a cline 𝑔!"(𝐶, 𝑝) = 𝑥 which, unlike the functions 273 
in Table 1, itself has no obvious inverse. Instead Gavrilets clines can be numerically 274 
approximated by tabulating {𝑔!"(𝐶, 𝑝), 𝑝} over values of 𝑝 and interpolating. When we 275 
talk of stepped clines then, what is our model? 276 
 277 
  278 



Cline models and inference 279 
 280 
While Haldane himself said he lacked suZicient data to support estimates of cline 281 
parameters for deer mice, he dedicated a large section of his discussion on how data 282 
hungry such estimates are (Haldane 1948). An exemplary field sampling eZort and 283 
allozyme allele counting allowed estimates of the parameters of a stepped cline between 284 
Bombina subspecies (Szymura and Barton 1986, Szymura and Barton 1991), a model-285 
based analysis that set the paradigm for hybrid zone inference software for decades 286 
(Analyse, (Baird and Barton 1995), ClineFit (Porter, Wenger et al. 1997), Cfit (Gay, Crochet 287 
et al. 2008), HZAR (Derryberry, Derryberry et al. 2014)). That original stepped cline model 288 
is a tri-partite composite (see Figure 2) of a ‘sigmoid’ (logistic) central portion joined to 289 
exponential tails (Szymura and Barton 1991). There are four shape parameters 290 
corresponding to a barrier strength and a tail decay rate in either direction. This allows for 291 
both cline asymmetry and central steepening using parameters that have direct 292 
interpretation for evolutionary process. Further, likelihood comparison with simpler 293 
nested models (where parts of the parameter vector are fixed) allows powerful likelihood 294 
ratio tests for asymmetry and stepped-ness (e.g.(Macholán, Munclinger et al. 2007)). The 295 
inference framework built around the tripartite model allowed stepped clines to be 296 
identified in several further field systems, Podisma (Barton and Gale 1993),Pontia (Porter, 297 
Wenger et al. 1997), Mus (Macholán, Munclinger et al. 2007)), but perhaps not as many 298 
as expected under null (multilocus, polygenic) models of speciation (Barton and 299 
Charlesworth 1984). Thirty years after demonstrating the Bombina zone was stepped, 300 
Barton commented on the paucity of further examples “This may be because dense 301 
spatial sampling is needed to identify a step, but more likely is because the genetic map 302 
is typically long enough that selection does not often maintain a strong barrier.” (Barton 303 
2020). The first potential explanation is the data hunger noted by Haldane, the second 304 
refers to the balance between selection against admixture, and recombination, which 305 
admixes genomes (hence the coupling coeZicient of the Kruuk result). Recombination 306 
breaks down the linkage disequilibrium generated by admixture and/or epistasis, 307 
weakening indirect selection and opposing epistatic selection. A given amount of 308 
selection against admixture might then be overwhelmed by a long genetic map (high 309 
recombination). While it is clear how this applies when selection and recombination are 310 
each described by a single parameter (Barton 1983, Baird 1995, Kruuk, Baird et al. 1999), 311 
it is less clear when both selection and recombination densities vary along the genome 312 
(Martin, Davey et al. 2019, Stankowski, Chase et al. 2019).  Here instead we explore a 313 
third potential explanation for the paucity of stepped cline observations. Sampling data 314 
is not the only thing needed to identify a step: one also needs the model of what a 315 
stepped cline is, and how that diZers from a non-stepped ‘sigmoid’ cline. The more free 316 
parameters this model has, and the greater the distance between the model and the 317 
process generating the observations, the less power available to infer a step. The 318 
flexibility of the tripartite stepped model is in natural trade-oZ against both high 319 
parameter numbers and distance from ‘reality’. It has four free parameters for 320 
asymmetric stepped shape whereas the  analogous distribution-shaping moments are 321 
only two: skewness and kurtosis; it also has two discontinuities where its parts join, 322 
corners that are not a feature of the underlying expectations (Fitzpatrick 2013) (Contrast 323 
the 2-parameter T-cline fit to a tripartite fit in Figure 2); further, as the ‘sigmoid’ central 324 
portion of the tripartite cline is the logistic CDF for selection against admixture, the 325 



