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Abstract

Cline theory has a central place in speciation studies. Cline locations delimit taxon
boundaries, cline widths scale with barrier strength, and the shapes of clines (smooth or
stepped) suggest whether species barriers are mono- or polygenic. How cline shapes
vary along chromosomes therefore forms part of the genome species barrier landscape.
Further, asymmetric moving clines (wave fronts) can mark adaptive introgression
puncturing species barriers, potentially leading to their collapse or decay. Here we review
the development of cline and wavefront models and relate this to the use of dispersal
kernels in epidemiology and ecology. We contrast classical results to those for a thick-
tailed kernel, showing how cline shape affects the speed of spatial process, including the
widening of neutral clines and the spatial coalescent. We critique current cline models
used for inference (both spatial and genomic clines) and address Barton’s question: Why
(after decades of cline fitting) is there so little evidence of stepped clines? We suggest
evidence is weak because stepped cline models are over-parameterised. We propose
minimum parameter stepped cline models, and discuss non-parametric approaches,
that may help resolve the issue. This broadens to a discussion of the future of, and
alternatives to, cline fitting.

Introduction

“Those forms which possess in some considerable degree the character of species, but
which are so closely similar to some other forms, or are so closely linked to them by
intermediate gradations, that naturalists do not like to rank them as distinct species are
in several respects the most important to us.” (Darwin 1859)

“Although the early writers thought a good deal about the effects of geography and
dispersal [...], intense geographic differentiation and speciation was thought to require
some kind of island or complete isolation situation. Only in the last few years have
population geneticists become seriously concerned with the effects of gene flow in
continuous populations.” Endler ((Endler 1977), p3)

“How many genomic regions differentiate during speciation? How small are regions
where divergence significantly exceeds the genomic average ([...])? How are regions
of exceptional divergence dispersed around the genome? We suggest that recent
discussions of these issues in the context of ecological speciation would benefit from
closer attention to well-established cline theory.” (Abbott, Albach et al. 2013)


mailto:StuartJ.E.Baird@gmail.com

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

The first mathematical treatment of migration and selection in continuous populations
was by R.A. Fisher (Fisher 1937), who studied the wave of advance of favourable genes.
The nextyear Huxley coined the term ‘cline’ (Huxley 1938), and a decade later, by allowing
selection coefficients to depend on location, Haldane (Haldane 1948) developed an
equilibrium model of gene flow and selection in a cline, closely related to Fisher’s model
(Nagylaki 1975), and used it to estimate the intensity of natural selection in deer mice.
Thus wavefronts, clines, and inference from them, lie at the roots of the modern
evolutionary synthesis, and here we will use cline theory as a catch-all for this body of
work. While (Nagylaki 1975) was setting out to “relate clearly the theory of clines to the
diffusion methods [...] which have been very productive in population genetics”, tropical
ecologists were formulating a very different treatment of migration and selection: the
Janzen-Connell model (See(Terborgh 2020)) arose from the empirical observation that
seedfall is most concentrated around fruiting trees, whereas sapling recruitment fails
close to parent trees and succeeds at a distance. These and analogous empirical
observations inspired the use of dispersal kernels to summarise dispersal probabilities
in ecology (Nathan, Klein et al. 2012) epidemiology (Pybus, Suchard et al. 2012) and
invasion biology (Kot, Lewis et al. 1996, Lindstrom, Hakansson et al. 2011).

It would seem then that dispersal kernels should also appear at the heart of cline theory,
but this was not to be. This is because the diffusion method made famous by Einstein’s
description of Brownian motion (Einstein 1905), has an implicit dispersal kernel: the
Normal distribution. The first part of Einstein's argument was to determine how far a
Brownian particle travels in a given time interval. He found the density of particles at a
given time satisfies a diffusion equation, the solution of which is the Normal distribution,
a stable distribution which widens over time, changing scale without changing shape
(Figurela). In this way Einstein demonstrated that the displacement of a Brownian
particle increases with the square root of time (Einstein 1905). The mission of Nagylaki
and others to “relate clearly the theory of clines to the diffusion methods” (Nagylaki 1975)
tied early spatial genetics to the implicit Normal dispersal kernel of the Brownian particle
at the same time as ecologists were confirming early suggestions (e.g. (Bateman 1950))
that biological dispersal often differed from that of a Brownian particle, with thicker tails
than Normal (leptokurtotic). Despite discussion of a diversity of approaches (e.g.
(Diekmann 1978)), the parent-offspring displacement distribution, keystone of spatial
population genetics, was almost always described only in terms of a variance (a proxy for
scale, explored later) because it was implicitly assumed to only ever have one shape: the
Brownian Normal (Bateman 1950, Nathan, Klein et al. 2012). But Normal is just one
dispersal kernel-other kernel shapes are possible, and kernel shape makes a difference.

