This study introduces two innovative methodologies aimed at augmenting energy efficiency in satellite-to-ground communication systems through the integration of multiple Reflective Intelligent Surfaces (RISs). The primary objective of these methodologies is to optimize overall energy efficiency under two distinct scenarios. In the first scenario, denoted as Ideal Environment (IE), we enhance energy efficiency by decomposing the problem into two sub-optimal tasks. The initial task concentrates on maximizing power reception by precisely adjusting the phase shift of each RIS element, followed by the implementation of Selective Diversity to identify the RIS element delivering maximal power. The second task entails minimizing power consumption, formulated as a binary linear programming problem, and addressed using the Binary Particle Swarm Optimization (BPSO) technique. The IE scenario presupposes an environment where signals propagate without any path loss, serving as a foundational benchmark for theoretical evaluations that elucidate the systems optimal capabilities. Conversely, the second scenario, termed Non-Ideal Environment (NIE), is designed for situations where signal transmission is subject to path loss. Within this framework, the Adam algorithm is utilized to optimize energy efficiency. This non ideal setting provides a pragmatic assessment of the systems capabilities under conventional operational conditions. Both scenarios emphasize the potential energy savings achievable by the satellite RIS system. Empirical simulations further corroborate the robustness and effectiveness of our approach, highlighting its potential to enhance energy efficiency in satellite-to-ground communication systems.
A Reconfigurable Intelligent Surface (RIS) panel comprises many independent Reflective Elements (REs). One possible way to implement an RIS is to use a binary passive load impedance connected to an antenna element to achieve the modulation of reflected radio waves. Each RE reflects incoming waves (incident signal) by using on/off modulation between two passive loads and adjusting its phase using a Phase Shifter (PS). However, this modulation process reduces the amplitude of the reflected output signal to less than unity. Therefore, recent RIS works have employed Reflection Amplifiers (RAs) to compensate for the losses incurred during the modulation process. However, these systems only improve the reflection coefficient for a single modulation state, resulting in suboptimal RE efficacy. Thus, this paper proposes a strategy for optimising RE by continuously activating the RA regardless of the switching load state. The performance of the proposed scheme is evaluated in two scenarios: (1) In the first scenario (Sc1), the RA only operates to compensate for high-impedance loads, and (2) in the second scenario (Sc2), the RA runs continuously regardless of the RE loads. To benchmark the performance of Sc1 and Sc2, various metrics are compared, including signal-to-noise ratio, insertion loss, noise figure, communication range, and power-added efficiency. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme. It is found that the proposed system in Sc2 leads to better overall performance compared to Sc1 due to the increased gain of the RIS reflection.