neutral shape of the ‘sigmoid’ Brownian cline is not strictly nested within the tripartite 326 
model. This might sound merely a technical issue, but modelling the neutral case using 327 
the Bazykin cline, but no selection, returns a flat line of 𝑝 = 1/2 everywhere. This is 328 
because the Bazykin result is for equilibrium, and the equilibrium for no selection against 329 
admixture is (eventual) infinite spread. 330 
 331 
Stepped clines with fewer parameters? 332 
 333 
We have shown a relationship between dispersal kernels (PDFs) and clines (CDFs). If 334 
probability distribution leptokurtosis and skew can be expressed as two moments, 335 
perhaps cline stepped-ness and asymmetry can be expressed with just two parameters? 336 
 337 
𝑇-clines Each cline result touched on to this point has been linked to the CDF of a 338 
probability distribution modelling either a dispersal kernel, in the neutral case, or for the 339 
Bazykin case, an equilibrium post-selection eZective dispersal kernel (The exception 340 
being the asymmetric Fisher wave). Three of these CDFs are unified within the Students-341 
t distribution: The neutral stepped Cauchy cline of Figure (1) is shape 𝑇(1), the Gavrilets 342 
single locus stepped extreme is shape 𝑇(2) and the sigmoid Brownian cline shape is 343 
shape 𝑇(∞). This suggests the continuous shape parameter 𝜐  of the Student’s-t 344 
distribution (whose whole numbers correspond to degrees of freedom), a parameter 345 
which smoothly alters PDF kurtosis, could be used as a stepped-ness parameter for a 346 
continuum of CDF cline shapes 𝑇(𝜐) from Brownian neutral ‘sigmoid’ to extreme stepped 347 
𝑇(0 < 𝜐 < 1). Further, the non-central Student’s-t distribution can be re-expressed (For 348 
this and other mathematical details, see the Supplementary Material) with an asymmetry 349 
parameter 𝛼, giving a plane of cline shapes 𝑇(𝜐, 𝛼) from Brownian neutral to stepped and 350 
from left biased (𝛼 < 0) through symmetric (𝛼 = 0) to right biased (𝛼 > 0).  351 
 352 
This 𝑇-cline model reduces the four tripartite cline shape parameters to two, has no 353 
discontinuities and includes both the neutral case and one extreme of the Gavrilets 354 
continuum. 𝑇(𝜐, 𝛼) as a model of the Fisher wave is shown in Figure 2: the maximum 355 
absolute diZerence (MAD) between 𝑇(8.365, 1.367), for any value in (Fisher 1937) table 356 
IV  is <0.001. This is in contrast to the best fit tripartite model at MAD 0.018. All these 357 
features of the 𝑇-cline as a shape model are encouraging, however the tripartite model’s 358 
potential to estimate distinct barrier strengths in each direction has been sacrificed, the 359 
biological interpretation of the 𝑇(𝜐, 𝛼) parameters (away from matches to existing cline 360 
theory) is approximate or unclear, and the relationships between the symmetric 𝑇(𝜐) 361 
model and the Kruuk and Gavrilets step continua remain unexplored.  362 
 363 
The Students-t is not the only candidate distribution for expressing stepped-ness and 364 
asymmetry of clines; the generalised Logistic with parameters (1,1) matches logistic 365 
shape, where the Students-t has no exact match. The Kruuk, Gavrilets shape continua 366 
results start with that shape at their sigmoid extremes; perhaps one or the other follows 367 
the shape of the generalised logistic as they become more stepped? To explore such 368 
possibilities and decide between shape models it seems best to construct a shape space 369 
within which all the clines discussed thus far can be compared. Previous cline shape 370 
comparisons (Barton and Gale 1993, Gavrilets 1997) have focussed on zero-centred 371 
width-rescaled clines as here (𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒𝑠, though Gavrilets chose to rescale to half 372 



width), then Logit transformed. The Logit function is the inverse of the Logistic CDF, and 373 
so the transformed Logistic (Bazykin) cline is linear, other shapes deviating from linearity 374 
(Figure 2.2, (Barton and Gale 1993)). However, these deviations remain diZicult to 375 
interpret, and the justification for comparing all other cline shapes to Bazykin is 376 
weakened when (i) we see other clines also have simple inverses (Table 1) and (ii) we 377 
remember the special (Normal kernel) nature of the Bazykin result. Instead, here we seek 378 
a shape comparison framework ‘outside’ of all the cline shapes we wish to compare. 379 
 380 

