References
[1] M. Lucidi et al. , “Pathogenicity and virulence of
Acinetobacter baumannii: Factors contributing to the fitness in
healthcare settings and the infected host,” Virulence , vol. 15,
2024, doi: 10.1080/21505594.2023.2289769.
[2] C. M. Harding, S. W. Hennon, and M. F. Feldman, “Uncovering the
mechanisms of Acinetobacter baumannii virulence,” 2018. doi:
10.1038/nrmicro.2017.148.
[3] S. Zeidler and V. Müller, “Coping with low water activities and
osmotic stress in Acinetobacter baumannii: significance, current status
and perspectives,” Environ Microbiol , vol. 21, no. 7, pp.
2212–2230, Jul. 2019, doi: 10.1111/1462-2920.14565.
[4] A. K. Cain, I. D. 1, M. Hamidian, and I. D. 2, “Portrait of a
killer: Uncovering resistance mechanisms and global spread of
Acinetobacter baumannii,” 2023, doi: 10.1371/journal.ppat.1011520.
[5] J. M. Farrow, G. Wells, and E. C. Pesci Id, “Desiccation
tolerance in Acinetobacter baumannii is mediated by the two-component
response regulator BfmR,” 2018, doi: 10.1371/journal.pone.0205638.
[6] A. Gedefie Id, A. Id, O. Mohammed, G. Mesfin Bamboid, S. S.
Kebede, and B. Kebede, “Prevalence of biofilm producing Acinetobacter
baumannii clinical isolates: A systematic review and meta-analysis,”
2023, doi: 10.1371/journal.pone.0287211.
[7] S. Fahy, J. A. O’Connor, B. Lucey, and R. D. Sleator, “Hospital
Reservoirs of Multidrug Resistant Acinetobacter Species-The Elephant in
the Room!,” Br J Biomed Sci , vol. 80, 2023, doi:
10.3389/BJBS.2023.11098.
[8] M. Fauvart, V. N. De Groote, and J. Michiels, “Role of
persister cells in chronic infections: clinical relevance and
perspectives on anti-persister therapies,” J Med Microbiol , vol.
60, pp. 699–709, 2011, doi: 10.1099/jmm.0.030932-0.
[9] J. Wainwright, G. Hobbs, and I. Nakouti, “Persister cells:
formation, resuscitation and combative therapies,” Dec. 01, 2021,Springer Science and Business Media Deutschland GmbH . doi:
10.1007/s00203-021-02585-z.
[10] G. L. Hobby, K. Meyer, and E. Chaffee, “Observations on the
Mechanism of Action of Penicillin.’,” at MCGILL UNIVERSITY
LIBRARY on , no. 2, p. 1942, 1942.
[11] Joseph Bigger, “Treatment of Staphylococcal infection with
penicillin,” the lancet , pp. 497–500, Oct. 1944.
[12] N. Q. Balaban et al. , “Definitions and guidelines for
research on antibiotic persistence,” Nat Rev Microbiol , 2019,
doi: 10.1038/s41579-019-0196-3.
[13] K. Lewis, “Persister cells,” Oct. 13, 2010. doi:
10.1146/annurev.micro.112408.134306.
[14] L. Fernández-García et al. , “Phages produce
persisters,” Microb Biotechnol , vol. 17, no. 8, Aug. 2024, doi:
10.1111/1751-7915.14543.
[15] M. A. Orman and M. P. Brynildsen, “Dormancy Is Not Necessary
or Sufficient for Bacterial Persistence,” Antimicrob Agents
Chemother , vol. 57, no. 7, pp. 3230–3239, 2013, doi:
10.1128/AAC.00243-13.
[16] N. Q. Balaban, J. Merrin, R. Chait, and L. Kowalik, “Bacterial
Persistence as a Phenotypic Switch,” 2004.
[17] A. Gutierrez, S. Jain, P. Bhargava, M. Hamblin, M. A. Lobritz,
and J. J. Collins, “Understanding and Sensitizing Density-Dependent
Persistence to Quinolone Antibiotics,” Mol Cell , vol. 68, no. 6,
pp. 1147-1154.e3, 2017, doi: 10.1016/j.molcel.2017.11.012.
[18] N. M. Vega, K. R. Allison, A. S. Khalil, and J. J. Collins,
“Signaling-mediated bacterial persister formation,” Nat Chem
Biol , vol. 8, no. 5, pp. 431–433, 2012, doi: 10.1038/nchembio.915.
[19] R. A. Bamford, A. Smith, J. Metz, G. Glover, R. W. Titball, and
S. Pagliara, “Investigating the physiology of viable but non-culturable
bacteria by microfluidics and time-lapse microscopy,” BMC Biol ,
vol. 15, no. 1, Dec. 2017, doi: 10.1186/S12915-017-0465-4.
[20] K. Dong et al. , “Induction, detection, formation, and
resuscitation of viable but non-culturable state microorganisms,”Compr Rev Food Sci Food Saf , vol. 19, no. 1, pp. 149–183, Jan.
2020, doi: 10.1111/1541-4337.12513.
