loading page

The FAIR-Device - a non-lethal and generalist semi-automatic Malaise trap for insect biodiversity monitoring: Proof of concept
  • +3
  • Juan Chiavassa,
  • Martin Kraft,
  • Patrick Noack,
  • Simon Walther,
  • Ameli Kirse,
  • Christoph Scherber
Juan Chiavassa
Hochschule Weihenstephan-Triesdorf

Corresponding Author:[email protected]

Author Profile
Martin Kraft
Johann Heinrich von Thünen-Institut Federal Research Institute for Rural Areas Forestry and Fisheries
Author Profile
Patrick Noack
Hochschule Weihenstephan-Triesdorf
Author Profile
Simon Walther
Hochschule Weihenstephan-Triesdorf
Author Profile
Ameli Kirse
Zoological Research Museum Alexander Koenig
Author Profile
Christoph Scherber
Zoological Research Museum Alexander Koenig
Author Profile

Abstract

Field monitoring plays a crucial role in understanding insect dynamics within ecosystems. It facilitates pest distribution assessment, control measure evaluation, and prediction of pest outbreaks. Additionally, it provides important information on bioindicators with which the state of biodiversity and ecological integrity in specific habitats and ecosystems can be accurately assessed. However, traditional monitoring systems can present various difficulties, leading to a limited temporal and spatial resolution of the obtained information. Despite recent advancements in automatic insect monitoring traps, also called e-traps, most of these systems focus exclusively on studying agricultural pests, rendering them unsuitable for monitoring diverse insect populations. To address this issue, we introduce the Field Automatic Insect Recognition (FAIR)-Device, a novel non-lethal field tool that relies on semi-automatic image capture and species identification using artificial intelligence via the iNaturalist platform. Our objective was to develop a low-effort, cost-effective, and non-specific monitoring solution capable of providing high-resolution data for assessing insect diversity. During a 26-day proof-of-concept evaluation, the FAIR-Device recorded 24.8 GB of video, identifying 431 individuals from 9 orders, 50 families, and 69 genera. While improvements are possible, our device demonstrated potential as a cost-effective, non-lethal tool for monitoring insect biodiversity. Looking ahead, we envision new monitoring systems such as e-traps as valuable tools for real-time insect monitoring, offering unprecedented insights for ecological research and agricultural practices.
Submitted to Ecology and Evolution
Submission Checks Completed
Assigned to Editor
Reviewer(s) Assigned
12 Jul 2024Reviewer(s) Assigned
24 Jul 2024Review(s) Completed, Editorial Evaluation Pending
25 Jul 2024Editorial Decision: Revise Minor
23 Oct 20241st Revision Received
24 Oct 2024Submission Checks Completed
24 Oct 2024Assigned to Editor
24 Oct 2024Review(s) Completed, Editorial Evaluation Pending
25 Oct 2024Reviewer(s) Assigned
30 Oct 2024Editorial Decision: Revise Minor
04 Nov 20242nd Revision Received
06 Nov 2024Assigned to Editor
06 Nov 2024Submission Checks Completed
06 Nov 2024Review(s) Completed, Editorial Evaluation Pending
11 Nov 2024Editorial Decision: Accept