Literature

Axenrot, T. et al. (2004) ‘Diel patterns in pelagic fish behaviour and distribution observed from a stationary, bottom-mounted, and upward-facing transducer’, ICES Journal of Marine Science , 61(7), pp. 1100–1104. doi: 10.1016/j.icesjms.2004.07.006.Barrett, R. T.et al. (1990) ‘The Prey and Diving Depths of Seabirds on Hornøy , North Norway after a Decrease in the Barents Sea Capelin Stocks’,Oikos , 21(3), pp. 1–9. Available at: http://www.jstor.org/stable/3676777.Bednekoff, P. A. and Krebs, J. (1995) ‘Great Tit Fat Reserves : Effects of Changing and Unpredictable Feeding Day’, Functional Ecology , 9(3), pp. 457–462. Available at: https://www.jstor.org/stable/2390009.Benoit-bird, K. J. and Au, W. W. L. (2003) ‘Prey dynamics affect foraging by a pelagic predator ( Stenella longirostris ) over a range of spatial and temporal scales’,Behav Ecol Sociobiol , 53, pp. 364–373. doi: 10.1007/s00265-003-0585-4.Bertrand, A. et al. (2006) ‘Determinism and plasticity of fish schooling behaviour as exemplified by the South Pacific jack mackerel Trachurus murphyi’, Marine Ecology Progress Series , 311, pp. 145–156. doi: 10.3354/meps311145.Bollens, S. M.et al. (2011) ‘Cascading migrations and implications for vertical fluxes in pelagic ecosystems’, Journal of Plankton Research , 33(3), pp. 349–355. doi: 10.1093/plankt/fbq152.Brock, V. E. and Riffenburgh, R. H. (1960) ‘Fish schooling: a possible factor in reducing predation’, ICES Journal of Marine Science , 25(3), pp. 307–317. doi: 10.1093/icesjms/25.3.307.Carbone, C. and Houston, A. I. (1996) ‘The optimal allocation of time over the dive cycle: An approach based on aerobic and anaerobic respiration’, Animal Behaviour , 51(6), pp. 1247–1255. doi: 10.1006/anbe.1996.0129.Cardinale, M. et al. (2003) ‘Diel spatial distribution and feeding activity of herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic Sea’, inAquatic Living Resources , pp. 283–292. doi: 10.1016/S0990-7440(03)00007-X.Carlsen, A. A. et al. (2024) ‘Autonomous data sampling for high-resolution spatiotemporal fish biomass estimates’, Ecological Informatics , 84(April). doi: https://doi.org/10.1016/j.ecoinf.2024.102852.Chang, K. and Hanazato, T. (2004) ‘Diel vertical migrations of invertebrate predators (Leptodora kindtii ,Thermocyclops taihokuensis, and Mesocyclops sp.) in a shallow, eutrophic lake’, Hydrobiologia , 528(1–3), pp. 249–259. doi: 10.1007/s10750-004-3952-x.Chimienti, M. et al. (2017) ‘Taking movement data to new depths: Inferring prey availability and patch profitability from seabird foraging behavior’, Ecology and Evolution , 7(23), pp. 10252–10265. doi: 10.1002/ece3.3551.Delcourt, J. and Poncin, P. (2012) ‘Shoals and schools: back to the heuristic definitions and quantitative references’, Reviews in Fish Biology and Fisheries , 22, pp. 595–619.Engwall, E., Waldenström, J. and Hentati-sundberg, J. (2022) ‘Diet and prey size preference in Razorbills Alca torda breeding at Stora Karlsö , Sweden’, Ornis s , 32(December 2021), pp. 87–98. doi: 10.34080/OS.V32.22615.Evans, T. J.et al. (2013) ‘Foraging behaviour of common murres in the Baltic Sea, recorded by simultaneous attachment of GPS and time-depth recorder devices’, Marine Ecology Progress Series , 475, pp. 277–289. doi: 10.3354/meps10125.Fauchald, P., Erikstad, K. E. and Skarsfjord, H. (2000) ‘Scale-Dependent Predator-Prey Interactions: The Hierarchical Spatial Distribution of Seabirds and Prey’, Ecology , 81(3), p. 773. doi: 10.2307/177376.Gupta, P. et al. (2023) ‘Dawn and dusk chorus as a potential zeitgeber’, Biological Rhythm Research , 54(1), pp. 41–51. doi: 10.1080/09291016.2022.2069646.Hamilton, W. D. (1971) ‘Geometry for the selfish herd’, Journal of Theoretical Biology , 31(2), pp. 295–311. doi: 10.1016/0022-5193(71)90189-5.Haney, J. F. (1988) ‘Diel patterns of zooplankton behavior’, Bulletin of Marine Science , 43(3), pp. 583–603.Hays, G. C. (2003) ‘A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations’, Hydrobiologia , 503, pp. 163–170. doi: 10.1023/B:HYDR.0000008476.23617.b0.Hensor, E. et