AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Xianzhong Yao
Public Documents
1
Time periodic solutions for the full quantum Euler equation
Min LI
and 1 more
August 04, 2020
In this paper, we establish the existence and uniqueness of a time periodic solution to the full compressible quantum Euler equations. First, we prove the existence of time periodic solutions under some smallness assumptions imposed on the external force in a periodic domain by a regularized approximation scheme and the Leray-Schauder degree theory. Then the result is generalized to $\mathbb{R}^{3}$ by adapting a limiting method and a diagonal argument. The uniqueness of the time periodic solutions is also given. Compared to classical Euler equations, the third-order quantum spatial derivatives are considered which need some elaborated treatments thereof in obtaining the highest-order energy estimates.