loading page

Heterojunction thin film solar cells based on Sb 2 Se 3 /CdS and evaluation of their performance by dark J-V analysis
  • +2
  • Malar Piraviperumal,
  • Srinivasan Moosi Govindharajulu,
  • Rohini Anandan,
  • Ramakrishna Madaka,
  • Jatindra Kumar Rath
Malar Piraviperumal
SRM Institute of Science and Technology (Deemed to be University) Department of Physics and Nanotechnology

Corresponding Author:[email protected]

Author Profile
Srinivasan Moosi Govindharajulu
SRM Institute of Science and Technology (Deemed to be University) Department of Physics and Nanotechnology
Author Profile
Rohini Anandan
SRM Institute of Science and Technology (Deemed to be University) Department of Physics and Nanotechnology
Author Profile
Ramakrishna Madaka
Indian Institute of Technology Madras Department of Physics
Author Profile
Jatindra Kumar Rath
Indian Institute of Technology Madras Department of Physics
Author Profile

Abstract

A simple binary antimony selenide (Sb 2Se 3) absorber is evolving as an alternative photovoltaic material in thin film solar cells because of its unique properties and easy processing. Sb 2Se 3 thin films having good crystalline quality are grown via versatile thermal evaporation from pre-synthesized near stoichiometric compound material on molybdenum coated soda lime glass (SLG) and borosilicate glass (BG) substrates. Following the systematic characterizations on the absorber films, substrate configured Sb 2Se 3/CdS heterojunction devices were fabricated and their photovoltaic characteristics have been studied using current density vs voltage (J-V), dark J-V modelling, external quantum efficiency, capacitance vs voltage measurements. The power conservation efficiency values of 4.88 % and 5.04 % were achieved for the devices fabricated on SLG and BG, respectively. The obtained values are higher in comparison to the reported device efficiencies in substrate configured Sb 2Se 3 solar cells, in which the absorber is prepared through thermal evaporation. To understand the loss in open circuit voltage , a compact equivalent circuit model was considered to identify the shunt leakage pathways. In addition to that the device fabricated on the SLG were structurally stable with minimal changes in its performance for a period spanning over 200 days. The results obtained are encouraging with scope for improving the device performance through interface engineering and back surface passivation strategies.
20 Feb 2024Submitted to Progress in Photovoltaics
15 Apr 2024Reviewer(s) Assigned
23 Jun 2024Editorial Decision: Revise Major