 381 
Figure 2: Fitting models to the shape of Fisher’s wave of advance. Blue points: Fisher tabulated values for 382 
the wave of advance in Table IV, (Fisher 1937). This is an asymmetric cline of {centre,width} {𝑐, 𝑤} =383 
{0.256, 8.110} as estimated from Fisher’s table. The centre is marked with a black vertical line. Green line: 384 
Degrees of freedom 8.365 and non-centrality 1.367, parameters of the Student-t distribution PDF, can be 385 
used respectively to shape stepped-ness and asymmetry of the cline 𝑇 *!"#

$
, 8.365, 1.367+ that diJers 386 

nowhere by more than 0.001 from the Fisher values (MAD 0.001). Red line: A tripartite cline fit to the Fisher 387 
data. Vertical grey lines mark joins between the central logistic part and exponential tails. The right hand 388 
join is shown for the best fit, the best fit left hand join falls further to  the left than shown (out of frame), but 389 
least squares fitting with {𝑐, 𝑤} and all four shape parameters (two for each tail) free to vary only achieves 390 
MAD 0.018, due to a poor match at the best fit ‘corner’ marked by the right hand grey vertical. 391 
 392 
A continuous model of barrier eZects: The 𝑇-cline model is a re-expression of existing 393 
probability distribution results. In this section we take an approach closer to the 394 
development of the tripartite cline model:  We construct a cline model from simpler 395 
building blocks. This diZers from the tripartite cline in that it is continuous, i.e. without 396 
joins or ‘corners’. It diZers from the 𝑇-cline in that it requires two variables, not one, to 397 
parameterise stepped-ness.  398 
 399 
Barriers to geneflow have units of distance, may be found at cline centres, and are 400 
expected to change the shape of clines (Barton and Bengtsson 1986). Suppose the eZect 401 
of a barrier to gene flow is, from the gene perspective, to increase the ‘subjective’ 402 
distance experienced when crossing the cline centre. Box 2 shows how such a model can 403 
be developed, and Figure 3 places all the symmetric cline shapes, and continua of cline 404 
shapes, discussed thus far in the context of this lamdal barrier eZect model.  405 
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 406 
Box 2: ‘lamdal’ model of continuous cline shape 407 
We seek a continuous approximation to a stepped unit cline, assuming a barrier distorts the gene’s eye 408 
view of distance travelled during geneflow. First, exploring the exact nature of such a distortion, suppose 409 
unit cline 𝑈3 is ‘sigmoid’ and 𝑈<  is stepped. By the nature of inverse functions 410 

 411 
𝑈3 *𝑈3"'S𝑈<(𝑥)U+ = 𝑈<(𝑥)																																	         412 

 413 
𝑈3(	𝑓(𝑥)	) = 𝑈<(𝑥); 					𝑓(𝑥) = 	𝑈3"'S𝑈<(𝑥)U 414 

 415 
Here 𝑓(𝑥) is an exact distortion of distance 𝑥 416 
such that sigmoid 𝑈3 becomes stepped 𝑈<. (a) 417 
Red lines connect points of equal 𝑝 on two unit 418 
clines, above 𝑈𝑛𝑖𝑡𝑁𝑜𝑟𝑚𝑎𝑙, below 𝑈𝑛𝑖𝑡𝐶𝑎𝑢𝑐ℎ𝑦. 419 
(b) Red points are the 𝑥-coordinates of the ends 420 
of each red line in (a), the black line is 𝑓(𝑥) for 421 
these two cline shapes. Under this distance 422 
distortion 𝑈𝑛𝑖𝑡𝑁𝑜𝑟𝑚𝑎𝑙 becomes 𝑈𝑛𝑖𝑡𝐶𝑎𝑢𝑐ℎ𝑦. 423 
 424 
 The form of 𝑓(𝑥) suggest a two parameter 425 
approximation to the distance distortion for 426 
stepped cline shapes in general: 427 
 428 
 429 
𝑓(𝑥) ≈ 𝑓=,?(𝑥) = 𝑋 + 𝜆(	𝑈@(𝑋/𝑙) − 𝑈@(0)); 430 

