REFERENCES
Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.-S., Nakashizuka,
T., Raffaelli, D., et al . (2006). Quantifying the evidence for
biodiversity effects on ecosystem functioning and services.Ecology Letters , 9, 1146–1156.
Bardgett, R.D., van der Putten, W.H. (2014). Belowground biodiversity
and ecosystem functioning. Nature , 515, 505–511.
Becker, J., Eisenhauer, N., Scheu, S., Jousset, A. (2012). Increasing
antagonistic interactions cause bacterial communities to collapse at
high diversity. Ecology Letters , 15, 468–474.
Becker, W.N., Gerdemann, J.W. (1977). Colorimetric quantification of
vesicular-arbuscular mycorrhizal infection in onion. New
Phytologist , 78, 289–295.
Bender, S.F., Plantenga, F., Neftel, A., Jocher, M., Oberholzer, H.-R.,
Köhl, L., et al. (2014). Symbiotic relationships between soil
fungi and plants reduce N2O emissions from soil.ISME Journal , 8, 1336–1345.
Benkwitt, C.E., Wilson, S.K. & Graham, N.A.J. (2020). Biodiversity
increases ecosystem functions despite multiple stressors on coral reefs.Nature Ecology & Evolution , 4, 919–926.
Brundrett, M.C. & Tedersoo, L. (2018). Evolutionary history of
mycorrhizal symbioses and global host plant diversity. New
Phytologist , 220, 1108–1115.
Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N.,
Hector, A., et al. (2014). Investigating the relationship between
biodiversity and ecosystem multifunctionality: challenges and solutions.Methods in Ecology and Evolution , 5, 111–124.
Chen, Q.-L., Ding, J., Zhu, D., Hu, H.-W., Delgado-Baquerizo, M., Ma,
Y.-B., et al. (2020). Rare microbial taxa as the major drivers of
ecosystem multifunctionality in long-term fertilized soils. Soil
Biology and Biochemistry , 141, 107686.
Craven, D., Isbell, F., Manning, P., Connolly, J., Bruelheide, H.,
Ebeling, A., et al. (2016). Plant diversity effects on grassland
productivity are robust to both nutrient enrichment and drought.Philosophical Transactions of the Royal Society B: Biological
Sciences , 371, 20150277.
Crossay, T., Majorel, C., Redecker, D., Gensous, S., Medevielle, V.,
Durrieu, G., et al. (2019). Is a mixture of arbuscular
mycorrhizal fungi better for plant growth than single-species
inoculants? Mycorrhiza , 29, 325–339.
Cui, N., Shi, L., Guo, J. & Zhang, T. (2021). Arbuscular mycorrhizal
fungi alleviate elevated temperature and nitrogen deposition-induced
warming potential by reducing soil N2O emissions in a
temperate meadow. Ecological Indicators , 131, 108193.
Davison, J., Moora, M., Semchenko, M., Adenan, S.B., Ahmed, T.,
Akhmetzhanova, A.A., et al . (2021). Temperature and pH define the
realised niche space of arbuscular mycorrhizal fungi. New
Phytologist , 231, 763–776.
Fetzer, I., Johst, K., Schäwe, R., Banitz, T., Harms, H. & Chatzinotas,
A. (2015). The extent of functional redundancy changes as species’ roles
shift in different environments. Proceedings of the National
Academy of Sciences of the United States of America , 112, 14888–14893.
Gamfeldt, L. & Roger, F. (2017). Revisiting the biodiversity–ecosystem
multifunctionality relationship. Nature Ecology & Evolution , 1,
1–7.
Garland, G., Banerjee, S., Edlinger, A., Miranda Oliveira, E., Herzog,
C., Wittwer, R., et al. (2021). A closer look at the functions
behind ecosystem multifunctionality: A review. Journal of
Ecology , 109, 600–613.
Godoy, O., Gómez-Aparicio, L., Matías, L., Pérez-Ramos, I.M. & Allan,
E. (2020). An excess of niche differences maximizes ecosystem
functioning. Nature Communications , 11, 4180.
Gosling, P., Jones, J. & Bending, G.D. (2016). Evidence for functional
redundancy in arbuscular mycorrhizal fungi and implications for
agroecosystem management. Mycorrhiza , 26, 77–83.
