Background and Purpose: Heart failure can reflect impaired contractile function at the myofilament level. In healthy hearts, myofilaments become more sensitive to Ca2+ as cells are stretched. This represents a fundamental property of myocardium that contributes to the Frank-Starling response, although the molecular mechanisms underlying the effect remain unclear. Mavacamten is a drug that binds to myosin, which is under investigation as a potential therapy for cardiovascular disease. We tested how mavacamten affects the sarcomere-length dependence of Ca2+-sensitive isometric contraction to determine how mavacamten might modulate the Frank-Starling mechanism. Experimental Approach: Multicellular preparations from the left ventricular free wall of hearts procured from organ donors were chemically permeabilized and Ca2+-activated in the presence or absence of 0.5 μM mavacamten at 1.9 or 2.3 µm sarcomere length (37°C). Isometric force and frequency-dependent viscoelastic myocardial stiffness measurements were made. Key Results: At both sarcomere lengths, mavacamten reduced maximal force and Ca2+-sensitivity of contraction. In the presence and absence of mavacamten, Ca2+-sensitivity of force increased as sarcomere length increased. This suggests that the length-dependent activation response was maintained in human myocardium, even though mavacamten reduced Ca2+-sensitivity. There were subtle effects of mavacamten reducing force values under relaxed conditions (pCa 8.0), as well as slowing myosin cross-bridge recruitment and speeding cross-bridge detachment under maximally activated conditions (pCa 4.5). Conclusion and Implications: Mavacamten did not eliminate sarcomere length-dependent increases in the Ca2+-sensitivity of contraction in myocardial strips from organ donors at physiological temperature. Pharmaceuticals that modulate myofilament function may be useful therapies for cardiovascular disease.