										𝑋 =
𝑥

1 − =
?
 431 

 432 
 433 

The ‘lamdal’ (𝜆, 𝑙) distorted distance increases linearly other 434 
than with the central eJects of 𝑈@(∙), a barrier 𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒  𝑝-435 
recentered by 𝑈@(0), rescaled by 𝑙 and reweighted by 𝜆. 436 
Distance is rescaled 𝑥 → 𝑋 such that any 𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒 will retain 437 
unit width under lamdal distortion. (c) shows the (red) space in 438 
which lamdal distortion of 𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒𝑠 results in (monotonic 439 
rising) 𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒𝑠. The apparently simple form of the lamdal 440 
approximation suggests simple interpretation of {	𝜆, 𝑙},	but	 the	441 
valid	(red)	space	in	(c),	which	includes	negative	values	of	both	442 
arguments	(due	to	the	𝑥 → 𝑋	rescaling)	belies	this	suggestion;	443 
the lamdal approximation is instead best interpreted in the 444 
context of how it fits to known cline shapes, as in Figure 3. 445 
 446 
 447 

 448 
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 450 
Figure 3: A comparison of cline shapes. Fits to cline shapes are plotted on the plane formed by the 451 
{𝑙, 𝜆} parameters of the lamdal barrier e:ects model 𝑈𝑛𝑖𝑡𝑁𝑜𝑟𝑚𝑎𝑙 *𝑓𝜆,𝑙(𝑥)+, with 𝑈@ = 𝑇(0.15),  (See Box 452 
2). Goodness of fit is shown in colour, with a key to levels of maximum absolute diJerence (MAD). Sigmoid 453 
shapes are found toward the top (single locus selection against admixture, Bazykin; high 𝑣 Student-t 454 
and high 𝛼 generalised logistic). Stepped shapes are to the bottom and left (single locus viability 455 
selection Gavrilets with 𝐶 → ∞, the neutral Cauchy kernel, multilocus admixture selection Kruuk with 456 
high 𝜙). The Gavrillets and Kruuk continua are shown for a series of numerical integrations of their 457 
relevant parameters. The T-cline and generalized logistic results are analytic.  458 
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The lamdal model captures sigmoid and barrier cline shapes well where colours are cool 460 
in Figure 3. It becomes a poor approximation on the generalized logistic continuum as 461 
cline shape tends to that of the Laplace (double exponential) distribution. It becomes 462 
poor on the Kruuk continuum when the summed coupling exceeds ~10. It is a reasonable 463 
approximation throughout the Gavrilets continuum. It is a poor approximation to T-cline 464 
shapes of intermediate 𝑣, e.g. Cauchy and T2. While the spatial population genetics 465 
continua of cline shapes cross paths with the shapes of CDFs of known probability 466 
distributions, they do not align. In the lamdal space of figure 3 the former run horizontally, 467 
the latter more vertically. It therefore seems unlikely that there is an oven ready CDF 468 
waiting in the literature for us to discover and use as a model that will better embody the 469 
notion of smooth stepped clines for inference. Of the two CDF continua in Figure 3 the T-470 
cline family appears preferable for inference, as it allows for both neutral cline shape (at 471 
high 𝑣) and stepped shape, whereas the generalized logistic distribution terminates at 472 
Laplace shape. It also seems that an analytical solution unifying the Kruuk and Gavrilets 473 
notions of stepped clines, and generalizing this over diverse kernel shapes is not on the 474 
horizon. We can however fit the lamdal model to data and see where the shape 475 
parameter estimates fall in relation to these existing results (See Supplementary 476 
materials).  477 
The lamdal model naturally extends to the asymmetric case when we allow its central 478 
barrier 𝑈𝑛𝑖𝑡𝐶𝑙𝑖𝑛𝑒 to be asymmetric, for example defined by an asymmetric T-cline such 479 
as in Figure 2. In fact, the lamdal model should not be used for inference without this 480 
possibility of asymmetry. In Figure 3 we use the lamdal model to compare the shapes of 481 
clines known to be symmetric, our first visualization of how the various models of cline 482 
shape relate to each other. The situation for inference is qualitatively diZerent. If we make 483 
an assumption of symmetry during inference, and we are wrong, then even estimates of  484 
cline centres and  widths  can be mis-inferred ((Baird and Macholan 2012), Box 14.3). This 485 
issue of mis-shapen mis-inference, like the data hungry nature of cline fitting, will not go 486 
away no matter what perspective we take, and this can be illustrated in the context of 487 
genome clines. 488 
 489 
Genome clines  490 
 491 
Suppose we infer a sigmoid symmetric cline 1 km wide as in Box 1, but the field data is 492 
insuZicient to distinguish between a Normal sigmoid shape and a Bazykin (logistic) 493 
sigmoid. The data are then consistent with two very diZerent scenarios: either a 1 km 494 
cline is being maintained by e.g. Bazykin selection (and we do not for how long) or a 495 
neutral cline has expanded in width to 1km (and we do not know how long this took). If 496 
we knew the per generation dispersal scale of the organism, then we would be able to 497 
estimate the selection acting, or the time since contact. (If we also knew the real time 498 
since contact, we might find the estimated time implausible, and finally be able to decide 499 
between the scenarios: selection must be acting). Unfortunately, the key to unlocking 500 
such evolutionary puzzles 𝜎, the natural measure of spatial processes such as hybrid 501 
zones, is notoriously diZicult to measure. Just as with cline studies, capture-mark-502 
recapture studies are notoriously data hungry, and do not actually report on per 503 
generation 𝜎, but rather within-generation movements. These two can obviously be very 504 
diZerent even within the same organism, for example migratory birds with high nest-site 505 