Neutral clines

The effect of dispersal kernels on cline shape can be illustrated in the neutral case by
contrasting two stable distributions for parent-offspring displacement: Normal vs
Cauchy (with thicker tails), and the clines they generate (Figure 1). As with the
displacement of a Brownian particle, the width of a Brownian cline increases with the
square root of time (Figure 1a,b). In contrast, the width of clines for the thick-tailed
Cauchy kernel increases faster — linearly with time (Figure 1c,d). If we were going to infer
time since neutral contact between populations from the widths of clines in traits, we
could reduce our error by co-estimating the shape of the clines. If we were going to infer
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the existence of a polygenic species barrier from stepped clines, we should be aware that
a thick-tailed dispersal kernel can give stepped (thick tailed) clines even in the neutral
case (Figure 1d). But we are getting ahead of ourselves: Figure 1 shows neutral clines
which are CDFs of stable location dispersal kernels, and the only selection mentioned so
far is that of Fisher’s wave of advance of an advantageous gene. While that work gave rise
to its own entire field of endeavour (Invasion Biology, (Skellam 1951, Kot, Lewis et al.
1996, Lindstrom, Hakansson et al. 2011, Phillips 2015)), it is selection against admixture
which has been key to understanding the body of cline theory most entangled with
speciation: hybrid zone clines.
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Figure 1: The neutral contact case for stable dispersal kernels over four discrete generations: Two
populations (purple arriving from x -ve, teal from x +ve) meet centrally and (left panes) their alleles spread
across the contact following a dispersal location kernel. Top panes: When the kernel is (a) the Normal
distribution PDF, the expected neutral cline is (b) the ‘sigmoid’ Normal Distribution CDF. The Normal PDF
(a) can be convoluted over generations to give the characteristic widening bell-shaped curves of the
diffusion of Brownian particles. The Brownian cline width (b) increases with the square root of time, as with
the displacement of a Brownian particle (Einstein 1905). Bottom panes: When the kernel is (c) the thick-
tailed Cauchy distribution PDF, the expected neutral cline is (d) the ‘stepped’ Cauchy Distribution CDF. The
Cauchy PDF (c) can also be convoluted over generations to give widening leptokurtotic curves. The neutral
Cauchy kernel cline width (d) increases linearly with time, faster than Normal. All panes: initial PDFs are
scaled (see Table 1) such that CDF clines have unit width at unit time. (Right panes) Cline widths are the
inverse of the central gradients of the CDFs, and so by definition equal to the denominators of the central
values of the PDFs (left panes). Only rising (teal) clines are shown; the complementary (purple) falling
clines are redundant, and omitted for clarity.
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Glossary (Conceptsin approximate order of first occurrences, as underlined in the text)
PDF: Probability density function
CDF: Cumulative distribution function. In 1D: convolution of a step function with a PDF.

Dispersal kernel: The contribution of a specific core (source point, parent, parental copy) to the re-
organisation of certain units (e.g. offspring) in a larger entity (population). See (Nathan, Klein et al. 2012)
for history and proposed usage in ecology and evolution. Herein ‘dispersal kernel’, unless otherwise
stated, will mean dispersal location kernel.

Dispersal location kernel: The PDF for the end location of a dispersal vector. In an n-dimensional field
areathisis an-dimensional PDF (See Box 1, first pane). The Normal dispersal location kernel has a zero-
centred bell shape in any dimension.

Dispersal distance kernel: The PDF for distance covered by a dispersal vector. (See Box 1, second pane).
No information is lost when summarising a radially symmetrical dispersal location kernel in any
dimension as a dispersal distance kernel of one dimension. The Normal dispersal distance kernelis a
half bell shape in 1D, but this shape changes as the mode shifts away from zero in higher dimensions.
Effective dispersal kernel: the dispersal location kernel as observed after the effects of selection.

Shape of a distribution: All moments of a distribution other than the first two, location and scale. This
leaves skewness (asymmetry), kurtosis (thick-tailed-ness), and further moments with increasingly
subtle descriptions. Kurtosis exceeding that of the Normal distribution is leptokurtosis.

Cline width: The inverse of the maximum gradient of a smooth change in trait.

Cline centre: The turning point of maximum gradient of a smooth change in trait.

Shape of a cline: By analogy with the shape of a distribution, all aspects of a cline other than centre and
width. In particular asymmetry and stepped-ness (leptokurtotic kernel distributions give rise to stepped
clines, figure 1c,d).

Unit cline: A zero-centred cline of unit width (unit central gradient). Distinct unit clines differ only in

shape. Any unit cline U(x) can be {recentered,rescaled} to any {centre,width}{c, w} as U ( ) See unit

time clines in Figure 1, black and grey zone clines in Box 1.
MAD: Maximum absolute difference: a comparison of two functions across a set of points. Here, unless
otherwise stated, unit clines are compared for points —4 < x < +4; Ax = 0.01, i.e. over 8 cline widths.

Stable distributions: A distribution is stable if a linear combination of two independent random
variables with this distribution has a distribution of the same shape, i.e. differing at most in location and
scale parameters.

Convolution of a distribution: A linear combination of n independent random variables with this
distribution has a distribution described by its n-fold convolution. The 2-fold convolution of 1D
continuous dispersal kernel k() is k,(x) = [ k(2). k(x — z) dz (note that for all values of z the sum of
the arguments of k is x). Only stable distributions do not change shape under convolution. Only a small
proportion of distributions have analytic solution under convolution, however convolution is simple to
approximate to arbitrary accuracy by simulating (large) arrays of random variates and adding them.

Exogenous/endogeneous (extrinsic/intrinsic) selection: The cause of exogeneous selectionis tied to the
environment (e.g. taxa or genes are adapted to different regions or niches). Endogeneous selection is
caused by genome interactions independent of environment. See (Kruuk, Baird et al. 1999) on
expectations for clines maintained by endogeneous vs exogeneous selection.

Tension zone: A hybrid zone maintained by endogeneous selection, and thus free to move across the
environment. Tension zones move down density gradients to become trapped in density troughs or at
physical barriers to geneflow (Barton 1979).

Indirect selection: Change in allele frequency at one locus due to selection acting at another locus (or
loci) in statistical association (linkage disequilibrium). As admixture generates linkage disequilibrium
genome-wide, indirect selection will affect unlinked loci. Calling indirect selection ‘linked selection’ is
therefore unnecessarily confusing (Stankowski, Chase et al. 2019).
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T(v)

Table 1: Symmetric UnitClines and their inverses. ‘Scale’: For distribution ¢, CDF[p(Scale),x] =
UnitCline,[x]. Blue: alternate forms. MAD Maximum absolute difference (between a UnitCline and the
closest T-cline). Key to functions: {Erfc, Erfc~1} the complementary error function and its inverse; Tan
tangent; Log natural logarithm; Tanh Hyperbolic tangent; Sgn[x] the sign function; {I,, I~1} the incomplete
beta function and its inverse( I7Y L[a,b] ,a,b] =z,

Z‘l(z(x)) =x ); B the beta function.
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Selection

