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Abstract

Modern science excels at pattern recognition, but it often mistakes statistical signif-

icance for truth. The precision-scope trade-off forces researchers to choose between

precise but impractical studies and broad but causally weak ones. As data grows expo-

nentially, spurious correlations multiply, worsening the reproducibility crisis. To restore

credibility, science must move beyond statistical detection and toward frameworks that

prioritize coherence and causal structure.
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“The first principle is that you must not fool yourself—and you are the easiest person to fool.”

—Richard Feynman
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Introduction: The Illusion of Knowledge
Science is humanity’s most powerful knowledge system, driving progress across countless do-

mains. Yet, despite its successes, modern empirical science is constrained by deep structural

flaws that undermine its ability to validate truth. In 2005, John Ioannidis’s seminal paper,

Why Most Published Research Findings Are False, exposed these flaws, revealing that many

widely accepted scientific findings rest on weak foundations. Ioannidis highlighted method-

ological failures—small sample sizes, publication bias, and statistical manipulation—as key

contributors to the reproducibility crisis. But these are not the root cause. They are symp-

toms of a deeper, systemic limitation: the precision-scope trade-off.

The public and many scientists treat research studies as objective facts, shaping policy,

medicine, and understanding. Yet, many widely accepted “truths” rest on fragile, misleading,

or incorrect studies. This illusion of certainty is more dangerous than ignorance—it stifles

inquiry and conceals structural flaws in knowledge generation.

At the core of this crisis is the precision-scope trade-off, an inherent limitation in empirical

research. Scientific studies exist on a spectrum:

• Small studies isolate variables and control for confounders, offering high precision—but

at the cost of real-world applicability.

• Large studies capture broad correlations across complex systems—but introduce a

combinatorial explosion of variables, making it nearly impossible to establish causality.

This trade-off isn’t just inconvenient—it’s a fundamental limit on knowledge in high-dimensional

systems.

This problem is not static—it is accelerating. The exponential growth of data amplifies

the illusion of knowledge rather than clarifying it. As datasets expand, the probability of

detecting spurious correlations skyrockets. For every genuine signal, there exist countless

false correlations, creating an environment where noise overwhelms signal at an accelerating

rate.

Noise overwhelms signal. As data grows, statistical artifacts multiply—patterns that seem

significant but are random. Big data doesn’t just reveal more—it deceives more. Science is

becoming a probability machine, not a truth machine. Statistical significance becomes easier

to manufacture—anything can achieve p < 0.05 in a large enough dataset. The result? A

false sense of certainty, where the quantity of findings is mistaken for their validity.

AI and machine learning exacerbate this problem. AI models excel at finding patterns, but
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they do not distinguish between meaningful insights and statistical artifacts. The larger the

dataset, the more spurious correlations AI will detect—giving the illusion of deep under-

standing while simply automating the production of noise.

Misinformation is not an anomaly—it is a statistical inevitability. The more data we gener-

ate, the harder it becomes to separate truth from statistical illusion. Misinformation doesn’t

require intent—it’s inevitable. False correlations vastly outnumber true ones, just as dis-

order overwhelms order in thermodynamics. Entropy always increases—and in information

systems, that means noise outgrows signal unless actively countered.

The consequences of unreliable research are profound and far-reaching. Misguided policies,

wasted funding, and public misinformation arise when scientific findings are fragile, non-

replicable, and often misleading. Fields like nutrition science exemplify this paradox—where

an overwhelming number of interacting biological variables make causal isolation impossible,

leading to studies that mislead more than they inform.

This paper argues that the precision-scope trade-off is the fundamental issue behind the

reproducibility crisis. Before meaningful solutions can be discussed, the scientific community

must first acknowledge the severity of these limitations. By exposing these structural flaws,

we open the door to a deeper conversation on how empirical science must evolve beyond

brute-force statistical correlation.

The ultimate goal is not to reject empirical science—but to recognize its inherent limitations

and the false sense of certainty it often produces. Only by confronting these constraints can

we begin to construct a new epistemic framework—one that prioritizes coherence and causal

structure over mere pattern detection.