[21] M. M. K. Hansen and L. S. Weinberger, “Post-Transcriptional
Noise Control,” BioEssays , vol. 41, no. 7, Jul. 2019, doi:
10.1002/BIES.201900044.
[22] R. Arbel-Goren et al. , “Effects of post-transcriptional
regulation on phenotypic noise in Escherichia coli,” Nucleic acid
research , vol. 41, no. 9, pp. 4825–4834, 2013, doi:
10.1093/nar/gkt184.
[23] H. H. Mcadams and A. Arkin, “Stochastic mechanisms in gene
expression,” Proc Natl Acad Sci U S A , vol. 94, no. 3, pp.
814–819, Feb. 1997, doi: 10.1073/PNAS.94.3.814.
[24] P. S. Swain, “Efficient attenuation of stochasticity in gene
expression through post-transcriptional control,” J Mol Biol ,
vol. 344, no. 4, pp. 965–976, Dec. 2004, doi:
10.1016/j.jmb.2004.09.073.
[25] J. Yan and B. L. Bassler, “Surviving as a community:
antibiotic tolerance and persistence in bacterial biofilms,” Cell
Host Microbe , vol. 10, no. 26, pp. 15–21, 2019, doi:
10.1016/j.chom.2019.06.002.
[26] D. J. Cabral, J. I. Wurster, and P. Belenky, “Antibiotic
persistence as a metabolic adaptation: Stress, metabolism, the host, and
new directions,” Mar. 01, 2018, MDPI AG . doi:
10.3390/ph11010014.
[27] R. A. Fisher, B. Gollan, and S. Helaine, “Persistent bacterial
infections and persister cells,” Aug. 01, 2017, Nature Publishing
Group . doi: 10.1038/nrmicro.2017.42.
[28] J. E. Gomez and J. D. McKinney, “M. tuberculosis persistence,
latency, and drug tolerance,” Tuberculosis , vol. 84, no. 1–2,
pp. 29–44, 2004, doi: 10.1016/J.TUBE.2003.08.003.
[29] I. Levin-Reisman, I. Ronin, O. Gefen, I. Braniss, N. Shoresh,
and N. Q. Balaban, “Antibiotic tolerance facilitates the evolution of
resistance,” Science (1979) , vol. 355, no. 6327, pp. 826–830,
Feb. 2017, doi: 10.1126/science.aaj2191.
[30] J. Liu, O. Gefen, I. Ronin, M. Bar-Meir, and N. Q. Balaban,
“Effect of tolerance on the evolution of antibiotic resistance under
drug combinations,” Antibiotic resistance , vol. 367, pp.
200–204, 2020, doi: 10.1126/science.aay3041.
[31] S. S. Grant and D. T. Hung, “Persistent bacterial infections,
antibiotic tolerance, and the oxidative stress response,” 2013,Taylor and Francis Inc. doi: 10.4161/viru.23987.
[32] V. C. Barth et al. , “Heterogeneous persister cells
formation in Acinetobacter baumannii,” PLoS One , vol. 8, no. 12,
Dec. 2013, doi: 10.1371/journal.pone.0084361.
[33] S. W. Gallo, B. K. Donamore, V. E. Pagnussatti, C. A. S.
Ferreira, and S. D. De Oliveira, “Effects of meropenem exposure in
persister cells of Acinetobacter calcoaceticus-baumannii,” Future
Microbiol , vol. 12, no. 2, pp. 131–140, Feb. 2017, doi:
10.2217/fmb-2016-0118.
[34] A. M. Shenkutie, M. Z. Yao, G. K. H. Siu, B. K. C. Wong, and P.
H. M. Leung, “Biofilm-induced antibiotic resistance in clinical
acinetobacter baumannii isolates,” Antibiotics , vol. 9, no. 11,
pp. 1–15, Nov. 2020, doi: 10.3390/antibiotics9110817.
[35] B. K. Donamore, S. W. Gallo, P. M. A. Ferreira, C. A. S.
Ferreira, and S. D. De Oliveira, “Levels of persisters influenced by
aeration in Acinetobacter calcoaceticus–baumannii,” Future
Microbiol , vol. 13, no. 2, pp. 209–219, 2018, doi:
10.2217/fmb-2017-0153.
[36] M. Nicol et al. , “Anti-persister activity of squalamine
against Acinetobacter baumannii,” Int J Antimicrob Agents , vol.
53, no. 3, pp. 337–342, Mar. 2019, doi:
10.1016/J.IJANTIMICAG.2018.11.004.
[37] T. K. Wood, S. J. Knabel, and B. W. Kwan, “Bacterial Persister
Cell Formation and Dormancy,” 2013, doi: 10.1128/AEM.02636-13.
[38] E. L. Mangas et al. , “Pangenome of Acinetobacter
baumannii uncovers two groups of genomes, one of them with genes
involved in CRISPR/Cas defence systems associated with the absence of
plasmids and exclusive genes for biofilm formation,” Microb
Genom , vol. 5, 2019, doi: 10.1099/mgen.0.000309.