Can selection against genome admixture arrest the ever-widening neutral clines of Figure
1(b,d) to produce a stable ‘gradation’ between populations of the sort Darwin envisaged
in the opening quote? For the Normal dispersal kernel, diploid genomes, no
recombination, and selection against F1s, Bazykin showed the answer is yes (Bazykin
1969). Bazykin’s selection-stabilised clines can also be described in terms of free
recombination with selection against heterozygotes at one single locus. This might seem
a simpler description, but it must be caveated that no indirect selection is acting.
Because admixture generates genome-wide associations across loci (Baird 2015),
potential sources of indirect selection could lie anywhere in the genome, and so the
Bazykin cline, when framed in terms of heterozygotes, is an expectation for the causal
locus of a monogenic species barrier. In both these framing of the Bazykin result, only
one non-recombining genome region is under selection, and only three genome types are
distinguished: two pure and one eqi-admixed (a heterozygous diploid locus or an entire
F1 individual’s genome). Selection against the admixed type arrests cline spread and
distorts the equilibrium cline shape from that of the neutral Normal CDF to that of the
CDF of the logistic distribution (See Table 1). Despite this change in shape both Normal
and logistic clines are called sigmoid. The Bazykin result applies at two recombination
extremes, and it is useful to bear both in mind, for while a species barrier maintained by
selection against heterozygotes at a single locus may sound infeasible, one maintained
by selection against F1 individuals, genome wide, may not. At the F1 extreme the
potential for indirect selection is maximal because cis associations between all genes in
diverged genomes are maintained, while every site of the genome is heterozygous by
source. Then, even in the presence of recombination, strong selection against F1-like
individuals will reduce the effective recombination rate, slowing the decay of pure cis-
genome associations, and increasing the potential for indirect selection at multiple loci
to further distort cline shape. The paths of these initial changes in multilocus cline shape,
dependent on both hybrid indices and degree of heterozygosity by source, are spatially
explicit cousins of the paths taken through Fisher’s geometric fitness space during
admixture (Simon, Bierne et al. 2018). Returning to the no-recombination case, Bazykin
not only demonstrated a spatial dispersal-selection equilibrium existed, but also
calculated, to a weak selection approximation, the expected width of his clines as 2—‘;, S

being the selection acting against heterozygotes and o, the scale of per generation
dispersal (see Box 1). With hindsight, and on considering the effects of kernel shape, we
see the expected width of a cline maintained by Bazykin selection will depend not only
on the selection acting, but also on the dispersal kernel shape.

While (Nagylaki 1975) showed that Haldane’s (Haldane 1948) exogeneous cline could be
recast as a special case of a Fisher wavefront, it was Barton ((Barton 1979)a, section 3:
(i)) who pointed out that there is a family of solutions between Bazykin’s endogeneous
symmetric cline and Fisher’s (endogeneous) asymmetric travelling wave, depending on
whether two pure genome types are equally fitter than their admixed type. Equality gives
the symmetric Bazykin cline, inequality, traveling clines moving toward the less fit pure
type. Barton (Barton 1979)b also showed that selection on multiple loci (a polygenic
barrier) distorts cline shape through indirect selection, steepening the cline centre
relative to its tails to produce stepped clines. In fact, in those two seminal 1979 papers
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Box 1: Scale, speed and neighbourhood size. Scale What are the natural units of cline width? Most
biologists would suspect a 1 km wide hybrid zone (HZ) is narrow for birds, but wide for snails, i.e. a cline is
not narrow or wide based only on its width in Sl units. Instead we use units specific to the study organism:
the per generation scale of dispersal o (a length, smaller for snails, larger for birds). Setting the origin of a
frame of reference at a parent, a zero-centered radially symmetrical multivariate PDF can be used to define
184 a dispersal location kernel K with
185 scale o for offspring: Here, the field
186 area hasn = 2 dimensions (e.g. {x,y})
187 measured in g, and two offspring of
188 7 the same parent are joined by a line
189 ' length d. The 1 km HZ is narrow for
190 birds if their ¢ is >>1 km, and
191 conversely wide for snails if their o is
192 << 1km. If we measured bird and snail
193 HZs in ‘natural’ o units, and they had
194 similar histories, governed by similar
195 processes, then they would have
196"  similar width. This is how cline theory
197 ‘scales’ over diverse study systems.
198 The distance d between two offspring
199 of the same parent follows the
200 dispersal distance kernel found by
201 sampling two location vectors from K
202  and adding them to derive K,, the 2-
203  fold convolution of K. Speed For the
204  stable distributions in Figure 1, the t-
v 205  fold convolution can be expressed for

any dimension n of field area:

Here the PDFs are Normal Cauchy
S(n,d)K,(n,d) for the -
respective kernels, and are -1 ‘ N7

plotted for n=t=2 where ‘ - ., ot ot
S(n,d) is the surface area of the S(n.d) (2;;2)"/2 | HT)W

n-sphere radius d. The position
of the modal distance (black
verticals) shows us how the
spatial scale of a chain of
inheritance increases over time: linearly for the Cauchy kernel, but with the root of time for the Normal
kernel, generalizing the (Figure 1) observation that different kernel shapes give different speeds of process,
from the widening of clines in 1D, to spatial inheritance in any dimension of field area. This has
consequences for the rate of coalescence. Neighbourhood size As the probability of pairwise

coalescence in the previous generation, in an idealised population without spatial context, is %, so in an
idealized spatial population, for the two offspring above, this coalescence probability is % K,(n,d). N is
population size, p population density (per spatial extent), and K,(n,d) expresses how pairwise parent
sharing probability falls off with distance d in n dimensions. We can remove the dependance on distance
by letting d tend to zero (offspring found in contact). Then, for a 2D field area and Normal dispersal, this
coalescence probability is ?;2, the inverse of Wright’s neighbourhood size. For a 2D field area and Cauchy

dispersal, the inverse of the neighbourhood size is W;; the rate of coalescence is halved by changing the

