It is imperative to study the long term corrosion problems of nickel alloys in acidic medium due to breakdown of their passitive oxide. Focus of this work is to enhance the knowledge of adsorption of organic additives (OPD & PPD) onto the Ni-W alloy surface. Deducing the scenario of competitive adsorption of salen-type symmetrical Schiff bases (OPD, and PPD) as additive molecules on Ni-W alloy surface at molecular level was studied by Density Functional Theory (DFT), Monte Carlo simulation (MC), Molecular Dynamics simulation (MD) and Radial Distribution Function (RDF) analysis. Obtained intrinsic molecular parmaters from DFT shows a strong conformity to the corrosion effeciencies of experimental results. Higher polarization value of 650.707 a.u (PPD) explicates its electron donating ability onto the alloy surface. Higher binding energy (Ebinding=1132.241 kJ/mol) and spatial orientation of PPD molecule portrays the closest contacts between active atoms and alloy surface. Significant findings from DFT global descriptors, MC, MD and RDF analysis ratifies the corrosion effeciencies (PPD>OPD) of experimental outcomes, which correlates positively with the larger isomeric spacer. Overall, the present study, reports offers the corrosion inhibition resistance impact of OPD & PPD additives, revealing the fact of PPD as effective one and OPD as moderate ones for Ni-W alloys.