As a continuation of Part I \cite{Part-1:2020} (Int. Journal of Quantum Chem. 2021; 121: qua.26586), dedicated to the ground state of He-like and Li-like isoelectronic sequences for nuclear charges \(Z\leq 20\), a few ultra-compact wave functions in the form of generalized Hylleraas-Kinoshita functions are constructed, which describe the domain of applicability of the Quantum Mechanics of Coulomb Charges (QMCC) for energies (4-5 significant digits (s.d.)) of two excited states of He-like ions: the spin-singlet (first) excited state \(2^{1}S\) and for lowest spin-triplet \(1^{3}S\) state. For both states it provides absolute accuracy for energy \(\sim 10^{-3}\) a.u., exact values for cusp parameters and also for 6 expectation values the relative accuracy \(\sim 10^{-2}\). Bressanini-Reynolds observation about the special form of nodal surface of \(2^{1}S\) state for Helium is confirmed and extended to ions with \(Z>2\). Critical charges \(Z=Z_{B}\), where ultra-compact trial functions loose their square-integrability, are estimated: \(Z_{B}(1^{1}S)\approx Z_{B}(2^{1}S)\sim 0.905\) and \(Z_{B}(1^{3}S)\sim 0.902\). For both states the Majorana formula - the energy as the second degree polynomial in \(Z\) - provides accurately the 4-5 significant digits for \(Z\leq 20\).