Photovoltaic properties of the natural dyes of chlorophylls consist of Chl a, Chl b, Chl c2, Chl d, Phe a, Phe y and Mg-Phe a, were studied in the gas phases and water. The extension of the π-conjugated system, the substitution of the central Mg2+ and proper functional groups in the chlorophyll structures can amplify the charge transfer and photovoltaic performance. Chl a shows more favorable dynamics of charge transfer than other studied chlorophylls. Chl d, Phe a, Phe y and Mg-Phe a, have a greater rate of the exciton dissociation in comparison with Chl a, Chl b, and Chl c2 originated from a lower electronic chemical hardness, a lower exciton binding energy, and a bigger electron-hole radius. As a result, better efficiencies of the light-harvesting and energy conversion of the chlorophylls mainly appear in the Soret band. The LHE values of the chlorophylls in water show that solvent favorably affects the ability of light-harvesting of the photosensitizers. Finally, based on the energy conversion efficiency, Chl a, Phe a, and Mg-Phe a, are proposed as the best candidates for using in the dye-sensitized solar cells.