AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Jernej Klemenc
Public Documents
2
Design of step-stress accelerated life tests for estimating the fatigue reliability o...
Jernej Klemenc
and 1 more
November 07, 2020
This article describes how a step-stress accelerated life test (SSALT) can be designed for testing the fatigue life and reliability of structural components with a single failure mode. With simple numerical simulations of the crack’s propagation in the notched area of the structural part for different loading levels, the slope of the S-N curve for a structural component is initially estimated. Then, a very few fatigue-life experiments are carried out in the high-cycle domain to determine the intercept of the structure’s S-N curve. By considering the scatter from the material’s P-S-N curve, different SSALT designs for the structural component can be composed and checked for their expected acceleration factor. The procedure is experimentally validated for the case of a notched specimen and two different SSALT designs. From the results it can be concluded that the predicted durations of the SSALT experiments correlate well with the real experiments.
Rubber Fibre Composite Modelling and its Influence on Fatigue Damage Assessment
Simon Oman
and 2 more
August 11, 2020
A novel multi-axial energy-based approach is presented and used to demonstrate the influence of different finite element (FE) modelling techniques on the prediction of the fatigue life of a rubber composite with long oriented fibres. It is shown that the simplest modelling methods using 2D elements with rebar layers, layered 2D elements or layered 3D elements do not allow for a precise determination of the critical location and damage value. In contrast, modelling methods with 3D matrix and discrete reinforcement provide much better results. The predicted critical location corresponds to the measured one, although the predicted fatigue life still differs from the measured results. The most complex microscopic modelling method shows the best agreement between the predicted and measured fatigue life. Since microscopic modelling is not suitable for modelling larger products made of rubber fibre composite, it is also noted that modelling techniques with 3D matrix and discrete reinforcing elements can be used with the same accuracy if the fatigue life curve is obtained from measurements on the specimens made of composite material rather than the specimens made of the critical base material (rubber).