fidelity (Ruegg 2008), leaving direct estimates of 𝜎 diZicult, and the scenarios we can 506 
resolve through cline fitting reduced. 507 
 508 
Where there is poor prior knowledge of the per generation scale of dispersal, an 509 
alternative is to measure trait cline widths relative to a global estimate, a kind of outlier 510 
scan analogous to Fst scans (but using a statistic that does not confound dispersal with 511 
diversity). It is perhaps this idea that has driven exploration of Barton’s ‘concordance’ 512 
transform (Szymura and Barton 1991), where the distance axis of a cline is substituted by 513 
a global hybrid index (HI) axis. This was suggested as a convenient relative {centre, width} 514 
comparison of clines where geographic sampling coordinates were diZicult to interpret, 515 
and has been used, for example, to compare hybrid indices of parasites and their hosts 516 
(Goüy de Bellocq, Ribas et al. 2018). The distance→HI axis replacement was further 517 
developed as the genome clines approach ((Gompert and Buerkle 2009, Gompert and 518 
Buerkle 2012), see (Macholan, Baird et al. 2011) for comparison with concordance). It 519 
has been suggested the convenience of the axis replacement extends to the case where 520 
“the geographic model […] takes a more complicated form than the simple logistic 521 
function, for example, when clines are asymmetric or stepped” (Fitzpatrick 2013), 522 
presaging a surge in genome cline fitting software (Bailey 2024, Gompert, DeRaad et al. 523 
2024), but this suggestion is over optimistic: no {centre, width}  cline model can capture 524 
variation in cline shape, and using a model with the wrong shape leads to genome 525 
landscape mis-inference (Box 3). The logit-logistic genome cline model proposed by 526 
(Fitzpatrick 2013) is not freed of assumptions by a change in 𝑥-axis: in fact it implicitly 527 
assumes the shapes of two clines: one in (genome-wide) hybrid index, and one in trait 528 
frequency. A generalised genome cline (Box 3) relaxes this assumption to cases where 529 
the genome-wide cline function is inversible, and Table 1 details invertible cline functions 530 
of diZerent stepped-ness, allowing a generalised genome cline approach to be applied 531 
assuming a variety of symmetric hybrid index cline shapes, and even stepped and 532 
asymmetric 𝑇-clines.  533 
 534 
What would be the knock-on eZects of extending the genome cline model to one that 535 
allows for a better match to a globally asymmetric stepped hybrid zone such as the house 536 
mouse hybrid zone (Macholán, Munclinger et al. 2007)? First and for most, any ‘free 537 
lunch’ impression that genome clines allow confident estimates with little spatial 538 
sampling of a hybrid zone will likely be reduced, because fitting more parameters 539 
requires more data, and may reveal confidence to be overconfidence. Second, we might 540 
expect the variance in cline centre and width estimates to be reduced, because shape 541 
mis-match eZects such as those in Box 3 should be minimised. From this perspective the 542 
shape parameters of hybrid zones are now acting as nuisance parameters, uninteresting 543 
for the comparison of trait clines with each other, but necessary if the widths and centres 544 
of those trait clines are to be comparable, and estimated without overconfidence. This is 545 
not to say that the overall shape of a hybrid zone or genomic wavefront is uninteresting, 546 
but rather to recognise that intensive field sampling has now often become the most 547 
expensive, and potentially controversial, part of such analyses. 548 
 549 
 550 
  551 



