Abstract
In the paper, we devote to broadening the current global regularity
results for the two-dimensional magnetic B\’{e}nard
fluid equations. We study three cases: (i) fractional Laplacian
dissipation $(-\Delta)^\alpha{u}$,
partial magnetic diffusion
$(\partial_{x_2x_2}b_1,\partial_{x_1x_1}b_2)$
and Laplacian thermal diffusivity
$\Delta\theta$; (ii) partial fractional
dissipation
$(\Lambda^{2\alpha}_{x_2}u_1,\Lambda^{2\alpha}_{x_1}u_2)$,
partial magnetic diffusion
$(\partial_{x_2x_2}b_1,\partial_{x_1x_1}b_2)$
and Laplacian thermal diffusivity
$\Delta\theta$; (iii) partial fractional
magnetic diffusion
$(\Lambda^{2\beta}_{x_2}b_1,\Lambda^{2\beta}_{x_1}b_2)$,
Laplacian thermal diffusivity
$\Delta\theta$ and without Laplacian
dissipation $\Delta{u}$ (i.e.,
$\mu=0$)), and establish the global regularity for each
cases.