[39] C. F. Schuster and R. Bertram, “Toxin-antitoxin systems are
ubiquitous and versatile modulators of prokaryotic cell fate,”FEMS Microbiol Lett , vol. 340, pp. 73–85, 2013, doi:
10.1111/1574-6968.12074.
[40] F. Hayes, “Toxins-Antitoxins: Plasmid Maintenance, Programmed
Cell Death, and Cell Cycle Arrest,” Science (1979) , vol. 301,
no. 5639, 2003, [Online]. Available: http://about.jstor.org/terms
[41] D. Jurėnas, N. Fraikin, F. Goormaghtigh, and L. Van Melderen,
“Biology and evolution of bacterial toxin–antitoxin systems,”Nature Reviews Microbiology 2022 20:6 , vol. 20, no. 6, pp.
335–350, Jan. 2022, doi: 10.1038/s41579-021-00661-1.
[42] H. S. Moyed and K. P. Bertrand, “hipA, a Newly Recognized Gene
of Escherichia coli K-12 That Affects Frequency of Persistence After
Inhibition of Murein Synthesis,” 1983.
[43] M. J. Gray, V. J. Dirita, and J. A. Org, “Inorganic
Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but
Not by (p)ppGpp,” 2019, doi: 10.1128/JB.00070-19.
[44] E. Germain, D. Castro-Roa, N. Zenkin, and K. Gerdes,
“Molecular Mechanism of Bacterial Persistence by HipA,” Mol
Cell , vol. 52, no. 2, pp. 248–254, Oct. 2013, doi:
10.1016/j.molcel.2013.08.045.
[45] M. Jurenaite, A. Markuckas, and E. Sužiedeliene,
“Identification and characterization of type II toxin-antitoxin systems
in the opportunistic pathogen acinetobacter baumannii,” J
Bacteriol , vol. 195, no. 14, pp. 3165–3172, 2013, doi:
10.1128/JB.00237-13.
[46] M. F. Al Marjania, E. Kouhsari, F. S. Ali, and S. H. Authman,
“Evaluation of type II Toxin-Antitoxin Systems, Antibiotic Resistance
Profiles, and Biofilm Quorum Sensing Genes in Acinetobacter Baumannii
Isolates in Iraq,” Infect Disord Drug Targets , vol. 21, no. 2,
pp. 180–186, May 2020, doi: 10.2174/1871526520666200525170318.
[47] B. Shin, C. Park, and W. Park, “Stress responses linked to
antimicrobial resistance in Acinetobacter species,” Feb. 01, 2020,Springer . doi: 10.1007/s00253-019-10317-z.
[48] A. Japoni-Nejad et al. , “Identification and
characterization of the type II toxin-antitoxin systems in the
carbapenem-resistant Acinetobacter baumannii,” Microb Pathog ,
vol. 158, Sep. 2021, doi: 10.1016/j.micpath.2021.105052.
[49] S. S. Lean, C. C. Yeo, Z. Suhaili, and K. L. Thong,
“Comparative genomics of two ST 195 carbapenem-resistant Acinetobacter
baumannii with different susceptibility to polymyxin revealed underlying
resistance mechanism,” Front Microbiol , vol. 6, no. JAN, 2016,
doi: 10.3389/FMICB.2015.01445/ABSTRACT.
[50] S. S. Lean and C. C. Yeo, “Small, enigmatic plasmids of the
nosocomial pathogen, Acinetobacter baumannii: Good, bad, who knows?,”Front Microbiol , vol. 8, no. AUG, Aug. 2017, doi:
10.3389/FMICB.2017.01547/ABSTRACT.
[51] N. Mosqueda et al. , “Characterization of plasmids
carrying the blaOXA-24/40 carbapenemase gene and the genes encoding the
AbkA/AbkB proteins of a toxin/antitoxin system,” Journal of
Antimicrobial Chemotherapy , vol. 69, no. 10, pp. 2629–2633, Oct. 2014,
doi: 10.1093/JAC/DKU179.
[52] S. Tsuneda et al. , “The higBA Toxin-Antitoxin Module
From the Opportunistic Pathogen Acinetobacter baumannii – Regulation,
Activity and Evolution,” 2018, doi: 10.3389/fmicb.2018.00732.
[53] L. Fernández-García et al. , “Relationship between
Tolerance and Persistence Mechanisms in Acinetobacter baumannii Strains
with AbkAB Toxin-Antitoxin System,” Antimicrob Agents Chemother ,
vol. 62, no. 5, pp. 1–7, 2018, doi: 10.1128/AAC.
[54] D. Sharma et al. , “HigB1 Toxin in Mycobacterium
tuberculosis Is Upregulated During Stress and Required to Establish
Infection in Guinea Pigs,” 2021, doi: 10.3389/fmicb.2021.748890.
[55] T. L. Wood and T. K. Wood, “The HigB/HigA toxin/antitoxin
system of Pseudomonas aeruginosa influences the virulence factors
pyochelin, pyocyanin, and biofilm formation,” Microbiologyopen ,
vol. 5, no. 3, pp. 499–511, Jun. 2016, doi: 10.1002/mbo3.346.