 552 
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BOX 3: Genome clines 

 
a) Black curve: a multilocus (genome wide) hybrid index (𝐻𝐼) changes across a hybrid zone. The spatial 
units are scaled and oJset so that this is a unit cline 𝑈A(𝑥). Blue curve: allele frequency at site 𝑖 changes 
as cline  𝑈B *

!"#%
$%
+. The site cline is 𝑤B-fold wider than the zone cline and oJset by distance 𝑐B 	. Grey 

curve: illustrating a zone cline of an alternate shape; the black curve is Cauchy, the grey logistic.  
b) (inset) The curves of pane (a) when the distance axis is replaced with zone hybrid index. One further 
(teal) curve is shown: the blue site cline of (a) when the alternate (grey) zone cline shape is assumed. 
 
Switching x-axes. (a) The distance 𝑥 coordinate of the site cline can be replaced by the 𝐻𝐼 coordinate of 
the zone cline. Red arrow: applying the inverse of the zone cline to a hybrid index gives a zone 𝑥 
coordinate 𝑥A = 𝑈A"'(𝐻𝐼). Green arrow: applying the site cline at this 𝑥 coordinate gives a site allele 
frequency 𝑝B = 𝑈B *

!&"#%
$%

+. Putting these two steps together, distance 𝑥 is replace by 𝐻𝐼 in a generalised 
genome cline  

𝑝B = 𝑈B �
𝑈A"'(𝐻𝐼) − 𝑐B

𝑤B
� 

 
If both cline shapes {𝑈A, 𝑈B} are logistic, the inverse 𝑈A"' is a rescaled logit function and this is the "logit-
logistic" special case genome cline, equation (4b) of (Fitzpatrick 2013), used by (Goüy de Bellocq, Ribas 
et al. 2018), and implemented in softwares gghybrid (Bailey 2024) and bgchm (Gompert, DeRaad et al. 
2024): 

𝑝B =
𝑆-%

𝑆-% + (1 − 𝑆)-%𝑒C%  

 

𝑆 = 𝐻𝐼;	𝑣B =
1
𝑤B
; 	𝑢B = 4

𝑐B
𝑤B
; 	𝑈A = 𝑈B = 𝑈𝑛𝑖𝑡𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐	

0 1
2

1

0

1
2

1

0
1
2 1

0

1
2

1

HI

p i

b)

-1.5 -1.0 -0.5 0.5 1.0 1.5

1
2

1

admixture proportion (HI and pi )

zone cline

site cline

HI

xZ

pi

a)

distance (x)



555 

BOX 3: Genome clines (continued) 
 
Site cline shape expectations can vary along the genome, and the zone hybrid index shape may be 
stepped and/or asymmetric. The two parameters {𝑢B , 𝑣B} of a logit-logistic genome cline are insuJicient 
to capture this richness of cline shapes variation. 