Horsch, C.C.A., Antunes, P.M. & Kallenbach, C.M. (2023). Arbuscular
mycorrhizal fungal communities with contrasting life-history traits
influence host nutrient acquisition. Mycorrhiza , 33, 1–14.
Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W.S.,
Reich, P.B., et al. (2011). High plant diversity is needed to
maintain ecosystem services. Nature , 477, 199–202.
Jakobsen, I., Abbott, L.K. & Robson, A.D. (1992). External hyphae of
vesicular-arbuscular mycorrhizal fungi associated with Trifolium
subterraneum L. New Phytologist , 120, 371–380.
Jia, Y., van der Heijden, M.G.A., Wagg, C., Feng, G. & Walder, F.
(2021). Symbiotic soil fungi enhance resistance and resilience of an
experimental grassland to drought and nitrogen deposition. Journal
of Ecology , 109, 3171–3181.
Jing, X., Sanders, N.J., Shi, Y., Chu, H., Classen, A.T., Zhao, K.,et al. (2015). The links between ecosystem multifunctionality and
above- and belowground biodiversity are mediated by climate.Nature Communications , 6, 8159.
Jousset, A., Schmid, B., Scheu, S. & Eisenhauer, N. (2011). Genotypic
richness and dissimilarity opposingly affect ecosystem functioning.Ecology Letters , 14, 537–545.
Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O.,
Verbruggen, E., et al. (2011). Reciprocal rewards stabilize
cooperation in the mycorrhizal symbiosis. Science , 333, 880–882.
Köhl, L. & van der Heijden, M.G.A. (2016). Arbuscular mycorrhizal
fungal species differ in their effect on nutrient leaching. Soil
Biology and Biochemistry , 94, 191–199.
Larsen, J., Thingstrup, I., Jakobsen, I. & Rosendahl, S. (1996).
Benomyl inhibits phosphorus transport but not fungal alkaline
phosphatase activity in a Glomus–cucumber symbiosis. New
Phytologist , 132, 127–133.
Li, J., Zhao, J., Liao, X., Yi, Q., Zhang, W., Lin, H., et al. (2023a). Long-term returning agricultural residues increases soil
microbe-nematode network complexity and ecosystem multifunctionality.Geoderma , 430, 116340.
Li, X., Zhao, R., Li, D., Wang, G., Bei, S., Ju, X., et al. (2023b). Mycorrhiza-mediated recruitment of complete denitrifying
Pseudomonas reduces N2O emissions from soil.Microbiome , 11, 45.
Li, Y., Schuldt, A., Ebeling, A., Eisenhauer, N., Huang, Y., Albert, G.,et al . (2024). Plant diversity enhances ecosystem
multifunctionality via multitrophic diversity. Nature Ecology &
Evolution , 8, 2037–2047.
Ljungdahl, L.G. & Eriksson, K.-E. (1985). Ecology of Microbial
Cellulose Degradation. In: Advances in Microbial Ecology: Volume
8 (ed. Marshall, K.C.). Springer US, Boston, MA, pp. 237–299.
Loreau, M. & Hector, A. (2001). Partitioning selection and
complementarity in biodiversity experiments. Nature , 412, 72–76.
Lozano, Y.M., Aguilar-Trigueros, C.A., Onandia, G., Maaß, S., Zhao, T.
& Rillig, M.C. (2021). Effects of microplastics and drought on soil
ecosystem functions and multifunctionality. Journal of Applied
Ecology , 58, 988–996.
Ma, X., Geng, Q., Zhang, H., Bian, C., Chen, H.Y.H., Jiang, D., et
al. (2021). Global negative effects of nutrient enrichment on
arbuscular mycorrhizal fungi, plant diversity and ecosystem
multifunctionality. New Phytologist , 229, 2957–2969.
Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V.,
Delgado-Baquerizo, M., et al. (2012). Plant species richness and
ecosystem multifunctionality in global drylands. Science , 335,
214–218.
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T.,
Mace, G., et al. (2018). Redefining ecosystem multifunctionality.Nature Ecology & Evolution , 2, 427–436.
Mar, K.A., Unger, C., Walderdorff, L. & Butler, T. (2022). Beyond CO2
equivalence: The impacts of methane on climate, ecosystems, and health.Environmental Science & Policy , 134, 127–136.
