Acetylene, an important petrochemical feedstock, is the starting chemical to produce many polymer products. Separating C2H2 from its by-product mixtures is still an energy-consuming process and remains challenging. Here, we present a metal-organic framework[Zn2(bpy)(btec)], with a desirable pore geometry and highly stable framework, which demonstrated a high separation performance of C2H2 from simulated mixtures. With the desirable pore dimension and hydrogen bonding sites, Zn2(bpy)(btec) shows by far the both highest C2H2/CO2 and C2H2/CO2 uptake ratios, very high adsorption selectivities and moderately C2H2 uptake of 93.5 cm3•cm−3 under 298 K and 1 atm. Not only straightforwardly produced high purity of C2H4, but also recovered high purity of C2H2 (>98%) in the regeneration process (>92% recovery). More notably, Zn2(bpy)(btec) can be straightforwardly synthesized at a large scale under environmentally friendly conditions, and its good water/chemical stability, thermostability, and cyclic stability highlight the promise of this molecular sieving material for industrial C2H2 separation.