[56] Y. Song et al. , “Type II Antitoxin HigA Is a Key
Virulence Regulator in Pseudomonas aeruginosa,” American Chemical
Society , vol. 7, pp. 2930–2940, 2021, doi:
10.1021/acsinfecdis.1c00401.
[57] J. Armalyte, D. Jurenas, R. Krasauskas, A. Čepauskas, and E.
Sužiedeliene, “The higBA toxin-antitoxin module from the opportunistic
pathogen Acinetobacter baumannii - Regulation, activity, and
evolution,” Front Microbiol , vol. 9, no. APR, Apr. 2018, doi:
10.3389/FMICB.2018.00732/FULL.
[58] J. Povilonis et al. , “Spread of carbapenem-resistant
Acinetobacter baumannii carrying a plasmid with two genes encoding
OXA-72 carbapenemase in Lithuanian hospitals,” Journal of
Antimicrobial Chemotherapy , vol. 68, no. 5, pp. 1000–1006, May 2013,
doi: 10.1093/jac/dks499.
[59] S. Shahbazi et al. , “Zinc oxide nanoparticles impact
the expression of the genes involved in toxin-antitoxin systems in
multidrug-resistant Acinetobacter baumannii,” J Basic Microbiol ,
pp. 1–9, 2022, doi: 10.1002/jobm.202200382.
[60] I. Keren, D. Shah, A. Spoering, N. Kaldalu, and K. Lewis,
“Specialized persister cells and the mechanism of multidrug tolerance
in Escherichia coli,” J Bacteriol , vol. 186, no. 24, pp.
8172–8180, Dec. 2004, doi: 10.1128/JB.186.24.8172-8180.2004.
[61] A. Ghazi Alattraqchi et al. , “Complete Genome
Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter
nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding
the NDM-1 and OXA-58 Carbapenemases,” 2021, doi:
10.1128/mSphere.01076-20.
[62] K. Pedersen, A. V Zavialov, M. Y. Pavlov, J. Elf, K. Gerdes,
and M. Ns Ehrenberg, “The Bacterial Toxin RelE Displays Codon-Specific
Cleavage of mRNAs in the Ribosomal A Site small its concentration will
dwindle and free and active RelE toxins will appear in the cytoplasm
(Christensen et al., 2001),” Cell , vol. 112, pp. 131–140, 2003.
[63] S. Kashyap, P. Sharma, and N. Capalash, “Potential genes
associated with survival of Acinetobacter baumannii under ciprofloxacin
stress,” Microbes Infect , vol. 23, no. 9–10, Nov. 2021, doi:
10.1016/j.micinf.2021.104844.
[64] M. G. Jørgensen, D. P. Pandey, M. Jaskolska, and K. Gerdes,
“HicA of Escherichia coli defines a novel family of
translation-independent mRNA interferases in bacteria and archaea,”J Bacteriol , vol. 191, no. 4, pp. 1191–1199, Feb. 2009, doi:
10.1128/JB.01013-08/FORMAT/EPUB.
[65] A. Butt et al. , “The HicA toxin from Burkholderia
pseudomallei has a role in persister cell formation,” Biochemical
Journal , vol. 459, no. 2, pp. 333–344, Apr. 2014, doi:
10.1042/BJ20140073.
[66] A. Karthika et al. , “Molecular dynamics simulation of
Toxin-Antitoxin (TA) system in Acinetobacter baumannii to explore
the novel mechanism for inhibition of cell wall biosynthesis: Zeta Toxin
as an effective therapeutic target,” J Cell Biochem , vol. 122,
no. 12, pp. 1832–1847, Dec. 2021, doi: 10.1002/jcb.30137.
[67] A. Sonkar, H. Shukla, R. Shukla, J. Kalita, T. Pandey, and T.
Tripathi, “UDP-N-Acetylglucosamine enolpyruvyl transferase (MurA) of
Acinetobacter baumannii (AbMurA): Structural and functional
properties,” Int J Biol Macromol , vol. 97, pp. 106–114, Apr.
2017, doi: 10.1016/J.IJBIOMAC.2016.12.082.
[68] H. Lv et al. , “Polyphosphate Kinase Is Required for the
Processes of Virulence and Persistence in Acinetobacter baumannii,”Microbiol Spectr , Jul. 2022, doi: 10.1128/SPECTRUM.01230-22.
[69] K. Syal, N. RS, and M. V. N. J. Reddy, “The extended (p)ppGpp
family: New dimensions in Stress response,” Curr Res Microb Sci ,
vol. 2, p. 100052, Dec. 2021, doi: 10.1016/J.CRMICR.2021.100052.
[70] D. A. D’argenio and S. I. Miller, “Cyclic di-GMP as a
bacterial second messenger,” Microbiology (N Y) , vol. 150, pp.
2497–2502, 2004, doi: 10.1099/mic.0.27099-0.
[71] U. Jenal and J. Malone, “Mechanisms of Cyclic-di-GMP Signaling
in Bacteria,” Annu. Rev. Genet. , vol. 40, pp. 385–407, 2006,
doi: 10.1146/annurev.genet.40.110405.090423.
