In recent years, extensive research has been conducted on Internet of Things (IoT). Wireless Smart Ubiquitous Network (Wi-SUN) has gained considerable attention as a wireless communication standard for IoT. Wi-SUN Field Area Network (Wi-SUN FAN) is a technical specification of Wi-SUN that can be implemented in both indoor and outdoor IoT communication infrastructure with multi-hop routing. Although Wi-SUN FAN version 1.0 (Wi-SUN FAN 1.0) has been standardized by IEEE 2857-2021, there have been no studies or reviews conducted on the transmission performance of Wi-SUN FAN 1.0 regarding transmission success rate and delay time using computer simulations and experimental evaluation environments involving actual devices. In this study, the specifications of the Wi-SUN FAN are reviewed, and the fundamental transmission performance, such as average transmission success rate and average delay time, is measured using computer simulation as reference data. An experimental evaluation environment involving actual devices is developed to validate the characteristics evaluated by computer simulation. The characteristics determined by the computer simulation and experimental evaluation environment are in good agreement. Using the validated simulator, we evaluate the transmission performance in the wireless IoT environment with one border router and 100 routers randomly arranged in a flat square field with 4,000 m on a side. The average transmission success rate is approximately 1 at 1.00 × 10–1 s–1 or less. Consequently, Wi-SUN FAN 1.0 can communicate with a higher transmission success rate even when transmitting frequent IoT-data, which is once every ten seconds. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.