McKenney, M.C. & Lindsey, D.L. (1987). Improved method for quantifying
endomycorrhizal fungi spores from soil. Mycologia , 79, 779–782.
Mei, L., Yang, X., Zhang, S., Zhang, T. & Guo, J. (2019). Arbuscular
mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P
ratios under warming and nitrogen addition in a temperate meadow
ecosystem. Science of The Total Environment , 686, 1129–1139.
Nicolson, T.H. & Gerdemann, J.W. (1968). Mycorrhizal endogone species.Mycologia , 60, 313–325.
Nicolson, T.H. & Schenck, N.C. (1979). Endogonaceous mycorrhizal
endophytes in Florida. Mycologia , 71, 178–198.
Phillips, J.M. & Hayman, D.S. (1970). Improved procedures for clearing
roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi
for rapid assessment of infection. Transactions of the British
Mycological Society , 55, 158-IN18.
Polley, H.W., Wilsey, B.J. & Derner, J.D. (2003). Do species evenness
and plant density influence the magnitude of selection and
complementarity effects in annual plant species mixtures? Ecology
Letters , 6, 248–256.
Powell, J.R. & Rillig, M.C. (2018). Biodiversity of arbuscular
mycorrhizal fungi and ecosystem function. New Phytologist , 220,
1059–1075.
Qin, S., Yang, G., Zhang, Y., Song, M., Sun, L., Cui, Y., et al. (2022). Mowing did not alleviate the negative effect of nitrogen
addition on the arbuscular mycorrhizal fungal community in a temperate
meadow grassland. Frontiers in Plant Science , 13.
Rillig, M.C., Ryo, M. & Lehmann, A. (2021). Classifying human
influences on terrestrial ecosystems. Global Change Biology , 27,
2273–2278.
Rillig, M.C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C.A., Buchert,
S., Wulf, A., et al. (2019). The role of multiple global change
factors in driving soil functions and microbial biodiversity.Science , 366, 886–890.
Rozmoš, M., Bukovská, P., Hršelová, H., Kotianová, M., Dudáš, M.,
Gančarčíková, K., et al. (2022). Organic nitrogen utilisation by
an arbuscular mycorrhizal fungus is mediated by specific soil bacteria
and a protist. ISME Journal , 16, 676–685.
Seppelt, R., Klotz, S., Peiter, E. & Volk, M. (2022). Agriculture and
food security under a changing climate: An underestimated challenge.iScience , 25, 105551.
Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison,
S.D., Crenshaw, C., et al. (2008). Stoichiometry of soil enzyme
activity at global scale. Ecology Letters , 11, 1252–1264.
Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M.M.,
Renner, S.C., et al. (2016). Biodiversity at multiple trophic
levels is needed for ecosystem multifunctionality. Nature , 536,
456–459.
Speißer, B., Wilschut, R.A. & van Kleunen, M. (2022). Number of
simultaneously acting global change factors affects composition,
diversity and productivity of grassland plant communities. Nature
Communications , 13, 7811.
Sun, K., Jiang, H.-J., Pan, Y.-T., Lu, F., Zhu, Q., Ma, C.-Y., et
al. (2023). Hyphosphere microorganisms facilitate hyphal spreading and
root colonization of plant symbiotic fungus in ammonium-enriched soil.ISME Journal , 17, 1626–1638.
Tang, B., Man, J., Lehmann, A. & Rillig, M.C. (2023). Arbuscular
mycorrhizal fungi benefit plants in response to major global change
factors. Ecology Letters , 27, e14320.
Thompson, R.L., Lassaletta, L., Patra, P.K., Wilson, C., Wells, K.C.,
Gressent, A., et al. (2019). Acceleration of global
N2O emissions seen from two decades of atmospheric
inversion. Nature Climate Change , 9, 993–998.
Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A.,
Balestrini, R., et al. (2013). Genome of an arbuscular
mycorrhizal fungus provides insight into the oldest plant symbiosis.Proceedings of the National Academy of Sciences of the United
States of America , 110, 20117–20122.
Turner, B.L., McKelvie, I.D. & Haygarth, P.M. (2002). Characterisation
of water-extractable soil organic phosphorus by phosphatase hydrolysis.Soil Biology and Biochemistry , 34, 27–35.