[72] O. Pacios et al. , “(p)ppGpp and its role in bacterial
persistence: New challenges,” Antimicrob Agents Chemother , vol.
64, no. 10, Oct. 2020, doi: 10.1128/AAC.01283-20.
[73] M. Hirsch and T. Elliott, “Role of ppGpp in rpoS
stationary-phase regulation in Escherichia coli,” J Bacteriol ,
vol. 184, no. 18, pp. 5077–5087, Sep. 2002, doi:
10.1128/JB.184.18.5077-5087.2002.
[74] M. Macia, M. Kochanowska, and R. Ły, “ppGpp inhibits the
activity of Escherichia coli DnaG primase,” 2009, doi:
10.1016/j.plasmid.2009.11.002.
[75] Y. Zuo, Y. Wang, and T. A. Steitz, “The Mechanism of E. coli
RNA Polymerase Regulation by ppGpp is suggested by the structure of
their complex,” Mol Cell , vol. 50, no. 3, pp. 430–436, May
2013, doi: 10.1016/j.molcel.2013.03.020.
[76] S. Brückner et al. , “(p)ppGpp and moonlighting RNases
influence the first step of lipopolysaccharide biosynthesis in
Escherichia coli,” vol. 4, pp. 1–18, 2023, doi:
10.1093/femsml/uqad031.
[77] D. Chatterji, N. Fujita, and A. Ishihama, “The mediator for
stringent control, ppGpp, binds to the β-subunit of Escherichia coli RNA
polymerase,” Genes to Cells , vol. 3, no. 5, pp. 279–287, 1998,
doi: 10.1046/J.1365-2443.1998.00190.X.
[78] J. A. Kraemer, A. G. Sanderlin, and M. T. Laub, “The stringent
response inhibits DNA replication initiation in E. Coli by modulating
supercoiling of oric,” mBio , vol. 10, no. 4, Jul. 2019, doi:
10.1128/MBIO.01330-19/FORMAT/EPUB.
[79] Y. Maki and H. Yoshida, “Ribosomal hibernation-associated
factors in escherichia coli,” Microorganisms , vol. 10, no. 1,
Jan. 2022, doi: 10.3390/MICROORGANISMS10010033.
[80] M. Pérez-Varela, A. R. P. Tierney, J. S. Kim, A.
Vázquez-Torres, and P. Rather, “Characterization of RelA in
acinetobacter baumannii,” J Bacteriol , vol. 202, no. 12, Jun.
2020, doi: 10.1128/JB.00045-20.
[81] H. Tamman et al. , “nature chemical biology Structure of
SpoT reveals evolutionary tuning of catalysis via conformational
constraint,” Nature Chemical Biology | , vol. 19, pp.
334–345, 2022, doi: 10.1038/s41589-022-01198-x.
[82] H. W. Jung, K. Kim, M. M. Islam, J. C. Lee, and M. Shin, “Role
of ppGpp-regulated efflux genes in Acinetobacter baumannii,”Journal of Antimicrobial Chemotherapy , vol. 75, no. 5, pp.
1130–1134, May 2020, doi: 10.1093/jac/dkaa014.
[83] N. Kim, J. H. Son, K. Kim, H. J. Kim, M. Shin, and J. C. Lee,
“Dksa modulates antimicrobial susceptibility of acinetobacter
baumannii,” Antibiotics , vol. 10, no. 12, Dec. 2021, doi:
10.3390/antibiotics10121472.
[84] H. Liao et al. , “Cyclic di-GMP as an Antitoxin
Regulates Bacterial Genome Stability and Antibiotic Persistence in
Biofilms,” Microbiology and Infectious Disease , 2024, doi:
10.7554/eLife.99194.1.
[85] H. Antelmann, S. Rice, M. B. Poulin, and L. L. Kuperman,
“Regulation of Biofilm Exopolysaccharide Production by Cyclic
Di-Guanosine Monophosphate,” 2021, doi: 10.3389/fmicb.2021.730980.
[86] C. L. Hall and V. T. Lee, “Cyclic-di-GMP regulation of
virulence in bacterial pathogens,” WIREs RNA , vol. 9, p. 1454,
2018, doi: 10.1002/wrna.1454.
[87] M. Valentini and A. Filloux, “Multiple Roles of c-di-GMP
Signaling in Bacterial Pathogenesis,” Annu. Rev. Microbiol , vol.
73, pp. 387–406, 2019, doi: 10.1146/annurev-micro-020518.
[88] Y. Zhang et al. , “HigB Reciprocally Controls Biofilm
Formation and the Expression of Type III Secretion System Genes through
Influencing the Intracellular c-di-GMP Level in Pseudomonas
aeruginosa,” Toxins (Basel) , vol. 10, pp. 1–12, 2018, doi:
10.3390/toxins10110424.
[89] K. M. Dahlstrom and G. A. O’toole, “A Symphony of Cyclases:
Specificity in Diguanylate Cyclase Signaling,” 2017, doi:
10.1146/annurev-micro-090816.