al. (2005) ‘Modelling density-dependent fish shoal distributions in the laboratory and field’, Oikos , pp. 344–352. doi: 10.1111/j.0030-1299.2005.13513.x.Hentati-sundberg, J. et al. (2025) ‘Technological evolution generates new answers and new ways forward : a progress report from the first decade at the karlsö auk lab’, Marine Ornithology , 53(1), pp. 21–33. doi: 10.5038/2074-1235.53.1.1612.Houston, A. I. and Rosenström, T. H. (2024) ‘A critical review of risk-sensitive foraging’, Biological Reviews , 99(2), pp. 478–495. doi: 10.1111/brv.13031.Isaksson, N.et al. (2019) ‘Foraging behaviour of Razorbills Alca torda during chick-rearing at the largest colony in the Baltic Sea’, Bird Study , 66(1), pp. 11–21. doi: 10.1080/00063657.2018.1563044.Kaartvedt, S., Christiansen, S. and Titelman, J. (2023) ‘Mid-summer fish behavior in a high-latitude twilight zone’, Limnology and Oceanography , 68(7), pp. 1654–1669. doi: 10.1002/lno.12374.Kacelnik, A. (1979) ‘The foraging efficiency of great tits (Parus major L.) in relation to light intensity’, Animal Behaviour , 27(PART 1), pp. 237–241. doi: 10.1016/0003-3472(79)90143-X.Kacelnik, A. and Houston, A. I. (1984) ‘Some effects of energy costs on foraging strategies’, Animal Behaviour , 32(2), pp. 609–614. doi: 10.1016/S0003-3472(84)80298-5.Kadin, M. et al. (2012) ‘Contrasting effects of food quality and quantity on a marine top predator’, Marine Ecology Progress Series , 444, pp. 239–249. doi: 10.3354/meps09417.Kadin, M. et al. (2016) ‘Common Guillemot Uria aalge parents adjust provisioning rates to compensate for low food quality’, Ibis , 158(1), pp. 167–178. doi: 10.1111/ibi.12335.Klevjer, T. A. et al. (2016) ‘Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers’, Scientific Reports , 6(December 2015), pp. 1–11. doi: 10.1038/srep19873.Lee, W. J. et al. (2024) ‘Interoperable and scalable echosounder data processing with Echopype’,ICES Journal of Marine Science , 81(10), pp. 1941–1951. doi: 10.1093/icesjms/fsae133.Lett, C. et al. (2014) ‘Effects of successive predator attacks on prey aggregations’, Theoretical Ecology , 7(3), pp. 239–252. doi: 10.1007/s12080-014-0213-0.Lima, S. L. and Dill, L. M. (1990) ‘Behavioral decisions made under the risk of predation: a review and prospectus’, Canadian Journal of Zoology , 68(4), pp. 619–640. doi: 10.1139/z90-092.Luque, S. (2022) ‘DiveMove: Dive Analysis and Calibration’. CRAN, pp. 1–32. Available at: https://github.com/spluque/diveMove.Magurran, A. E. (1990) ‘The adaptive significance of schooling as an anti-predator defence in fish’,Annales Zoologici Fennici , 27(2), pp. 51–66.McMunn, M. S. and Hernandez, J. D. (2018) ‘Diel periodicity of a terrestrial arthropod community: diversity, composition, and body size’, Ecological Entomology , 43(6), pp. 754–762. doi: 10.1111/een.12661.Mehner, T. (2012) ‘Diel vertical migration of freshwater fishes - proximate triggers, ultimate causes and research perspectives’, Freshwater Biology , 57(7), pp. 1342–1359. doi: 10.1111/j.1365-2427.2012.02811.x.Mella, V. S. A. et al. (2018) ‘Visit, consume and quit: Patch quality affects the three stages of foraging’, Journal of Animal Ecology , 87(6), pp. 1615–1626. doi: 10.1111/1365-2656.12882.Milinski, M. (1984) ‘A predator’s costs of overcoming the confusion-effect of swarming prey’, Animal Behaviour , 32(4), pp. 1157–1162. doi: 10.1016/S0003-3472(84)80232-8.Murray, C. J. et al. (2019) ‘Past, present and future eutrophication status of the Baltic Sea’,Frontiers in Marine Science , 6, pp. 1–12. doi: 10.3389/fmars.2019.00002.Nilsson, L. A. F. et al. (2003) ‘Vertical migration and dispersion of sprat ( Sprattus sprattus ) and herring ( Clupea harengus ) schools at dusk in the Baltic Sea’,Aquatic Living Resources , 16, pp. 317–324. doi: 10.1016/S0990-7440(03)00039-1.Nishimura, K. (1992) ‘Foraging in an uncertain environment: Patch exploitation’, Journal of Theoretical Biology , 156(1), pp. 91–111. doi: 10.1016/S0022-5193(05)80658-7.Olin, A. B. et al. (2022) ‘Increases of opportunistic species in response