shape. Neighbourhood size is affected by both the dimension and shape of the dispersal kernels as
2"t™/2p o™ and 2" (D/2p g™ (1) respectively. Note 1: The scale o is always raised to the dimension
of spatial extent, whereas the density is always per spatial extent, leaving neighbourhood size a non-spatial
quantity commensurate with population size N. Note 2: The Normal distribution is special in that its
variance is equal to its scale squared: 0. Where other dispersal kernels are considered, the variance is no
longer a useful proxy for scale.
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Barton laid out the properties of spatial genome admixture as we understand it today,
and went on to show, with Hewitt (Barton and Hewitt 1985), that the majority of hybrid
zones had cline widths too narrow to be consistent with maintenance at the scale of
environmental change (as explored by Haldane), and so instead were likely to be tension
zones maintained by endogeneous barriers. Here we see how deeply species and cline
concepts can become entangled, as it is tempting to define species as only those taxa
kept distinct by intrinsic barriers (all other barriers being context dependent, and
therefore potentially ephemeral). Arguments for a more operational taxonomy (e.g.
(Mallet 1995)) have largely fallen on deaf ears, with one exception: It appears acceptable
to describe multilocus endogeneous barriers as species barriers irrespective of how
taxonomists rank the organisms on either side (see (Krieber and Rose 1986) e.g. Mus
‘subspecies’ (Albrechtova, Albrecht et al. 2012)).

With (Barton 1979)a came the possibility of inferring the existence of a multilocus
species barrier (polygenic selection) by deciding whether or not an observed cline had a
steepened central portion. (Barton and Bengtsson 1986) developed a continuous explicit
model of stepped cline shape, and (Kruuk, Baird et al. 1999) went on to show this stepped
shape was similar whether multilocus selection was endogeneous or exogeneous. The
Kruuk result is not for one cline shape, but rather a continuum of multilocus stepped
shapes with the Bazykin shape at the single locus limit. In the meantime, (Gavrilets 1997)
had shown how viability selection, even acting on a single locus, can also result in
stepped cline shapes. As with Kruuk, the Gavrilets result is for a continuum of stepped
shapes, Bazykin-shaped at one extreme of the selection model, but with the CDF of the
Student’s-t distribution (with 2 degrees of freedom, or shape parameter 2) at the other
extreme ((Gavrilets 1997) Equation 14a). | will use T (2) to refer to the unit cline with the
shape of this CDF (see Table 1).

All of these selection cline results assume the Normal dispersal kernel implicit in the
diffusion method. Together with the previous section we now see that stepped cline
shapes can be expected with or without selection (given variation in dispersal kernels),
and with or without multiple loci (for Normal dispersal kernels, given a diversity of
selection regimes). What then can we hope to infer if we observe a stepped cline shape?
Further: Neither the Kruuk nor the Gavrilets stepped result is even expressed as a cline
function that could be fitted to data —this is why they have no entries in Table 1. The Kruuk
result ((Kruuk, Baird et al. 1999) eq. 14) is in the form of an ordinary differential equation
parameterised by a coupling coefficient ¢ = (L — 1); summed over the joins between L
loci. Instances of the equation can be numerically solved using e.g. the NDSolve tool in
Mathematica (Wolfram Research 2019). The Gavrilets result ((Gavrilets 1997), Eq 14b)
takes the form of the inverse function of a cline g~1(C, p) = x which, unlike the functions
in Table 1, itself has no obvious inverse. Instead Gavrilets clines can be numerically
approximated by tabulating {g~1(C,p), p} over values of p and interpolating. When we
talk of stepped clines then, what is our model?
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Cline models and inference

While Haldane himself said he lacked sufficient data to support estimates of cline
parameters for deer mice, he dedicated a large section of his discussion on how data
hungry such estimates are (Haldane 1948). An exemplary field sampling effort and
allozyme allele counting allowed estimates of the parameters of a stepped cline between
Bombina subspecies (Szymura and Barton 1986, Szymura and Barton 1991), a model-
based analysis that set the paradigm for hybrid zone inference software for decades
(Analyse, (Baird and Barton 1995), ClineFit (Porter, Wenger et al. 1997), Cfit (Gay, Crochet
et al. 2008), HZAR (Derryberry, Derryberry et al. 2014)). That original stepped cline model
is a tri-partite composite (see Figure 2) of a ‘sigmoid’ (logistic) central portion joined to
exponential tails (Szymura and Barton 1991). There are four shape parameters
corresponding to a barrier strength and a tail decay rate in either direction. This allows for
both cline asymmetry and central steepening using parameters that have direct
interpretation for evolutionary process. Further, likelihood comparison with simpler
nested models (where parts of the parameter vector are fixed) allows powerful likelihood
ratio tests for asymmetry and stepped-ness (e.g.(Macholan, Munclinger et al. 2007)). The
inference framework built around the tripartite model allowed stepped clines to be
identified in several further field systems, Podisma (Barton and Gale 1993),Pontia (Porter,
Wenger et al. 1997), Mus (Macholan, Munclinger et al. 2007)), but perhaps not as many
as expected under null (multilocus, polygenic) models of speciation (Barton and
Charlesworth 1984). Thirty years after demonstrating the Bombina zone was stepped,
Barton commented on the paucity of further examples “This may be because dense
spatial sampling is needed to identify a step, but more likely is because the genetic map
is typically long enough that selection does not often maintain a strong barrier.” (Barton
2020). The first potential explanation is the data hunger noted by Haldane, the second
refers to the balance between selection against admixture, and recombination, which
admixes genomes (hence the coupling coefficient of the Kruuk result). Recombination
breaks down the linkage disequilibrium generated by admixture and/or epistasis,
weakening indirect selection and opposing epistatic selection. A given amount of
selection against admixture might then be overwhelmed by a long genetic map (high
recombination). While it is clear how this applies when selection and recombination are
each described by a single parameter (Barton 1983, Baird 1995, Kruuk, Baird et al. 1999),
it is less clear when both selection and recombination densities vary along the genome
(Martin, Davey et al. 2019, Stankowski, Chase et al. 2019). Here instead we explore a
third potential explanation for the paucity of stepped cline observations. Sampling data
is not the only thing needed to identify a step: one also needs the model of what a
stepped cline is, and how that differs from a non-stepped ‘sigmoid’ cline. The more free
parameters this model has, and the greater the distance between the model and the
process generating the observations, the less power available to infer a step. The
flexibility of the tripartite stepped model is in natural trade-off against both high
parameter numbers and distance from ‘reality’. It has four free parameters for
asymmetric stepped shape whereas the analogous distribution-shaping moments are
only two: skewness and kurtosis; it also has two discontinuities where its parts join,
corners that are not a feature of the underlying expectations (Fitzpatrick 2013) (Contrast
the 2-parameter T-cline fit to a tripartite fit in Figure 2); further, as the ‘sigmoid’ central
portion of the tripartite cline is the logistic CDF for selection against admixture, the
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neutral shape of the ‘sigmoid’ Brownian cline is not strictly nested within the tripartite
model. This might sound merely a technical issue, but modelling the neutral case using
the Bazykin cline, but no selection, returns a flat line of p = 1/2 everywhere. This is
because the Bazykin resultis for equilibrium, and the equilibrium for no selection against
admixture is (eventual) infinite spread.