The Precision-Scope Trade-Off: Science’s Limitation
At the core of empirical research lies a fundamental trade-off that forces science into two

losing strategies: the precision-scope trade-off. This trade-off is not merely a methodological

challenge but a structural limitation inherent to empirical inquiry. It arises from the tension

between the precision of controlled experiments and the scope of real-world applicability.

Small Studies: High Precision, Low Real-World Relevance

Small-scale studies aim to isolate variables and control for confounders, offering high precision

in identifying causal relationships. By stripping away extraneous factors, these studies can

provide clear insights into specific mechanisms. However, this precision comes at a significant

cost: low real-world relevance. The controlled environments of small studies often fail to

capture the complexity and variability of real-world systems, limiting the generalizability of
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their findings.

For instance, in medicine, randomized controlled trials (RCTs) are considered the gold stan-

dard for evaluating the efficacy of treatments. Yet, despite their precision, RCTs often fail

to translate effectively into real-world applications. The tightly controlled conditions of an

RCT do not account for the diverse patient populations, comorbidities, and environmental

factors that influence treatment outcomes in clinical practice.

Large Studies: High Generalizability, Low Causal Inference

On the other end of the spectrum, large-scale studies aim to capture broad correlations

across diverse populations and settings, offering high generalizability. These studies provide

a comprehensive view of real-world phenomena by including a wide range of variables and

interactions. However, this scope introduces a combinatorial explosion of variables, making

it nearly impossible to infer causal mechanisms. The complexity of large datasets often leads

to spurious correlations that are statistically significant but causally meaningless.

In psychology, large-scale observational studies attempt to understand human behavior in

natural settings. However, the multitude of interacting variables in real-world environments

makes it challenging to isolate causal relationships. Lab studies, while more controlled,

strip away contextual factors that are crucial for understanding behavior in natural settings,

leading to results that are often unreliable outside the lab.

AI and Machine Learning: Amplifying the Trade-Off

The field of AI and machine learning further illustrates the precision-scope trade-off. AI

models excel at identifying patterns in large datasets, capturing correlations that can inform

predictions and decisions. However, these models often ignore causality, focusing instead

on statistical associations. As datasets grow larger, the potential for detecting spurious

correlations increases, leading to a false sense of deep insight. Without a robust framework

for validating causal mechanisms, AI risks automating the production of noise rather than

generating meaningful knowledge.

A Structural Limitation, Not a Fixable Problem

The precision-scope trade-off is not a problem that can be easily fixed with better method-

ologies or more data. It is a structural limitation of empirical inquiry, arising from the

inherent complexity of high-dimensional systems. As the volume of data expands, so does

the challenge of distinguishing signal from noise. This trade-off forces researchers to choose

between precision and scope, often leading to findings that are either overly specific or overly

generalized.
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Recognizing this limitation is the first step toward addressing the reproducibility crisis in

science. By acknowledging the constraints of empirical research, we can begin to explore

alternative methodologies that prioritize coherence and causal structure over mere pattern

detection. Only then can we hope to develop a more robust framework for scientific inquiry

that transcends the limitations of the precision-scope trade-off.

The Fallacy of Statistical Significance
In empirical research, statistical significance is often treated as the gold standard for validat-

ing findings. However, this reliance on statistical significance, particularly p-values, has led

to a widespread misconception that correlation implies causation. This fallacy has profound

implications for scientific integrity, policy-making, and resource allocation.

P-Values: Measuring Correlation, Not Truth

P-values are statistical measures that quantify the strength of evidence against a null hy-

pothesis. A low p-value (typically less than 0.05) indicates strong evidence against the null

hypothesis, suggesting that the observed data is unlikely to occur by chance. However, p-

values do not measure the size or importance of an effect, nor do they establish causality.

They merely indicate the presence of a correlation.

Despite this limitation, p-values are often misinterpreted as ”truth scores,” leading to an

illusion of certainty. Researchers and policymakers frequently equate statistical significance

with practical significance, resulting in misguided decisions and wasted resources.

