loading page

On gain scheduling trajectory stabilization for nonlinear systems: theoretical insights and experimental results
  • Nicolas Matthias Kessler,
  • Lorenzo Fagiano
Nicolas Matthias Kessler
Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria
Author Profile
Lorenzo Fagiano
Politecnico di Milano Dipartimento di Elettronica Informazione e Bioingegneria

Corresponding Author:[email protected]

Author Profile

Abstract

Steering a nonlinear system from one state to a desired one is a common task in control. While a nominal trajectory can be obtained rather systematically using a model, for example via numerical optimization, heuristics, or reinforcement learning, the design of a computationally fast and reliable feedback control law that guarantees robust asymptotic stability of the found trajectory can be much more involved. An approach that does not require high online computational power and is well-accepted in the industry is gain-scheduling. The results presented here pertain to the stability guarantees and the region of attraction of gain scheduled control laws, based on subsequent linearizations along the reference trajectory. The approach bounds the uncertainty arising from the linearization process, builds polytopic sets of linear time varying systems covering the nonlinear dynamics along the trajectory, and exploits sufficient conditions for robust stability to attempt the derivation of the desired gain-scheduled controller, via the solution of Linear Matrix Inequalities (LMIs). A result to estimate an ellipsoidal region of attraction is provided too. Moreover, arbitrary scheduling strategies between the control gains are considered in the analysis, and the method can be used also to check/assess the stability properties obtained with an existing gain-scheduled law. The approach is demonstrated experimentally on a small quadcopter as well as in simulation to design a scheduled controller for a chemical reactor model and to validate an existing control law for a gantry crane model.
Submitted to International Journal of Robust and Nonlinear Control
28 Apr 2024Editorial Decision: Revise Minor
25 Oct 20241st Revision Received
25 Oct 2024Assigned to Editor
25 Oct 2024Submission Checks Completed
25 Oct 2024Review(s) Completed, Editorial Evaluation Pending
26 Oct 2024Reviewer(s) Assigned
02 Dec 2024Editorial Decision: Accept