Stepped clines with fewer parameters?

We have shown a relationship between dispersal kernels (PDFs) and clines (CDFs). If
probability distribution leptokurtosis and skew can be expressed as two moments,
perhaps cline stepped-ness and asymmetry can be expressed with just two parameters?

T-clines Each cline result touched on to this point has been linked to the CDF of a
probability distribution modelling either a dispersal kernel, in the neutral case, or for the
Bazykin case, an equilibrium post-selection effective dispersal kernel (The exception
being the asymmetric Fisher wave). Three of these CDFs are unified within the Students-
t distribution: The neutral stepped Cauchy cline of Figure (1) is shape T(1), the Gavrilets
single locus stepped extreme is shape T(2) and the sigmoid Brownian cline shape is
shape T(o). This suggests the continuous shape parameter v of the Student’s-t
distribution (whose whole numbers correspond to degrees of freedom), a parameter
which smoothly alters PDF kurtosis, could be used as a stepped-ness parameter for a
continuum of CDF cline shapes T (v) from Brownian neutral ‘sigmoid’ to extreme stepped
T(0 < v < 1). Further, the non-central Student’s-t distribution can be re-expressed (For
this and other mathematical details, see the Supplementary Material) with an asymmetry
parameter a, giving a plane of cline shapes T (v, «) from Brownian neutral to stepped and
from left biased (a < 0) through symmetric (@ = 0) to right biased (a > 0).

This T-cline model reduces the four tripartite cline shape parameters to two, has no
discontinuities and includes both the neutral case and one extreme of the Gavrilets
continuum. T (v, @) as a model of the Fisher wave is shown in Figure 2: the maximum
absolute difference (MAD) between T'(8.365,1.367), for any value in (Fisher 1937) table
IV is <0.001. This is in contrast to the best fit tripartite model at MAD 0.018. All these
features of the T-cline as a shape model are encouraging, however the tripartite model’s
potential to estimate distinct barrier strengths in each direction has been sacrificed, the
biological interpretation of the T (v, «) parameters (away from matches to existing cline
theory) is approximate or unclear, and the relationships between the symmetric T (v)
model and the Kruuk and Gavrilets step continua remain unexplored.

The Students-t is not the only candidate distribution for expressing stepped-ness and
asymmetry of clines; the generalised Logistic with parameters (1,1) matches logistic
shape, where the Students-t has no exact match. The Kruuk, Gavrilets shape continua
results start with that shape at their sigmoid extremes; perhaps one or the other follows
the shape of the generalised logistic as they become more stepped? To explore such
possibilities and decide between shape models it seems best to construct a shape space
within which all the clines discussed thus far can be compared. Previous cline shape
comparisons (Barton and Gale 1993, Gavrilets 1997) have focussed on zero-centred
width-rescaled clines as here (UnitClines, though Gavrilets chose to rescale to half
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width), then Logit transformed. The Logit function is the inverse of the Logistic CDF, and
so the transformed Logistic (Bazykin) cline is linear, other shapes deviating from linearity
(Figure 2.2, (Barton and Gale 1993)). However, these deviations remain difficult to
interpret, and the justification for comparing all other cline shapes to Bazykin is
weakened when (i) we see other clines also have simple inverses (Table 1) and (ii) we
remember the special (Normal kernel) nature of the Bazykin result. Instead, here we seek
a shape comparison framework ‘outside’ of all the cline shapes we wish to compare.

I L L distance
-10 5 10

Figure 2: Fitting models to the shape of Fisher’s wave of advance. Blue points: Fisher tabulated values for
the wave of advance in Table IV, (Fisher 1937). This is an asymmetric cline of {centre,width} {c,w} =
{0.256,8.110} as estimated from Fisher’s table. The centre is marked with a black vertical line. Green line:
Degrees of freedom 8.365 and non-centrality 1.367, parameters of the Student-t distribution PDF, can be

used respectively to shape stepped-ness and asymmetry of the cline T(XW;C,B.365,1.367) that differs

nowhere by more than 0.001 from the Fisher values (MAD 0.001). Red line: A tripartite cline fit to the Fisher
data. Vertical grey lines mark joins between the central logistic part and exponential tails. The right hand
join is shown for the best fit, the best fit left hand join falls further to the left than shown (out of frame), but
least squares fitting with {c, w} and all four shape parameters (two for each tail) free to vary only achieves
MAD 0.018, due to a poor match at the best fit ‘corner’ marked by the right hand grey vertical.

A continuous model of barrier effects: The T-cline model is a re-expression of existing
probability distribution results. In this section we take an approach closer to the
development of the tripartite cline model: We construct a cline model from simpler
building blocks. This differs from the tripartite cline in that it is continuous, i.e. without
joins or ‘corners’. It differs from the T-cline in that it requires two variables, not one, to
parameterise stepped-ness.