Statistical Significance is Not Causal Significance

The fallacy of equating statistical significance with causal significance is a pervasive issue

in empirical research. Correlation, no matter how strong, does not imply causation. This

fundamental misunderstanding leads to bad science, where spurious correlations are mistaken

for meaningful insights, and bad policy, where decisions are based on flawed interpretations.

Consider the example of The Rooster and the Sunrise: Every morning, a rooster crows

at sunrise, creating a perfect correlation between the rooster’s crow and the sun rising.

However, it would be absurd to conclude that the rooster’s crow causes the sun to rise. This

example illustrates the danger of inferring causality from correlation alone.

Real-World Examples of Misleading Correlations

The fallacy of statistical significance is not confined to theoretical examples; it manifests in

various real-world scenarios:

- Firefighters and Fire Damage: More firefighters at a fire correlate with greater dam-
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age, but firefighters don’t cause the destruction—larger fires require more firefighters. This

illustrates how correlation can be misleading without considering context.

- Umbrella Sales and Rainfall: Umbrella sales strongly correlate with rainfall, but um-

brellas don’t cause rain—they respond to it. This example highlights how a third variable

can drive two correlated trends.

- Ice Cream Sales and Drowning Deaths: Ice cream sales and drowning deaths rise

together, but ice cream doesn’t cause drowning—hot weather increases both. This demon-

strates how seasonality can create spurious correlations.

Manipulation of P-Values

The misuse of p-values is further exacerbated by practices such as p-hacking, multiple com-

parisons, and publication bias. P-hacking involves manipulating data or analyses to achieve

a desired p-value, often leading to false-positive results. Multiple comparisons increase the

likelihood of finding statistically significant results by chance, while publication bias favors

the publication of positive results over null or negative findings.

These practices contribute to the replication crisis, where many published findings cannot be

reproduced in subsequent studies. The replication crisis stems directly from the misinterpre-

tation and manipulation of statistical significance, undermining the credibility of empirical

research.

Addressing the Fallacy

To address the fallacy of statistical significance, researchers must recognize the limitations

of p-values and correlation. Emphasizing effect sizes, confidence intervals, and replication

studies can provide a more nuanced understanding of research findings. Moreover, fostering

a culture that values transparency, rigor, and the pursuit of causal mechanisms over mere

statistical significance is crucial for advancing scientific knowledge.

In empirical research, statistical significance is often treated as the gold standard for validat-

ing findings. However, this reliance on statistical significance, particularly p-values, has led

to a widespread misconception that correlation implies causation. This fallacy has profound

implications for scientific integrity, policy-making, and resource allocation.

The Meta-Issue: All Studies Are Not Created Equal
In the realm of empirical research, a significant meta-issue arises from the tendency to treat

all studies as equal units of truth. Both the public, policymakers, and even many scientists

often flatten the diverse landscape of research into a homogeneous category, where each study
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is presumed to contribute equally to our understanding of the world. This oversimplification

overlooks the inherent variability in the quality, methodology, and reliability of scientific

studies.

The Illusion of Equivalence

The public discourse around scientific findings often perpetuates the notion that all studies

are created equal. This illusion of equivalence is problematic because it fails to account for

the nuances and complexities that differentiate one study from another. A study is not a

singular, indivisible unit of truth; rather, it is an attempt to extract patterns from complex

data, with varying degrees of success and reliability.

Policymakers, in particular, are tasked with translating scientific insights into actionable

policies. However, they often do so without the necessary discernment required to differ-

entiate between high-quality, well-replicated research and preliminary, unverified findings.

This failure frequently leads to misguided policies based on weak or misinterpreted studies,

exacerbating public misinformation and institutional inefficiency.

Lack of Standardized Quality Controls

One of the primary reasons for this meta-issue is the absence of standardized quality controls

in empirical research. Unlike industries with rigorous quality assurance processes, scientific

research often lacks uniform standards for evaluating the reliability and validity of studies.

This lack of standardization makes it challenging to discern high-quality research from flawed

or misleading studies, further complicating the landscape of scientific knowledge.