[90] I. Ahmad, E. Nygren, F. Khalid, S. L. Myint, and & Bernt Eric
Uhlin, “A cyclic-di-GMp signalling network regulates biofilm formation
and surface associated motility of Acinetobacter baumannii 17978,”
2020, doi: 10.1038/s41598-020-58522-5.
[91] K. H. Maslowska, K. Makiela-Dzbenska, and I. J. Fijalkowska,
“The SOS system: A complex and tightly regulated response to DNA
damage,” Environ Mol Mutagen , vol. 60, no. 4, pp. 368–384, May
2019, doi: 10.1002/EM.22267.
[92] N. Fornelos, D. F. Browning, and M. Butala, “The Use and Abuse
of LexA by Mobile Genetic Elements,” 2016, doi:
10.1016/j.tim.2016.02.009.
[93] M. A. Lima-Noronha, D. L. H Fonseca, R. S. Oliveira, R. R.
Freitas, J. H. Park, and R. S. Galhardo, “Sending out an SOS-the
bacterial DNA damage response,” Genet Mol Biol , vol. 45, no. 1,
p. 20220107, 2022, doi: 10.1590/1678-4685-GMB-2022-0107.
[94] L. M. Jara, P. Cortés, G. Bou, J. Barbé, and J. Aranda,
“Differential roles of antimicrobials in the acquisition of drug
resistance through activation of the SOS response in Acinetobacter
baumannii,” Antimicrob Agents Chemother , vol. 59, no. 7, pp.
4318–4320, Jul. 2015, doi: 10.1128/AAC.04918-14.
[95] M. D. Norton, A. J. Spilkia, and V. G. Godoy, “Antibiotic
resistance acquired through a DNA damage-inducible response in
Acinetobacter baumannii,” J Bacteriol , vol. 195, no. 6, pp.
1335–1345, Mar. 2013, doi: 10.1128/JB.02176-12.
[96] M. Tomas, J. Carlos Alonso, S. N. Claudia H Marques, D. Žgur
Bertok, and Z. Podlesek, “The DNA Damage Inducible SOS Response Is a
Key Player in the Generation of Bacterial Persister Cells and Population
Wide Tolerance,” 2020, doi: 10.3389/fmicb.2020.01785.
[97] J. M. Hare, J. A. Bradley, C.-L. Lin, and T. J. Elam, “Diverse
responses to UV light exposure in Acinetobacter include the capacity for
DNA damage-induced mutagenesis in the opportunistic pathogens
Acinetobacter baumannii and Acinetobacter ursingii,” 2012, doi:
10.1099/mic.0.054668-0.
[98] V. Tiwari, M. Tiwari, and D. Biswas, “Rationale and design of
an inhibitor of RecA protein as an inhibitor of Acinetobacter
baumannii,” J Antibiot (Tokyo) , vol. 71, pp. 522–534, 2018,
doi: 10.1038/s41429-018-0026-2.
[99] M. D. F. B. V. C. K. D. C. J. M. H. Deborah Cook, “The DdrR
Coregulator of theAcinetobacter baumannii Mutagenic DNA Damage Response
Potentiates UmuDAb Repression of Error-Prone Polymerases,” J
Bacteriol , vol. 204, no. 11, Nov. 2022, doi: 10.1128/jb.00220-22.
[100] B. Candra, D. Cook, and J. Hare, “ Repression of
Acinetobacter baumannii DNA damage response requires DdrR-assisted
binding of UmuDAb dimers to atypical SOS box ,” J Bacteriol ,
Jun. 2024, doi: 10.1128/jb.00432-23.
[101] A. Pavlin, G. Bajc, N. Fornelos, D. F. Browning, and M.
Butala, “The Small DdrR Protein Directly Interacts with the UmuDAb
Regulator of the Mutagenic DNA Damage Response in Acinetobacter
baumannii,” 2022. [Online]. Available:
https://journals.asm.org/journal/jb
[102] S. Kashyap, P. Sharma, and N. Capalash, “Tobramycin Stress
Induced Differential Gene Expression in Acinetobacter baumannii,”Curr Microbiol , vol. 79, no. 3, Mar. 2022, doi:
10.1007/s00284-022-02788-7.
[103] J. Aranda et al. , “Acinetobacter baumannii reca
protein in repair of DNA damage, antimicrobial resistance, general
stress response, and virulence,” J Bacteriol , vol. 193, no. 15,
pp. 3740–3747, Aug. 2011, doi: 10.1128/JB.00389-11.
[104] L. Lin, D. Ringel, A. Vettiger, L. Dürr, and B. Marek, “DNA
Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and
Reduces Fitness of Acinetobacter baylyi In Brief,” Cell Rep ,
vol. 29, 2019, doi: 10.1016/j.celrep.2019.09.083.
[105] H. Kim, J. Hong Kim, H. Cho, and K. Soo Ko, “Overexpression
of a DNA Methyltransferase Increases Persister Cell Formation in
Acinetobacter baumannii,” 2022, doi: 10.1128/spectrum.02655-22.