 
 
Misinference using the logit-logistic function: (c,d) True site cline parameter points	{𝑐, 𝑤} are plotted in 
yellow, estimates of them are plotted in purple; when an estimate and a truth coincide, that point 
becomes brown. When estimate and truth diJer, an arrow joins truth to estimate. (c) When the zone 
cline shape is logistic and site cline shapes are also logistic the logit-logistic function is appropriate and 
estimation returns the truth. (d) When the zone cline shape is instead Cauchy (as in pane (a)) but the 
site cline shapes remain logistic, the logit-logistic function is not appropriate for inference: estimates 
are only accurate when the truth is close to the origin (site cline centre, widths resemble those of the 
zone cline). For other site clines, errors are large and there is no simple error correction: centre and 
width error eJects are not independent. Estimation procedure: For each true point a grid of parameter 
values was searched exhaustively for minimum diJerence between the logit-logistic function and 
genome cline shapes for 𝑈B = 𝑈𝑛𝑖𝑡𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 and (c) 𝑈A = 𝑈𝑛𝑖𝑡𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐, (d) 𝑈A = 𝑈𝑛𝑖𝑡𝐶𝑎𝑢𝑐ℎ𝑦. Eight 
estimations lie on the boundary of this parameter search grid, and so may represent even more extreme 
errors.  

-4 -2 0 2 4
c

1

2

3

4

w

c)

-4 -2 0 2 4
c

1

2

3

4

w

d)



Conclusions and future directions 556 
 557 
Cline shapes are intimately related to the shapes of location dispersal kernels, and this 558 
allows us to draw on more than a century of work on probability distributions as a source 559 
of, and perspective on, the shapes of cline and wavefront models.  560 
 561 
Most people find it easier to distinguish the bell shaped curves on the left of Figure 1, than 562 
to distinguish the s-shaped curves on the right, generated from those bells. A cognitive 563 
bias against distinguishing cline shape suggests decisions regarding whether clines 564 
shapes matter should be based on objective measures, such as whether shape 565 
diZerences aZect the results of inference ((Baird and Macholan 2012), Box 14.3). Here, 566 
we have seen evidence that cline shape matters not only for spatial and genomic cline 567 
inference (Figure 2, Box 2), but we are also reminded more generally, that the shape of 568 
dispersal kernels matters for the speed of spatial process, and that part of the gathering 569 
phase of the coalescent during which geographically distant coalescence is improbable 570 
(Box 1). 571 
 572 
Cline expectations are more diverse than can be usefully captured with two parameters 573 
{centre, width}; in particular, stepped and asymmetric shapes have biological 574 
importance as they can result from multilocus or non-standard forms of selection, and 575 
movement or asymmetric geneflow respectively. Further, here we have only considered 576 
the case where population density is suZiciently high that the eZects of drift on cline 577 
expectations are negligible. Where drift acts it is expected to steepen the centre of site 578 
clines, while widening the overall cline in hybrid index (Polechová and Barton 2011), 579 
suggesting again (as with Box 3) that assuming these shapes are the same is unwise. It 580 
seems a wide variety of (stepped) symmetric shapes can be smoothly captured at high 581 
fidelity with just two shape parameters (Figure 3), and perhaps reasonably approximated 582 
with just one shape parameter – the shape parameter of the Student’s-t distribution 583 
allows cline stepped-ness to be adjusted. The non-central Student’s-t allows variation in 584 
both stepped-ness and asymmetry, and captures Fisher’s wave of advance at high fidelity 585 
(Figure 2). It appears these continuous cline models allow better fits with fewer 586 
parameters than tripartite cline models, and computationally eZicient Python tools for T-587 
cline implementations are made available here: (Baird and Daley 2023). There is no free 588 
lunch: these potential advantages are at the cost of reduced interpretability of the fitting 589 
parameters, though cline fits can be projected onto the space of Figure 3, allowing 590 
comparison with classical models. While these developments may allow for 591 
improvements over the tripartite cline model commonly used for spatial clines, the 592 
inverse T-cline (Table 1) may also allow cline shape to be accounted for in genome cline 593 
approaches. 594 
 595 
Regarding our opening question: Why, after 30 years of searching, have so few stepped 596 
hybrid zones been identified? For spatial clines the answer remains unclear, but perhaps, 597 
asking simpler questions of better models with fewer parameters will allow us to decide 598 
whether stepped clines are actually rare, or just rarely proven. For genome clines, there 599 
is a simple answer: because we were not looking; there was no genome cline model of a 600 
stepped hybrid zone. We might hope that generalisation of genome clines such as 601 
proposed here would allow a similar resolution of the opening question, but this is by no 602 



