Quantitative analyses on the coefficient of friction of common coating waxes are necessary and essential for designing systems for coating, conveying, packaging operations, transporting and storing of papers and paperboards, while analyses on wear behavior can be helpful for predicting performance durability of the coating surface. In this study, we investigated the friction and wear behaviors of six waxes including four commercial waxes and two soybean oil-based wax developed in our lab for bulk coating on cardboard. The effect of normal load, sliding velocity, and environmental temperature was evaluated. The friction coefficient of different waxes varies with sliding conditions. Higher normal load, sliding velocity, and environmental temperature resulted in significantly greater wear loss. Crystalline morphology and crystallinity were affected by environmental temperature, and they correlate to the variations in friction coefficient and wear loss of these materials. Overall, the Estercoat developed in our lab had comparable frictional properties and much less wear than paraffin wax under tested conditions and can be a good substitute for paraffin wax.