to ecosystem change: The case of the Baltic Sea three-spined stickleback’, ICES Journal of Marine Science , 79(5), pp. 1419–1434. doi: 10.1093/icesjms/fsac073.Piatt, J. F. and Nettleship, D. N. (1985) ‘Diving Depths of Four Alcids’, The Auk , 102(2), pp. 293–297.Ponganis, P. J. (2015) Diving Physiology of Marine Mammals and Seabirds . San Diego: Cambridge University Press.Pyke, G. H. (1984) ‘OPTIMAL FORAGING THEORY : A critical Review’, Annual Review of Ecology, Evolution, and Systematics , 15, pp. 523–575.Regular, P. M. et al. (2010) ‘Crepuscular foraging by a pursuit-diving seabird: Tactics of common murres in response to the diel vertical migration of capelin’, Marine Ecology Progress Series , 415, pp. 295–304. doi: 10.3354/meps08752.Regular, P. M., Hedd, A. and Montevecchi, W. A. (2011) ‘Fishing in the dark: A pursuit-diving seabird modifies foraging behaviour in response to nocturnal light levels’,PLoS ONE , 6, pp. 1–6. doi: 10.1371/journal.pone.0026763.Rocha, C. F. D. et al. (2015) ‘Differential success in sampling of Atlantic forest amphibians among different periods of the day’,Brazilian Journal of Biology , 75(2), pp. 261–267. doi: 10.1590/1519-6984.19412.Schneider, D. and Piatt, J. (1986) ‘Scale-dependent correlation of seabirds with schooling fish in a coastal ecosystem’, Marine Ecology Progress Series , 32, pp. 237–246. doi: 10.3354/meps032237.Simmonds, J. and MacLennan, D. (2005)Fisheries Acoustics . 2nd edn, Fisheries Oceanography . 2nd edn. Blackwell Science.Sims, D. W. et al. (2005) ‘Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark’, Journal of Animal Ecology , 74(4), pp. 755–761. doi: 10.1111/j.1365-2656.2005.00971.x.Slavenko, A.et al. (2022) ‘Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world’s second-largest family of terrestrial vertebrates’, Evolution , 76(6), pp. 1195–1208. doi: 10.1111/evo.14482.Smith, N. A. and Clarke, J. A. (2012) ‘Endocranial Anatomy of the Charadriiformes: Sensory System Variation and the Evolution of Wing-Propelled Diving’, PLoS ONE , 7(11). doi: 10.1371/journal.pone.0049584.Solberg, I. and Kaartvedt, S. (2017) ‘The diel vertical migration patterns and individual swimming behavior of overwintering sprat Sprattus sprattus’, Progress in Oceanography , 151, pp. 49–61. doi: 10.1016/j.pocean.2016.11.003.Thiebault, A.et al. (2016) ‘How to capture fish in a school? Effect of successive predator attacks on seabird feeding success’, Journal of Animal Ecology , 85(1), pp. 157–167. doi: 10.1111/1365-2656.12455.Waggitt, J. J. et al. (2018) ‘Combined measurements of prey availability explain habitat selection in foraging seabirds’, Biology Letters , 14(8). doi: 10.1098/rsbl.2018.0348.Walton, P., Ruxton, G. D. and Monaghan, P. A. T. (1998) ‘Avian diving , respiratory physiology and the marginal value theorem’, Animal Behaviour , 56, pp. 165–174.Weihs, D. (1973) ‘Hydromechanics of fish schooling’, Nature , 241, pp. 290–291.Wilson, R. P. et al. (1993) ‘Diel dive depth in penguins in relation to diel vertical migration of prey: whose dinner’,Marine Ecology Progress Series , 94, pp. 101–104.Wood, S. N. (2017) Generalized additive models: An introduction with R, second edition , Generalized Additive Models: An Introduction with R, Second Edition . doi: 10.1201/9781315370279.Wood, S. N. (2024) ‘Generalized Additive Models’, Annual Review of Statistics and its Application , pp. 1–29. doi: 10.1146/annurev-statistics-112723-034249.Zwolinski, J. et al. (2007) ‘Diel variation in the vertical distribution and schooling behaviour of sardine (Sardina pilchardus) off Portugal’, ICES Journal of Marine Science , 64(5), pp. 963–972. doi: 10.1093/icesjms/fsm075.Table 1: Full model structures for each model group (predator~light, prey~light and predator~prey). Brackets [] around variables specific to certain response variables (see main text), parenthesis () for random effects and astrisk * for interactions. See Appendix A7 for full and final (post selection) model structures per response variable, including smooths and k-values, per species.