means obvious because the way data is sampled has changed profoundly since Haldane 603 
first fit a cline to genetic data and estimated selection (Haldane 1948). It is now extremely 604 
rare that hundreds of genetic samples are gathered from the field. Instead relatively few 605 
genomes are gathered, and from them very many nucleotide variants (SNVs) are 606 
sampled. In spatial genetics the latter does not compensate for the former, because few 607 
genomes means few spatial sampling locations, irrespective of how many SNVs are then 608 
inspected. This is equally true for genome clines, because few genomes means few 609 
sampling locations on the global HI 𝑥-axis. In these circumstances cline shape may be 610 
reduced to a necessary, but nuisance, parameter. Further, we cannot simply scale up 611 
cline fitting to cover (and compare) data at every one of potentially millions of SNVs – 612 
aside issues of from computation tractability, there are only one or two recombination 613 
events per chromosome per generation, so neighbouring sites in admixture systems are 614 
clearly not independent witnesses of the evolutionary process (Baird 2015). Assuming 615 
they are independent will lead to overconfident inference. This highlights that, to make 616 
sound admixture inference over modern genomic data, the blockwise nature of 617 
admixture tracts must be recognised ((Shipilina, Pal et al. 2023, Ebdon, Laetsch et al. 618 
2024)). To estimate the boundaries of such tracts we should leverage every single SNV 619 
that   forms a cline – their non-independence under admixture is now a positive, not a 620 
negative, and it turns out that for genomic data, introgressing blocks become obvious 621 
when SNVs are co-polarised by their association, such that all their clines are rising (or 622 
all falling) (Baird, Petružela et al. 2023, Ebdon, Laetsch et al. 2024). The polarisation 623 
operation scales linearly with genome size and reports a ‘diagnostic index’ matching-624 
statistic between each SNV and a global estimate over individuals. This global estimate 625 
is a superset of the information necessary to plot a global cline in hybrid index, as it also 626 
contains the analogous global central bump in heterozygosity caused by admixture (cf 627 
𝑝"# in (Simon, Bierne et al. 2018)). Downstream inference can be targeted on regions that 628 
diZer from this global estimate.   If in future it becomes commonplace to genome 629 
sequence individuals sampled at very many diZerent field co-ordinates, then genome 630 
cline shapes may stop being a necessary nuisance, and start again to be of active 631 
interest. In the meantime it seems the data appetite of the questions we would wish to 632 
ask of genomic clines may best be fed blockwise, and relative to change in both hybrid  633 
index and heterozygosity (cf (Simon, Bierne et al. 2018)).  634 
 635 
Not all modern field sampling is directed toward high throughput sequencing of 636 
genomes. Advancing technology has also increased the potential throughput of 637 
geographic locations for measures of quantitative traits and genetic markers, in 638 
particular SNV assays such as KASP (He, Holme et al. 2014) allow for individuals from 639 
very many locations to be cost eZectively assayed for scores of genetic markers 640 
(Touchard, Cerqueira et al. 2024). Because clines in genetic and quantitative traits are 641 
governed by similar dispersal and selection processes, cline models apply equally to 642 
both (Barton and Gale 1993), and so, likewise, any developments in shaped cline models. 643 
True high throughput field sampling to take advantage of these developments risks 644 
however perturbing that which we wish to observe – slowing a wave of advance or 645 
narrowing a hybrid zone by reducing population density through destructive sampling, so 646 
if there is to be a renaissance in cline inference field studies, these new models and 647 
technologies should  be carefully coupled with the parallel advances that have been 648 
made in non-destructive sampling (Lefort, Boyer et al. 2015). 649 
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