Barriers to geneflow have units of distance, may be found at cline centres, and are
expected to change the shape of clines (Barton and Bengtsson 1986). Suppose the effect
of a barrier to gene flow is, from the gene perspective, to increase the ‘subjective’
distance experienced when crossing the cline centre. Box 2 shows how such amodelcan
be developed, and Figure 3 places all the symmetric cline shapes, and continua of cline
shapes, discussed thus far in the context of this lamdal barrier effect model.
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407 Box 2: ‘lamdal’ model of continuous cline shape
408 We seek a continuous approximation to a stepped unit cline, assuming a barrier distorts the gene’s eye
409 view of distance travelled during geneflow. First, exploring the exact nature of such a distortion, suppose
410 unit cline Uy is ‘sigmoid’ and U, is stepped. By the nature of inverse functions
411
@ 1 412 Ux (UR*(Uc())) = Ue(x)
413
414 Uy(f(x)) =Uc(x);  f(x) = Uy*(Uc(x))
”// ////////// 415
) 4 416 Here f(x) is an exact distortion of distance x
417 such that sigmoid Uy becomes stepped U,. (a)
g 418 Red lines connect points of equal p on two unit
419 clines, above UnitNormal, below UnitCauchy.
. - 420 (b) Red points are the x-coordinates of the ends
421 of each red line in (a), the black line is f(x) for
422 these two cline shapes. Under this distance
Red ine x @ blue 423  distortion UnitNormal becomes UnitCauchy.
(b) 424
425 The form of f(x) suggest a two parameter
o5t 426 approximation to the distance distortion for
427 stepped cline shapes in general:
S 5 2‘ 4‘ Red\mexéﬂzng
429
430 fO) = fr,(x) =X+ A(Up(X/D) — Ug(0));
431 X=——
1.0l l
432
433
The ‘lamdal’ (A,1) distorted distance increases linearly other
than with the central effects of Ugz(*), a barrier UnitCline p-
recentered by Ugz(0), rescaled by [ and reweighted by A.
Distance is rescaled x — X such that any UnitCline will retain
unit width under lamdal distortion. (c) shows the (red) space in
~ which lamdal distortion of UnitClines results in (monotonic
rising) UnitClines. The apparently simple form of the lamdal
approximation suggests simple interpretation of { 4, [}, but the
valid (red) space in (c), which includes negative values of both
arguments (due to the x — X rescaling) belies this suggestion;
the lamdal approximation is instead best interpreted in the
context of how it fits to known cline shapes, as in Figure 3.
448
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Figure 3: A comparison of cline shapes. Fits to cline shapes are plotted on the plane formed by the
{1, 1} parameters of the lamdal barrier effects model UnitNormal (f,u(x)), with Up = T(0.15), (See Box
2). Goodness of fit is shown in colour, with a key to levels of maximum absolute difference (MAD). Sigmoid
shapes are found toward the top (single locus selection against admixture, Bazykin; high v Student-t
and high a generalised logistic). Stepped shapes are to the bottom and left (single locus viability
selection Gavrilets with C — oo, the neutral Cauchy kernel, multilocus admixture selection Kruuk with
high ¢). The Gavrillets and Kruuk continua are shown for a series of numerical integrations of their
relevant parameters. The T-cline and generalized logistic results are analytic.
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The lamdal model captures sigmoid and barrier cline shapes well where colours are cool
in Figure 3. It becomes a poor approximation on the generalized logistic continuum as
cline shape tends to that of the Laplace (double exponential) distribution. It becomes
poor on the Kruuk continuum when the summed coupling exceeds ~10. Itis areasonable
approximation throughout the Gavrilets continuum. It is a poor approximation to T-cline
shapes of intermediate v, e.g. Cauchy and T2. While the spatial population genetics
continua of cline shapes cross paths with the shapes of CDFs of known probability
distributions, they do not align. In the lamdal space of figure 3 the former run horizontally,
the latter more vertically. It therefore seems unlikely that there is an oven ready CDF
waiting in the literature for us to discover and use as a model that will better embody the
notion of smooth stepped clines for inference. Of the two CDF continua in Figure 3 the T-
cline family appears preferable for inference, as it allows for both neutral cline shape (at
high v) and stepped shape, whereas the generalized logistic distribution terminates at
Laplace shape. It also seems that an analytical solution unifying the Kruuk and Gavrilets
notions of stepped clines, and generalizing this over diverse kernel shapes is not on the
horizon. We can however fit the lamdal model to data and see where the shape
parameter estimates fall in relation to these existing results (See Supplementary
materials).

The lamdal model naturally extends to the asymmetric case when we allow its central
barrier UnitCline to be asymmetric, for example defined by an asymmetric T-cline such
as in Figure 2. In fact, the lamdal model should not be used for inference without this
possibility of asymmetry. In Figure 3 we use the lamdal model to compare the shapes of
clines known to be symmetric, our first visualization of how the various models of cline
shaperelate to each other. The situation for inference is qualitatively different. If we make
an assumption of symmetry during inference, and we are wrong, then even estimates of
cline centres and widths can be mis-inferred ((Baird and Macholan 2012), Box 14.3). This
issue of mis-shapen mis-inference, like the data hungry nature of cline fitting, will not go
away no matter what perspective we take, and this can be illustrated in the context of
genome clines.

Genome clines

Suppose we infer a sigmoid symmetric cline 1 km wide as in Box 1, but the field data is
insufficient to distinguish between a Normal sigmoid shape and a Bazykin (logistic)
sigmoid. The data are then consistent with two very different scenarios: either a 1 km
cline is being maintained by e.g. Bazykin selection (and we do not for how long) or a
neutral cline has expanded in width to 1Tkm (and we do not know how long this took). If
we knew the per generation dispersal scale of the organism, then we would be able to
estimate the selection acting, or the time since contact. (If we also knew the real time
since contact, we might find the estimated time implausible, and finally be able to decide
between the scenarios: selection must be acting). Unfortunately, the key to unlocking
such evolutionary puzzles g, the natural measure of spatial processes such as hybrid
zones, is notoriously difficult to measure. Just as with cline studies, capture-mark-
recapture studies are notoriously data hungry, and do not actually report on per
generation o, but rather within-generation movements. These two can obviously be very
different even within the same organism, for example migratory birds with high nest-site
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fidelity (Ruegg 2008), leaving direct estimates of g difficult, and the scenarios we can
resolve through cline fitting reduced.