[106] H. Van Acker and T. Coenye, “The Role of Reactive Oxygen
Species in Antibiotic-Mediated Killing of Bacteria,” Trends
Microbiol , vol. 25, no. 6, pp. 456–466, Jun. 2017, doi:
10.1016/J.TIM.2016.12.008.
[107] M. Herb, M. Schramm, and S. Filosa, “Functions of ROS in
Macrophages and Antimicrobial Immunity,” 2021, doi:
10.3390/antiox10020313.
[108] M. M. Masadeh, K. H. Alzoubi, S. I. Al-Azzam, O. F. Khabour,
and A. M. Al-Buhairan, “Ciprofloxacin-induced antibacterial activity is
atteneuated by pretreatment with antioxidant agents,” Pathogens ,
vol. 5, no. 1, Mar. 2016, doi: 10.3390/PATHOGENS5010028.
[109] J. H. Yeo, J. Q. Low, N. Begam, W.-T. Leow, and A. L.-H. Kwa,
“Can flow cytometric measurements of reactive oxygen species levels
determine minimal inhibitory concentrations and antibiotic
susceptibility testing for Acinetobacter baumannii?,” PLoS One ,
vol. 19, no. 6, p. e0305939, Jun. 2024, doi:
10.1371/JOURNAL.PONE.0305939.
[110] E. Kouhsari et al. , “Bacterial Persister Cells:
Mechanisms of Formation, Control, and Eradication,” Infect Disord
Drug Targets , vol. 23, no. 7, pp. 17–28, 2023, doi:
10.2174/1871526523666230511142054.
[111] N. Bhargava, P. Sharma, and N. Capalash, “Pyocyanin
stimulates quorum sensing-mediated tolerance to oxidative stress and
increases persister cell populations in Acinetobacter baumannii,”Infect Immun , vol. 82, no. 8, pp. 3417–3425, 2014, doi:
10.1128/IAI.01600-14/FORMAT/EPUB.
[112] V. Dubey, R. Gupta, and R. Pathania, “Targeting superoxide
dismutase confers enhanced reactive oxygen species-mediated eradication
of polymyxin b-induced acinetobacter baumannii persisters,”Antimicrob Agents Chemother , vol. 65, no. 5, May 2021, doi:
10.1128/AAC.02180-20.
[113] R. Alkasir et al. , “Characterization and transcriptome
analysis of acinetobacter baumannii persister cells,” Microbial
Drug Resistance , vol. 24, no. 10, pp. 1466–1474, Dec. 2018, doi:
10.1089/mdr.2017.0341.
[114] A. J. Hooppaw et al. , “The Phenylacetic Acid Catabolic
Pathway Regulates Antibiotic and Oxidative Stress Responses in
Acinetobacter,” mBio , vol. 13, no. 3, 2022, doi:
10.1128/mbio.01863-21.
[115] C. L. Schrank, I. K. Wilt, C. Monteagudo Ortiz, B. A. Haney,
and W. M. Wuest, “Using membrane perturbing small molecules to target
chronic persistent infections,” RSC Med Chem , vol. 12, no. 8,
pp. 1312–1324, Aug. 2021, doi: 10.1039/D1MD00151E.
[116] R. Bansal-Mutalik and H. Nikaido, “Mycobacterial outer
membrane is a lipid bilayer and the inner membrane is unusually rich in
diacyl phosphatidylinositol dimannosides,” 2014, doi:
10.1073/pnas.1403078111.
[117] H. Christensen, N. J. Garton, R. W. Horobin, D. E. Minnikin,
and M. R. Barer, “Lipid domains of mycobacteria studied with
fluorescent molecular probes,” 1999, doi:
10.1046/j.1365-2958.1999.01304.x.
[118] S. Canaan, E. V Nazarova, J. Daniel, M. Y. Krishnan, R. Kumar
Maurya, and S. Bharti, “Triacylglycerols: Fuelling the Hibernating
Mycobacterium tuberculosis,” Frontiers in Cellular and Infection
Microbiology | www.frontiersin.org , vol. 1, p. 450, 2019, doi:
10.3389/fcimb.2018.00450.
[119] J. Daniel et al. , “Induction of a novel class of
diacylglycerol acyltransferases and triacylglycerol accumulation in
Mycobacterium tuberculosis as it goes into a dormancy-like state in
culture,” J Bacteriol , vol. 186, no. 15, pp. 5017–5030, Aug.
2004, doi: 10.1128/JB.186.15.5017-5030.2004.
[120] K. L. Low et al. , “Triacylglycerol Utilization Is
Required for Regrowth of In Vitro Hypoxic Nonreplicating Mycobacterium
bovis Bacillus Calmette-Guerin,” J Bacteriol , vol. 191, no. 16,
pp. 5037–5043, 2009, doi: 10.1128/JB.00530-09.
[121] M. P. Weir, W. H. R. Langridge, and R. W. Walker,
“Relationships Between Oleic Acid Uptake and Lipid Metabolism in
Mycobacterium smegrnatis’,” 1972.
[122] S.-H. Baek, A. H. Li, and C. M. Sassetti, “Metabolic
Regulation of Mycobacterial Growth and Antibiotic Sensitivity,”PLoS Biol , vol. 9, no. 5, p. 1001065, 2011, doi:
10.1371/journal.pbio.1001065.