Peer Review: A Gatekeeper, Not a Quality Control System

Peer review is often regarded as the primary quality control mechanism in science. However,

while it serves as an initial filter for study publication, it does not function as a system for

ranking, weighting, or systematically validating research findings over time. Once a study is

published, it enters the scientific record with no standardized weighting system to assess its

reliability relative to other studies.

This lack of post-publication evaluation means that flawed, underpowered, or irreproducible

studies can hold as much influence as well-validated findings. Without a structured mech-

anism for assessing replication success, methodological rigor, or effect size consistency, the

research landscape remains flooded with unfiltered findings—contributing to the illusion that

all studies are equal.
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Hidden Variables in Studies

Several hidden variables influence the outcomes and interpretations of scientific studies, yet

these factors are often overlooked in public discussions. Key considerations include:

- Who Conducted the Study: The researchers’ expertise, potential biases, and funding

sources can significantly impact the study’s design, execution, and interpretation.

- Methodology Used: The choice of methodology, including study design, sample size,

and statistical analyses, can profoundly affect the study’s outcomes and the generalizability

of its findings.

- Data Collection and Interpretation: The methods used to collect and interpret data

can introduce variability and bias, influencing the study’s conclusions. Transparency in data

collection and analysis is crucial for assessing a study’s reliability.

The Need for a ”Study of Studies” System

Currently, there is no comprehensive ”study of studies” system that evaluates the reliability

of findings before they enter public discourse. Such a system would involve meta-analyses,

replication studies, and rigorous peer review processes to assess the quality and reproducibil-

ity of research findings. Implementing this system could help filter out unreliable or mis-

leading studies, ensuring that only robust and validated findings inform public knowledge

and policy decisions.

For policymakers, having access to a reliable mechanism for assessing the credibility of re-

search is essential. Without it, they risk enacting policies based on statistical noise rather

than genuine insights. A structured framework for evaluating scientific reliability would

drastically improve the quality of decision-making at institutional levels.

The Role of Media and Pop-Science

The media and popular science outlets play a significant role in amplifying the meta-issue.

Sensational headlines and oversimplified explanations often exaggerate the implications of

individual studies, leading to the dissemination of misinformation. Moreover, the media

frequently overlooks replication failures and the nuances of scientific debate, instead favoring

novel and attention-grabbing findings that may not withstand scrutiny.

This selective amplification creates a distorted perception of scientific consensus, where pre-

liminary or flawed studies are given undue credence, while more robust and replicated find-

ings receive less attention. Addressing this issue requires a more responsible and nuanced

approach to science communication, emphasizing the tentative nature of individual studies
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and the importance of replication and validation.

Toward a More Discerning Scientific Landscape

To mitigate the meta-issue of treating all studies as equal, it is essential to foster a more

discerning scientific landscape. This involves educating the public and policymakers about

the complexities of empirical research, promoting transparency and standardization in study

methodologies, and encouraging a critical evaluation of scientific findings. By acknowledging

the variability and limitations of individual studies, we can work toward a more robust and

reliable body of scientific knowledge.

Science Detects Patterns, Not Truth
The scientific method is a powerful tool for exploring the natural world, driven by its ability to

identify patterns and correlations within data. However, a critical distinction must be made:

while science excels at pattern detection, patterns do not always equate to understanding.

This misconception has led to a widespread misunderstanding of what empirical science can

truly offer.

Pattern Detection vs. Truth

At its core, the scientific method is designed to detect patterns—recurring relationships or

trends within data. These patterns can provide valuable insights and inform hypotheses,

but they do not inherently reveal the underlying mechanisms or causal relationships. In our

quest for knowledge, we have often mistaken pattern detection for truth, assuming that the

identification of a correlation implies a deeper understanding of the phenomena at play.

This conflation of pattern detection with truth has significant implications for how we in-

terpret and apply scientific findings. It leads to the generation of ”knowledge” that, while

statistically significant, may not accurately reflect the complexities of the real world. This

pseudo-knowledge can mislead policymakers, researchers, and the public, resulting in inef-

fective solutions and misallocated resources.