Where there is poor prior knowledge of the per generation scale of dispersal, an
alternative is to measure trait cline widths relative to a global estimate, a kind of outlier
scan analogous to Fst scans (but using a statistic that does not confound dispersal with
diversity). It is perhaps this idea that has driven exploration of Barton’s ‘concordance’
transform (Szymura and Barton 1991), where the distance axis of a cline is substituted by
a global hybrid index (HI) axis. This was suggested as a convenient relative {centre, width}
comparison of clines where geographic sampling coordinates were difficult to interpret,
and has been used, for example, to compare hybrid indices of parasites and their hosts
(Gouy de Bellocq, Ribas et al. 2018). The distance—HI axis replacement was further
developed as the genome clines approach ((Gompert and Buerkle 2009, Gompert and
Buerkle 2012), see (Macholan, Baird et al. 2011) for comparison with concordance). It
has been suggested the convenience of the axis replacement extends to the case where
“the geographic model [...] takes a more complicated form than the simple logistic
function, for example, when clines are asymmetric or stepped” (Fitzpatrick 2013),
presaging a surge in genome cline fitting software (Bailey 2024, Gompert, DeRaad et al.
2024), but this suggestion is over optimistic: no {centre, width} cline model can capture
variation in cline shape, and using a model with the wrong shape leads to genome
landscape mis-inference (Box 3). The logit-logistic genome cline model proposed by
(Fitzpatrick 2013) is not freed of assumptions by a change in x-axis: in fact it implicitly
assumes the shapes of two clines: one in (genome-wide) hybrid index, and one in trait
frequency. A generalised genome cline (Box 3) relaxes this assumption to cases where
the genome-wide cline functionisinversible, and Table 1 details invertible cline functions
of different stepped-ness, allowing a generalised genome cline approach to be applied
assuming a variety of symmetric hybrid index cline shapes, and even stepped and
asymmetric T-clines.

What would be the knock-on effects of extending the genome cline model to one that
allows for a better match to a globally asymmetric stepped hybrid zone such as the house
mouse hybrid zone (Macholan, Munclinger et al. 2007)? First and for most, any ‘free
lunch’ impression that genome clines allow confident estimates with little spatial
sampling of a hybrid zone will likely be reduced, because fitting more parameters
requires more data, and may reveal confidence to be overconfidence. Second, we might
expect the variance in cline centre and width estimates to be reduced, because shape
mis-match effects such asthose in Box 3 should be minimised. From this perspective the
shape parameters of hybrid zones are now acting as nuisance parameters, uninteresting
for the comparison of trait clines with each other, but necessary if the widths and centres
of those trait clines are to be comparable, and estimated without overconfidence. This is
not to say that the overall shape of a hybrid zone or genomic wavefront is uninteresting,
but rather to recognise that intensive field sampling has now often become the most
expensive, and potentially controversial, part of such analyses.
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BOX 3: Genome clines

admixture proportion (Hl and p;)

a) 1

1 1 zone cline

HI

distance (x)
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a) Black curve: a multilocus (genome wide) hybrid index (HI) changes across a hybrid zone. The spatial
units are scaled and offset so that this is a unit cline U, (x). Blue curve: allele frequency at site i changes
as cline U; ( :

curve: illustrating a zone cline of an alternate shape; the black curve is Cauchy, the grey logistic.
b) (inset) The curves of pane (a) when the distance axis is replaced with zone hybrid index. One further
(teal) curve is shown: the blue site cline of (a) when the alternate (grey) zone cline shape is assumed.

X—Cj

). The site cline is w;-fold wider than the zone cline and offset by distance c; . Grey

Switching x-axes. (a) The distance x coordinate of the site cline can be replaced by the HI coordinate of
the zone cline. Red arrow: applying the inverse of the zone cline to a hybrid index gives a zone x

coordinate x, = U;1(HI). Green arrow: applying the site cline at this x coordinate gives a site allele

frequency p; = U; (XZ—_C‘) Putting these two steps together, distance x is replace by HI in a generalised

wi
genome cline
U7Y(HD) —¢;
pi=U; (—l

wi

If both cline shapes {Uy,, U;} are logistic, the inverse U; ! is a rescaled logit function and this is the "logit-
logistic" special case genome cline, equation (4b) of (Fitzpatrick 2013), used by (Gouy de Bellocq, Ribas
et al. 2018), and implemented in softwares gghybrid (Bailey 2024) and bgchm (Gompert, DeRaad et al.
2024):
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BOX 3: Genome clines (continued)

Site cline shape expectations can vary along the genome, and the zone hybrid index shape may be
stepped and/or asymmetric. The two parameters {u;, v;} of a logit-logistic genome cline are insufficient
to capture this richness of cline shapes variation.

w w

c) I d) A =
i

L 4

S ~ A

AR SR \.Ui.

Misinference using the logit-logistic function: (c,d) True site cline parameter points {c, w} are plotted in
yellow, estimates of them are plotted in purple; when an estimate and a truth coincide, that point
becomes brown. When estimate and truth differ, an arrow joins truth to estimate. (c) When the zone
cline shape is logistic and site cline shapes are also logistic the logit-logistic function is appropriate and
estimation returns the truth. (d) When the zone cline shape is instead Cauchy (as in pane (a)) but the
site cline shapes remain logistic, the logit-logistic function is not appropriate for inference: estimates
are only accurate when the truth is close to the origin (site cline centre, widths resemble those of the
zone cline). For other site clines, errors are large and there is no simple error correction: centre and
width error effects are not independent. Estimation procedure: For each true point a grid of parameter
values was searched exhaustively for minimum difference between the logit-logistic function and
genome cline shapes for U; = UnitLogistic and (c) U, = UnitLogistic, (d) U, = UnitCauchy. Eight
estimations lie on the boundary of this parameter search grid, and so may represent even more extreme
errors.
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Conclusions and future directions

Cline shapes are intimately related to the shapes of location dispersal kernels, and this
allows us to draw on more than a century of work on probability distributions as a source
of, and perspective on, the shapes of cline and wavefront models.