[123] D. Vergoz et al. , “Lipidome of Acinetobacter baumannii
antibiotic persister cells,” BBA-Molecular and Cell Biology of
Lipids , vol. 1869, p. 159539, 2024, doi: 10.1016/j.bbalip.2024.159539.
[124] B. L. Schmitt et al. , “Increased ompW and ompA
expression and higher virulence of Acinetobacter baumannii persister
cells,” BMC Microbiol , vol. 23, no. 1, Dec. 2023, doi:
10.1186/s12866-023-02904-y.
[125] T. Bhando, A. Casius, S. R. Uppalapati, and R. Pathania,
“Unravelling mechanisms of meropenem induced persistence facilitates
identification of GRAS compounds with anti-persister activity against 2
Acinetobacter baumannii,” bioRxiv , 2020.
[126] J. Zou et al. , “Non-walled spherical Acinetobacter
baumannii is an important type of persister upon β-lactam antibiotic
treatment,” Emerg Microbes Infect , vol. 9, no. 1, pp.
1149–1159, Jan. 2020, doi: 10.1080/22221751.2020.1770630.
[127] Y. Wakamoto et al. , “Dynamic persistence of
antibiotic-stressed mycobacteria,” Science (1979) , vol. 339, no.
6115, pp. 91–95, Jan. 2013, doi: 10.1126/science.1229858.
[128] V. Defraine, M. Fauvart, and J. Michiels, “Fighting bacterial
persistence: Current and emerging anti-persister strategies and
therapeutics,” Drug Resistance Updates , vol. 38, pp. 12–26, May
2018, doi: 10.1016/J.DRUP.2018.03.002.
[129] F. Khan, D. T. N. Pham, N. Tabassum, S. F. Oloketuyi, and Y.
M. Kim, “Treatment strategies targeting persister cell formation in
bacterial pathogens,” Nov. 01, 2020, Taylor and Francis Ltd. doi: 10.1080/1040841X.2020.1822278.
[130] S. W. Gallo, C. Alexandre, S. Ferreira, and S. D. De Oliveira,
“Combination of polymyxin B and meropenem eradicates persister cells
from Acinetobacter baumannii strains in exponential growth,” J
Med Microbiol , vol. 66, pp. 1257–1260, 2017, doi:
10.1099/jmm.0.000542.
[131] S. Kashyap, S. Kaur, P. Sharma, and N. Capalash, “Combination
of colistin and tobramycin inhibits persistence of Acinetobacter
baumannii by membrane hyperpolarization and down-regulation of efflux
pumps,” Microbes Infect , vol. 23, no. 4–5, May 2021, doi:
10.1016/J.MICINF.2021.104795.
[132] E. S. Chung and K. S. Ko, “Eradication of persister cells of
Acinetobacter baumannii through combination of colistin and amikacin
antibiotics,” Journal of Antimicrobial Chemotherapy , vol. 74,
no. 5, pp. 1277–1283, May 2019, doi: 10.1093/jac/dkz034.
[133] M. Xie, K. Chen, E. Wai-Chi Chan, and S. Chen, “Synergistic
Antimicrobial Effect of Colistin in Combination with Econazole against
Multidrug-Resistant Acinetobacter baumannii and Its Persisters,” 2022,
doi: 10.1128/spectrum.00937-22.
[134] S. Rastegar et al. , “Synergistic effects of
bacteriophage cocktail and antibiotics combinations against extensively
drug-resistant Acinetobacter baumannii,” BMC Infect Dis , vol.
24, no. 1, pp. 1–13, Dec. 2024, doi:
10.1186/S12879-024-10081-0/FIGURES/9.
[135] E. Maffei et al. , “Phage Paride can kill dormant,
antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic
replication,” Nat Commun , vol. 15, no. 175, 2024, doi:
10.1038/s41467-023-44157-3.
[136] V. Defraine et al. , “Efficacy of Artilysin Art-175
against Resistant and Persistent Acinetobacter baumannii,” 2016, doi:
10.1128/AAC.00285-16.
[137] C. Ghosh et al. , “Aryl-alkyl-lysines: Membrane-Active
Small Molecules Active against Murine Model of Burn Infection,” 2015,
doi: 10.1021/acsinfecdis.5b00092.
[138] M. Blanchet et al. , “Claramines:ANew Class Of
Broad-Spectrum Antimicrobial Agents With Bimodal Activity,”ChemMedChem , vol. 13, pp. 1018–1027, 2018, doi:
10.1002/cmdc.201800073.
[139] D. Vergoz et al. , “6-Polyaminosteroid Squalamine
Analogues Display Antibacterial Activity against Resistant Pathogens,”Int J Mol Sci , vol. 24, no. 8568, 2023, doi:
10.3390/ijms24108568.
[140] V. Sanchez-Torres, J. Kirigo, and T. K. Wood, “Implications
of lytic phage infections inducing persistence,” 2024, doi:
10.1016/j.mib.2024.102482.