The Production of ”Knowledge”

Empirical science, as currently practiced, often produces findings that are not genuine knowl-

edge but rather artifacts of statistical analysis. This occurs because the scientific process

is heavily incentivized to prioritize the detection of patterns over the pursuit of genuine

discovery. Factors such as the publish-or-perish culture, funding pressures, and media hype

drive researchers to focus on generating publishable results rather than delving into the

complexities of causal mechanisms.



Empirical Noise 11

The publish-or-perish culture, in particular, encourages the rapid production of studies that

yield positive results, often at the expense of rigor and reproducibility. This systemic pres-

sure leads to a proliferation of studies that identify correlations but fail to provide meaningful

insights into the underlying processes. Similarly, funding pressures and the desire for media

attention can skew research priorities toward sensational or trending topics, further exacer-

bating the issue.

The Noise-to-Signal Ratio

When science functions primarily as a pattern-detection system, it runs the risk of generating

more noise than signal. The exponential growth of data and the ease of detecting statistical

significance in large datasets contribute to this problem. As more patterns are identified, the

likelihood of false positives and spurious correlations increases, creating a landscape where

genuine insights are obscured by a deluge of misleading findings.

This high noise-to-signal ratio undermines the credibility of scientific research and erodes

public trust in the scientific enterprise. It highlights the need for a more discerning approach

to empirical inquiry, one that prioritizes the validation of causal mechanisms over the mere

identification of patterns.

Addressing the Pattern-Detection Paradigm

To address the limitations of the pattern-detection paradigm, it is essential to recognize that

patterns are a starting point for inquiry, not an endpoint. Scientists must be encouraged to

explore the underlying mechanisms that give rise to observed patterns, rather than stopping

at statistical significance. This shift requires a reevaluation of the incentives that drive

scientific research, including:

- Promoting Replication and Validation: Emphasizing the importance of replication

studies and validation of findings can help filter out spurious correlations and reinforce

genuine insights.

- Encouraging Interdisciplinary Collaboration: Fostering collaboration across disci-

plines can provide new perspectives and methodologies for investigating causal mechanisms.

- Fostering a Culture of Critical Inquiry: Creating an environment that values rigorous

debate, transparency, and the pursuit of understanding over the rapid production of results.

By acknowledging the limitations of pattern detection and striving for a deeper understand-

ing of causal relationships, we can enhance the quality and reliability of scientific knowledge.

This shift is crucial for ensuring that science continues to inform and enlighten, rather than
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mislead and confuse.

Conclusion: The Future of Scientific Inquiry
Empirical science faces profound structural limitations. If unaddressed, these flaws will

continue to generate unreliable, misleading, and contradictory findings. The stakes are

too high to ignore—unchecked, they undermine public trust in science, misinform policy

decisions, and hinder real progress.

The Imperative for Change

Science cannot sustain its current trajectory. As data grows exponentially, so does the

potential for generating noise that obscures genuine insights. Without intervention, science

will keep producing findings that confuse rather than clarify, wasting resources, distorting

policy, and weakening public trust.

A Paradigm Shift in Knowledge Validation

What is needed is a paradigm shift in how we validate knowledge. This shift must move

beyond statistical pattern recognition and toward a framework that prioritizes coherence,

causal structure, and deep mechanistic understanding. Such a shift demands a fundamental

reevaluation of methodologies, incentives, and the culture of research.

Understanding Reality

The goal of science is not merely to detect patterns but to understand reality in all its

complexity. Achieving this requires a shift from correlation-driven inference to causal vali-

dation. By focusing on mechanisms and coherence, we can build a more robust and reliable

foundation for scientific knowledge.

The Beginning of a Conversation

This paper is just the start of a necessary conversation about the future of scientific inquiry.

Scientists, policymakers, and the public must acknowledge these limitations and work toward

alternative frameworks.

While a path forward exists, this paper does not define it. That discussion is beyond the

scope of this work—but it is a step that must be taken. The journey toward a more reliable

and insightful science will be challenging, but the stakes are too high to ignore. Only through

this effort can science illuminate—not obscure—the path to truth.

Ad astra per scientiam.
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Key Takeaways

• The precision-scope trade-off is an inherent limitation of empirical science.

Small studies offer high precision but low generalizability, while large studies capture

broad correlations but fail to establish causality.