Most people find it easier to distinguish the bell shaped curves on the left of Figure 1, than
to distinguish the s-shaped curves on the right, generated from those bells. A cognitive
bias against distinguishing cline shape suggests decisions regarding whether clines
shapes matter should be based on objective measures, such as whether shape
differences affect the results of inference ((Baird and Macholan 2012), Box 14.3). Here,
we have seen evidence that cline shape matters not only for spatial and genomic cline
inference (Figure 2, Box 2), but we are also reminded more generally, that the shape of
dispersal kernels matters for the speed of spatial process, and that part of the gathering
phase of the coalescent during which geographically distant coalescence is improbable
(Box 1).

Cline expectations are more diverse than can be usefully captured with two parameters
{centre, width}; in particular, stepped and asymmetric shapes have biological
importance as they can result from multilocus or non-standard forms of selection, and
movement or asymmetric geneflow respectively. Further, here we have only considered
the case where population density is sufficiently high that the effects of drift on cline
expectations are negligible. Where drift acts it is expected to steepen the centre of site
clines, while widening the overall cline in hybrid index (Polechova and Barton 2011),
suggesting again (as with Box 3) that assuming these shapes are the same is unwise. It
seems a wide variety of (stepped) symmetric shapes can be smoothly captured at high
fidelity with just two shape parameters (Figure 3), and perhaps reasonably approximated
with just one shape parameter — the shape parameter of the Student’s-t distribution
allows cline stepped-ness to be adjusted. The non-central Student’s-t allows variation in
both stepped-ness and asymmetry, and captures Fisher’s wave of advance at high fidelity
(Figure 2). It appears these continuous cline models allow better fits with fewer
parameters than tripartite cline models, and computationally efficient Python tools for T-
cline implementations are made available here: (Baird and Daley 2023). There is no free
lunch: these potential advantages are at the cost of reduced interpretability of the fitting
parameters, though cline fits can be projected onto the space of Figure 3, allowing
comparison with classical models. While these developments may allow for
improvements over the tripartite cline model commonly used for spatial clines, the
inverse T-cline (Table 1) may also allow cline shape to be accounted for in genome cline
approaches.

Regarding our opening question: Why, after 30 years of searching, have so few stepped
hybrid zones been identified? For spatial clines the answer remains unclear, but perhaps,
asking simpler questions of better models with fewer parameters will allow us to decide
whether stepped clines are actually rare, or just rarely proven. For genome clines, there
is a simple answer: because we were not looking; there was no genome cline model of a
stepped hybrid zone. We might hope that generalisation of genome clines such as
proposed here would allow a similar resolution of the opening question, but this is by no
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means obvious because the way data is sampled has changed profoundly since Haldane
firstfit a cline to genetic data and estimated selection (Haldane 1948). It is now extremely
rare that hundreds of genetic samples are gathered from the field. Instead relatively few
genomes are gathered, and from them very many nucleotide variants (SNVs) are
sampled. In spatial genetics the latter does not compensate for the former, because few
genomes means few spatial sampling locations, irrespective of how many SNVs are then
inspected. This is equally true for genome clines, because few genomes means few
sampling locations on the global HI x-axis. In these circumstances cline shape may be
reduced to a necessary, but nuisance, parameter. Further, we cannot simply scale up
cline fitting to cover (and compare) data at every one of potentially millions of SNVs —
aside issues of from computation tractability, there are only one or two recombination
events per chromosome per generation, so neighbouring sites in admixture systems are
clearly not independent witnesses of the evolutionary process (Baird 2015). Assuming
they are independent will lead to overconfident inference. This highlights that, to make
sound admixture inference over modern genomic data, the blockwise nature of
admixture tracts must be recognised ((Shipilina, Pal et al. 2023, Ebdon, Laetsch et al.
2024)). To estimate the boundaries of such tracts we should leverage every single SNV
that forms a cline — their non-independence under admixture is now a positive, not a
negative, and it turns out that for genomic data, introgressing blocks become obvious
when SNVs are co-polarised by their association, such that all their clines are rising (or
all falling) (Baird, Petruzela et al. 2023, Ebdon, Laetsch et al. 2024). The polarisation
operation scales linearly with genome size and reports a ‘diagnostic index’ matching-
statistic between each SNV and a global estimate over individuals. This global estimate
is a superset of the information necessary to plot a global cline in hybrid index, as it also
contains the analogous global central bump in heterozygosity caused by admixture (cf
p12 in (Simon, Bierne et al. 2018)). Downstream inference can be targeted on regions that
differ from this global estimate. If in future it becomes commonplace to genome
sequence individuals sampled at very many different field co-ordinates, then genome
cline shapes may stop being a necessary nuisance, and start again to be of active
interest. In the meantime it seems the data appetite of the questions we would wish to
ask of genomic clines may best be fed blockwise, and relative to change in both hybrid
index and heterozygosity (cf (Simon, Bierne et al. 2018)).

Not all modern field sampling is directed toward high throughput sequencing of
genomes. Advancing technology has also increased the potential throughput of
geographic locations for measures of quantitative traits and genetic markers, in
particular SNV assays such as KASP (He, Holme et al. 2014) allow for individuals from
very many locations to be cost effectively assayed for scores of genetic markers
(Touchard, Cerqueira et al. 2024). Because clines in genetic and quantitative traits are
governed by similar dispersal and selection processes, cline models apply equally to
both (Barton and Gale 1993), and so, likewise, any developments in shaped cline models.
True high throughput field sampling to take advantage of these developments risks
however perturbing that which we wish to observe — slowing a wave of advance or
narrowing a hybrid zone by reducing population density through destructive sampling, so
if there is to be a renaissance in cline inference field studies, these new models and
technologies should be carefully coupled with the parallel advances that have been
made in non-destructive sampling (Lefort, Boyer et al. 2015).
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