Vályi, K., Mardhiah, U., Rillig, M.C. & Hempel, S. (2016). Community
assembly and coexistence in communities of arbuscular mycorrhizal fungi.ISME Journal , 10, 2341–2351.
van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P.,
Streitwolf-Engel, R., Boller, T., et al. (1998). Mycorrhizal fungal
diversity determines plant biodiversity, ecosystem variability and
productivity. Nature , 396, 69–72.
Wagg, C., Hautier, Y., Pellkofer, S., Banerjee, S., Schmid, B., van Der
Heijden, M.G. (2021). Diversity and asynchrony in soil microbial
communities stabilizes ecosystem functioning. eLife, 10, e62813.
Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M.G.A. (2011).
Belowground biodiversity effects of plant symbionts support aboveground
productivity. Ecology Letters , 14, 1001–1009.
Wang, F. & Rengel, Z. (2023). Disentangling the contributions of
arbuscular mycorrhizal fungi to soil multifunctionality.Pedosphere , 34(2), 269-278.
Wang, L., George, T.S. & Feng, G. (2024). Concepts and consequences of
the hyphosphere core microbiome for arbuscular mycorrhizal fungal
fitness and function. New Phytologist , 242, 1529–1533.
Wang, Y.-F., Chen, P., Wang, F.-H., Han, W.-X., Qiao, M., Dong, W.-X.,et al. (2022). The ecological clusters of soil organisms drive
the ecosystem multifunctionality under long-term fertilization.Environment International , 161, 107133.
Wilsey, B., Martin, L., Xu, X., Isbell, F., Polley, H.W. (2023).
Biodiversity: Net primary productivity relationships are eliminated by
invasive species dominance. Ecology Letters , 27, e14342.
Xiang, D., Verbruggen, E., Hu, Y., Veresoglou, S.D., Rillig, M.C., Zhou,
W., et al. (2014). Land use influences arbuscular mycorrhizal
fungal communities in the farming–pastoral ecotone of northern China.New Phytologist , 204, 968–978.
Xu, Z., Guo, X., Allen, W.J., Yu, X., Hu, Y., Wang, J., et al. (2024). Plant community diversity alters the response of ecosystem
multifunctionality to multiple global change factors. Global
Change Biology , 30, e17182.
Yang, G., Liu, N., Lu, W., Wang, S., Kan, H., Zhang, Y., et al. (2014). The interaction between arbuscular mycorrhizal fungi and soil
phosphorus availability influences plant community productivity and
ecosystem stability. Journal of Ecology , 102, 1072–1082.
Yang, G., Ryo, M., Roy, J., Lammel, D.R., Ballhausen, M.-B., Jing, X.,et al. (2022). Multiple anthropogenic pressures eliminate the
effects of soil microbial diversity on ecosystem functions in
experimental microcosms. Nature Communications , 13, 4260.
Yang, G., Yang, X., Zhang, W., Wei, Y., Ge, G., Lu, W., et al. (2016). Arbuscular mycorrhizal fungi affect plant community structure
under various nutrient conditions and stabilize the community
productivity. Oikos , 125, 576–585.
Zandalinas, S.I. & Mittler, R. (2022). Plant responses to
multifactorial stress combination. New Phytologist , 234,
1161–1167.
Zhang, J., Zhao, R., Li, X. & Zhang, J. (2024). Potential of arbuscular
mycorrhizal fungi for soil health. Pedosphere , 34(2), 279-288.
Zhang, L., Zhou, J., George, T.S., Limpens, E. & Feng, G. (2022).
Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial
orchestra. Trends in Plant Science , 27, 402–411.
Zhang, T., Hu, Y., Zhang, K., Tian, C. & Guo, J. (2018). Arbuscular
mycorrhizal fungi improve plant growth of Ricinus communis by
altering photosynthetic properties and increasing pigments under drought
and salt stress. Industrial Crops and Products , 117, 13–19.
Zhang, T., Yang, X., Guo, R. & Guo, J. (2016). Response of AM fungi
spore population to elevated temperature and nitrogen addition and their
influence on the plant community composition and productivity.Scientific Reports , 6, 24749.