• Statistical significance is often mistaken for truth. The over-reliance on p-values

creates the illusion of certainty, leading to a reproducibility crisis in science.

• Big data exacerbates the problem. As data volume grows, so does the likelihood

of detecting spurious correlations, amplifying noise rather than signal.

• AI and machine learning automate the production of noise. Without causal

validation, AI models risk reinforcing false correlations instead of uncovering true in-

sights.

• Misinformation is a statistical inevitability. False correlations vastly outnumber

true ones, meaning that the default state of information is noise, not signal.

• A paradigm shift is needed in how we validate knowledge. Moving beyond

brute-force pattern detection to frameworks that prioritize coherence and causal struc-

ture is essential for the future of scientific inquiry.
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Falsification Check
As Richard Feynman famously stated:

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong.”

The purpose of this section is to ensure that this framework adheres to that principle. A
claim, theory, or model is only meaningful if it remains consistent with observable reality.

This principle of falsification is the cornerstone of the scientific method, ensuring that only
theories that withstand rigorous scrutiny remain accepted as valid explanations of reality.

There are only two possible outcomes for any falsifiable claim:

1. Falsification: If a premise is contradicted by empirical observations, the framework
must be revised or discarded.

2. Provisional Acceptance: If a premise cannot be falsified, it must be provisionally
accepted as the best available explanation until such time that it can be falsified.

The framework rests on the following premises, each of which must hold for the argument
to remain valid:

1. The precision-scope trade-off is an inherent limitation of empirical science.
Falsification: Empirical research must demonstrate that it is possible to design studies
that simultaneously achieve high precision and broad generalizability without sacrific-
ing causal inference.

2. Statistical significance is frequently mistaken for truth.
Falsification: If empirical research consistently showed that p-values alone reliably
indicate causality, and statistical significance does not lead to false discoveries, this
premise would be invalidated.

3. The exponential growth of data increases the noise-to-signal ratio.
Falsification: If larger datasets consistently improved causal inference rather than am-
plifying spurious correlations, this premise would be contradicted.

4. Machine learning amplifies false correlations without causal validation.
Falsification: Demonstrating that AI models can consistently and autonomously distin-
guish between causation and correlation without human intervention would invalidate
this premise.

5. Misinformation is inevitable due to the dominance of false correlations.
Falsification: If real-world data demonstrated that the ratio of valid insights to false
correlations improves as data volume increases, this premise would not hold.

Until one of these premises is disproven, the framework must be provisionally accepted.

This ensures that the structure of knowledge remains dynamic—always open to challenge,

yet stable when no contradictions exist.
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Author’s Note: From Observation to Insight

Ideas rarely follow a linear trajectory. This section documents the iterative and often mean-

dering journey from initial observation to structured insight.

The Journey:

1. Step 1: A Chance Encounter

On February 15, 2025, I was working at Yanni’s Coffee in New York on 16th and 7th

when a conversation with a stranger shifted my perspective. While editing a paper I

was drafting, titled The Invisible Hand of Public Health: How Good Intentions Lead to

Mass Harm, the individual next to me asked about my work. I explained the paper’s

core arguments, which led us into a broader discussion on public health and scientific

integrity.

2. Step 2: An Unfamiliar Name

During our conversation, he mentioned John Ioannidis, a name I had not encountered

before. I looked him up and quickly found his paper, Why Most Published Research

Findings Are False. Within moments of reading its summary, I saw an obvious yet

profound truth: research findings often fail because they rely on fragmented slices of

complex systems.

3. Step 3: Identifying the Principle

This realization hit immediately. Any system with more data inherently has more

variables, making it exponentially harder to isolate causation. The trade-off became

clear—either we restrict scope for precision or we broaden scope and drown in con-

founders.

4. Step 4: Rapid Synthesis

The next day, February 16, I began consolidating this insight into a structured frame-

work. What began as an informal conversation led directly to the conceptual founda-

tion of this paper—the Precision-Scope Trade-Off.

Progress in understanding is rarely neat. This section serves as a reminder that break-

throughs often arise from persistent questioning rather than sudden revelation.
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